Identifying Key Hematological and Biochemical Indicators of Disease Severity in COVID-19 and Non-COVID-19 Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population and Data Collection
2.2. Hematologic and Biochemical Assays
2.3. Statistical Analysis
3. Results
3.1. Differences in Patient Characteristics Between COVID-19 and Non-COVID-19 Groups
3.2. Effect of COVID-19 on Severity Level
3.3. Laboratory Factors Associated with COVID-19 Severity
3.4. Laboratory Factors Associated with Non-COVID-19 Severity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ochani, R.; Asad, A.; Yasmin, F.; Shaikh, S.; Khalid, H.; Batra, S.; Sohail, M.R.; Mahmood, S.F.; Ochani, R.; Hussham Arshad, M.; et al. COVID-19 pandemic: From origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management. Infez. Med. 2021, 29, 20–36. [Google Scholar] [PubMed]
- Martens, R.J.H.; van Adrichem, A.J.; Mattheij, N.J.A.; Brouwer, C.G.; van Twist, D.J.L.; Broerse, J.; Magro-Checa, C.; van Dongen, C.M.P.; Mostard, R.L.M.; Ramiro, S.; et al. Hemocytometric characteristics of COVID-19 patients with and without cytokine storm syndrome on the sysmex XN-10 hematology analyzer. Clin. Chem. Lab. Med. 2021, 59, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Urrechaga, E. Reviewing the value of leukocytes cell population data (CPD) in the management of sepsis. Ann. Transl. Med. 2020, 8, 953. [Google Scholar] [CrossRef]
- Wang, Z.; He, Y.; Shu, H.; Wang, P.; Xing, H.; Zeng, X.; Tang, Z. High-fluorescent lymphocytes are increased in patients with COVID-19. Br. J. Haematol. 2020, 190, e76–e78. [Google Scholar] [CrossRef]
- Urrechaga, E.; Aguirre, U.; España, P.P.; García de Guadiana, L. Complete blood counts and cell population data from Sysmex XN analyser in the detection of SARS-CoV-2 infection. Clin. Chem. Lab. Med. 2020, 59, e57–e60. [Google Scholar] [CrossRef]
- Dennison, D.; Al Khabori, M.; Al Mamari, S.; Aurelio, A.; Al Hinai, H.; Al Maamari, K.; Alshekaili, J.; Al Khadouri, G. Circulating activated neutrophils in COVID-19: An independent predictor for mechanical ventilation and death. Int. J. Infect. Dis. 2021, 106, 155–159. [Google Scholar] [CrossRef]
- Buoro, S.; Seghezzi, M.; Vavassori, M.; Dominoni, P.; Apassiti Esposito, S.; Manenti, B.; Mecca, T.; Marchesi, G.; Castellucci, E.; Azzarà, G.; et al. Clinical significance of cell population data (CPD) on Sysmex XN-9000 in septic patients with our without liver impairment. Ann. Transl. Med. 2016, 4, 418. [Google Scholar] [CrossRef]
- Sharafi, F.; Jafarzadeh Esfehani, R.; Moodi Ghalibaf, A.; Jarahi, L.; Shamshirian, A.; Mozdourian, M. Leukopenia and leukocytosis as strong predictors of COVID-19 severity: A cross-sectional study of the hematologic abnormalities and COVID-19 severity in hospitalized patients. Health Sci. Rep. 2023, 6, e1574. [Google Scholar] [CrossRef]
- Ghahramani, S.; Tabrizi, R.; Lankarani, K.B.; Kashani, S.M.A.; Rezaei, S.; Zeidi, N.; Akbari, M.; Heydari, S.T.; Akbari, H.; Nowrouzi-Sohrabi, P.; et al. Laboratory features of severe vs. non-severe COVID-19 patients in Asian populations: A systematic review and meta-analysis. Eur. J. Med. Res. 2020, 25, 30. [Google Scholar] [CrossRef]
- Sun, S.; Cai, X.; Wang, H.; He, G.; Lin, Y.; Lu, B.; Chen, C.; Pan, Y.; Hu, X. Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China. Clin. Chim. Acta 2020, 507, 174–180. [Google Scholar] [CrossRef]
- Schulte-Schrepping, J.; Reusch, N.; Paclik, D.; Baßler, K.; Schlickeiser, S.; Zhang, B.; Krämer, B.; Krammer, T.; Brumhard, S.; Bonaguro, L.; et al. Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. Cell 2020, 182, 1419–1440.e1423. [Google Scholar] [CrossRef] [PubMed]
- Huang, I.; Pranata, R. Lymphopenia in severe coronavirus disease-2019 (COVID-19): Systematic review and meta-analysis. J. Intensive Care 2020, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Liu, Y.; Chen, B.; Yang, H.; Hu, H.; Liu, Y.; Zhao, Y. Prognostic value of lymphocyte count in severe COVID-19 patients with corticosteroid treatment. Signal Transduct. Target. Ther. 2021, 6, 106. [Google Scholar] [CrossRef] [PubMed]
- Iannetta, M.; Buccisano, F.; Fraboni, D.; Malagnino, V.; Campogiani, L.; Teti, E.; Spalliera, I.; Rossi, B.; Di Lorenzo, A.; Palmieri, R.; et al. Baseline T-lymphocyte subset absolute counts can predict both outcome and severity in SARS-CoV-2 infected patients: A single center study. Sci. Rep. 2021, 11, 12762. [Google Scholar] [CrossRef]
- Li, T.; Qiu, Z.; Zhang, L.; Han, Y.; He, W.; Liu, Z.; Ma, X.; Fan, H.; Lu, W.; Xie, J.; et al. Significant changes of peripheral T lymphocyte subsets in patients with severe acute respiratory syndrome. J. Infect. Dis. 2004, 189, 648–651. [Google Scholar] [CrossRef]
- Xu, H.; Zhong, L.; Deng, J.; Peng, J.; Dan, H.; Zeng, X.; Li, T.; Chen, Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci. 2020, 12, 8. [Google Scholar] [CrossRef]
- Lin, L.; Lu, L.; Cao, W.; Li, T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg. Microbes Infect. 2020, 9, 727–732. [Google Scholar] [CrossRef]
- Lukaszewicz, A.C.; Grienay, M.; Resche-Rigon, M.; Pirracchio, R.; Faivre, V.; Boval, B.; Payen, D. Monocytic HLA-DR expression in intensive care patients: Interest for prognosis and secondary infection prediction. Crit. Care Med. 2009, 37, 2746–2752. [Google Scholar] [CrossRef]
- Navarro Conde, P.; Alemany Monraval, P.; Medina Medina, C.; Jiménez Sánchez, A.; Andrés Teruel, J.C.; Ferrando Marco, J.; Puglia Santos, V.; Mayordomo Aranda, E. Autopsy findings from the first known death from Severe Acute Respiratory Syndrome SARS-CoV-2 in Spain. Rev. Esp. Patol. 2020, 53, 188–192. [Google Scholar] [CrossRef]
- Kim, O.Y.; Monsel, A.; Bertrand, M.; Coriat, P.; Cavaillon, J.M.; Adib-Conquy, M. Differential down-regulation of HLA-DR on monocyte subpopulations during systemic inflammation. Crit. Care 2010, 14, R61. [Google Scholar] [CrossRef]
- Payen, D.; Cravat, M.; Maadadi, H.; Didelot, C.; Prosic, L.; Dupuis, C.; Losser, M.R.; De Carvalho Bittencourt, M. A Longitudinal Study of Immune Cells in Severe COVID-19 Patients. Front. Immunol. 2020, 11, 580250. [Google Scholar] [CrossRef] [PubMed]
- Faivre, V.; Lukaszewicz, A.C.; Payen, D. Downregulation of Blood Monocyte HLA-DR in ICU Patients Is Also Present in Bone Marrow Cells. PLoS ONE 2016, 11, e0164489. [Google Scholar] [CrossRef] [PubMed]
- Rolfes, V.; Ribeiro, L.S.; Hawwari, I.; Böttcher, L.; Rosero, N.; Maasewerd, S.; Santos, M.L.S.; Próchnicki, T.; Silva, C.M.S.; Wanderley, C.W.S.; et al. Platelets Fuel the Inflammasome Activation of Innate Immune Cells. Cell Rep. 2020, 31, 107615. [Google Scholar] [CrossRef]
- Rayes, J.; Bourne, J.H.; Brill, A.; Watson, S.P. The dual role of platelet-innate immune cell interactions in thrombo-inflammation. Res. Pract. Thromb. Haemost. 2020, 4, 23–35. [Google Scholar] [CrossRef]
- Elahi, S. Hematopoietic responses to SARS-CoV-2 infection. Cell Mol. Life Sci. 2022, 79, 187. [Google Scholar] [CrossRef]
- Lefrançais, E.; Ortiz-Muñoz, G.; Caudrillier, A.; Mallavia, B.; Liu, F.; Sayah, D.M.; Thornton, E.E.; Headley, M.B.; David, T.; Coughlin, S.R.; et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 2017, 544, 105–109. [Google Scholar] [CrossRef]
- Choudhury, S.; Dubey, S.; Zumu, M.; Mustafa, P.P.M.; Burma, A.; Kumar, S. The Role of Platelet Parameters in Predicting the Disease Severity of COVID-19 Patients: A Hospital-Based Study. Cureus 2024, 16, e51523. [Google Scholar] [CrossRef]
- Barrett, T.J.; Bilaloglu, S.; Cornwell, M.; Burgess, H.M.; Virginio, V.W.; Drenkova, K.; Ibrahim, H.; Yuriditsky, E.; Aphinyanaphongs, Y.; Lifshitz, M.; et al. Platelets contribute to disease severity in COVID-19. J. Thromb. Haemost. 2021, 19, 3139–3153. [Google Scholar] [CrossRef]
- Kilercik, M.; Demirelce, Ö.; Serdar, M.A.; Mikailova, P.; Serteser, M. A new haematocytometric index: Predicting severity and mortality risk value in COVID-19 patients. PLoS ONE 2021, 16, e0254073. [Google Scholar] [CrossRef]
- Incir, S.; Komesli, Z.; Baygul, A.; Tasdemir, Z.A.; Palaoglu, K.E.; Kant, H.; Kapmaz, M.; Tekin, S.; Kilic, A.; Dagel, T.; et al. Immature platelet fraction: Is a novel early predictive marker for disease severity in patients with Covid-19 pneumonia? Turk. J. Biochem. 2021, 46, 359–366. [Google Scholar] [CrossRef]
- Cohen, A.; Harari, E.; Yahud, E.; Cipok, M.; Bryk, G.; Lador, N.K.; Mann, T.; Mayo, A.; Lev, E.I. Immature platelets in patients with Covid-19: Association with disease severity. J. Thromb. Thrombolysis 2021, 52, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Jafar, N.; Edriss, H.; Nugent, K. The Effect of Short-Term Hyperglycemia on the Innate Immune System. Am. J. Med. Sci. 2016, 351, 201–211. [Google Scholar] [CrossRef]
- Lazarus, G.; Audrey, J.; Wangsaputra, V.K.; Tamara, A.; Tahapary, D.L. High admission blood glucose independently predicts poor prognosis in COVID-19 patients: A systematic review and dose-response meta-analysis. Diabetes Res. Clin. Pract. 2021, 171, 108561. [Google Scholar] [CrossRef]
- Sachdeva, S.; Desai, R.; Gupta, U.; Prakash, A.; Jain, A.; Aggarwal, A. Admission Hyperglycemia in Non-diabetics Predicts Mortality and Disease Severity in COVID-19: A Pooled Analysis and Meta-summary of Literature. SN Compr. Clin. Med. 2020, 2, 2161–2166. [Google Scholar] [CrossRef]
- Sharma, J.; Rajput, R.; Bhatia, M.; Arora, P.; Sood, V. Clinical Predictors of COVID-19 Severity and Mortality: A Perspective. Front. Cell Infect. Microbiol. 2021, 11, 674277. [Google Scholar] [CrossRef]
- Krishnan, A.; Prichett, L.; Tao, X.; Alqahtani, S.A.; Hamilton, J.P.; Mezey, E.; Strauss, A.T.; Kim, A.; Potter, J.J.; Chen, P.H.; et al. Abnormal liver chemistries as a predictor of COVID-19 severity and clinical outcomes in hospitalized patients. World J. Gastroenterol. 2022, 28, 570–587. [Google Scholar] [CrossRef]
- Dobrijević, D.; Katanić, J.; Todorović, M.; Vučković, B. Baseline laboratory parameters for preliminary diagnosis of COVID-19 among children: A cross-sectional study. Sao Paulo Med. J. 2022, 140, 691–696. [Google Scholar] [CrossRef]
- Dobrijević, D.; Vilotijević-Dautović, G.; Katanić, J.; Horvat, M.; Horvat, Z.; Pastor, K. Rapid Triage of Children with Suspected COVID-19 Using Laboratory-Based Machine-Learning Algorithms. Viruses 2023, 15, 1522. [Google Scholar] [CrossRef]
- Cheshmehzangi, A.; Su, Z.; Jin, R.; Dawodu, A.; Sedrez, M.; Pourroostaei Ardakani, S.; Zou, T. Space and social distancing in managing and preventing COVID-19 community spread: An overview. Heliyon 2023, 9, e13879. [Google Scholar] [CrossRef]
- Adab, P.; Haroon, S.; O’Hara, M.E.; Jordan, R.E. Comorbidities and covid-19. BMJ 2022, 377, o1431. [Google Scholar] [CrossRef]
- Russell, C.D.; Lone, N.I.; Baillie, J.K. Comorbidities, multimorbidity and COVID-19. Nat. Med. 2023, 29, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Nalla, L.V.; Sharma, M.; Sharma, N.; Singh, A.A.; Malim, F.M.; Ghatage, M.; Mukarram, M.; Pawar, A.; Parihar, N.; et al. Association of COVID-19 with Comorbidities: An Update. ACS Pharmacol. Transl. Sci. 2023, 6, 334–354. [Google Scholar] [CrossRef]
- Clinical Management of COVID-19: Living Guideline, 18 August 2023. World Health Organization: Geneva. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2023.2 (accessed on 5 November 2024).
- COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 5 November 2024).
- Mohammad Reza, A.; Leila, E.; Morteza, A.; Nahid, M.; Saeed, J.; Raoof, N.; Mostafa, S. Machine Learning-Based Clinical Decision Support System for automatic diagnosis of COVID-19 based on the routine blood test. J. Biostat. Epidemiol. 2022, 8, 77–89. [Google Scholar] [CrossRef]
Parameters | Alternative Name | Description | Meaning |
---|---|---|---|
MicroR | Micro RBC ratio | Microcytic population of red blood cells | |
MacroR | Macro RBC ratio | Macrocytic population of red blood cells | |
NE-FSC | NE-Z | Neutrophils cell size | Changes may reflect abnormal neutrophil size |
NE-SFL | NEUT-RI, NE-Y | Neutrophils reactivity index. Metabolic activity | Increases with higher nucleic acid content, indicating immature or reactive neutrophils |
NE-SSC | NEUT-GI, NE-X | Neutrophils granularity index | Increases with greater amounts of granules, vacuoles and other cytoplasmic inclusions |
NE-FSC width | NE-WZ | Neutrophils cell size and the width of dispersion | Reflects neutrophil size heterogeneity |
NE-SFL width | NE-WY | Neutrophils fluorescence intensity and the width of dispersion | Indicates heterogeneity in nucleic acid content among neutrophils |
NE-SSC width | NE-WX | Neutrophils complexity and width of dispersion of the events measured | Indicates heterogeneity in granularity among neutrophils |
LY-FSC | LY-Z | Lymphocytes cell size | Its change reflects presence of abnormal sized cells (e.g., increase with activated lymphocyte or decrease with pyknotic lymphocytes, etc.) |
LY-SFL | LY-Y | Lymphocytes metabolic activity and/or permeability of the cell membrane. Lymphocytes fluorescence intensity | Increase in proportion to the amount of nucleic acid, such as in activated or abnormal lymphocytes and blast cells, etc. |
LY-SSC | LY-X | Lymphocytes cell complexity | Increase in the presence of greater amounts of granules or vacuoles (e.g., large granular lymphocyte) |
LY-FSC width | LY-WZ | Lymphocytes cell size and the width of dispersion | Reflects lymphocyte size heterogeneity |
LY-SFL width | LY-WY | Lymphocytes fluorescence intensity and the width of dispersion | Indicates heterogeneity in nucleic acid content among lymphocytes |
LY-SSC width | LY-WX | Lymphocytes complexity and width of dispersion of the events measured | Indicates heterogeneity in granularity among lymphocytes |
HFLC | High fluorescence lymphocyte count | It represents activated cells (antibody-secreting B lymphocytes and plasma cells) if systemic hematological diseases can be excluded | |
MO-FSC | MO-Z | Monocytes cell size | Its change reflects presence of abnormal sized cells |
MO-SFL | MO-Y | Monocytes metabolic activity and/or permeability of cell membrane. Monocytes fluorescence intensity | Increase in proportion to the amount of cellular nucleic acid (e.g., activated monocytes and monoblasts |
MO-SSC | MO-X | Monocytes cells complexity | Increase in the presence of greater amounts of granules, vacuoles and other cytoplasmic inclusions. Decrease in the presence of a lower cell complexity |
MO-FSC width | MO-WZ | Monocytes cell size and the width of dispersion | Reflects monocyte size heterogeneity |
MO-SFL width | MO-WY | Monocytes fluorescence intensity and the width of dispersion | Indicates heterogeneity in nucleic acid content among monocytes |
MO-SSC width | MO-WX | Monocytes complexity and width of dispersion of the events measured | Indicates heterogeneity in granularity among monocytes |
P-LCR | Platelet large cell ratio | Its increase suggests possible risk of thrombosis | |
PDW | Platelet distribution width | Its increase reflects size variation. Its increase may be associated with vascular disease or certain cancers |
COVID-19 | Non-COVID-19 | p-Value | |
---|---|---|---|
Mean (SD) | Mean (SD) | ||
Age | 66.8 (22.2) | 66.8 (22.2) | 0.775 |
Sex, male * | 314 (52.1%) | 314 (52.1%) | 1.000 |
CBC | |||
Hemoglobin, g/dL | 11.2 (2.2) | 11.9 (2.2) | <0.001 |
Erythrocytes, ×1012/L | 3.7 (0.8) | 4.0 (0.8) | <0.001 |
Leukocytes, ×109/L | 8.6 (5.8) | 8.6 (9.8) | 0.970 |
Platelets, ×109/L | 224.7 (104.1) | 243.9 (99.5) | 0.001 |
Hematocrit | 34 (6.3) | 36 (6.2) | <0.001 |
Erythrocytes | |||
MCV | 91.6 (6.3) | 91.7 (6.6) | 0.561 |
MCH | 30.1 (2.4) | 30.4 (2.5) | 0.042 |
MCHC | 32.9 (1.4) | 33.1 (1.3) | 0.002 |
nRBC (>0) * | 73 (12.1%) | 134 (22.2%) | <0.001 |
MicroR | 2.5 (4.2) | 2.4 (4.4) | 0.030 |
MacroR | 4.7 (2.8) | 4.6 (2.8) | 0.673 |
RDW-CV | 14.3 (2.6) | 14.0 (2.3) | 0.004 |
RDW-SD | 47.4 (8.3) | 46.6 (7.6) | 0.049 |
Granulocytes | |||
Neutrophils, ×109/L | 6.3 (4.8) | 5.8 (5.8) | 0.035 |
NE-FSC, ch | 89.8 (5.0) | 90.6 (4.6) | 0.006 |
NE-SFL, ch | 50.7 (6.3) | 49.8 (4.0) | 0.070 |
NE-SSC, ch | 154.9 (5.2) | 154.9 (4.5) | 0.798 |
NE-SSC width, ch | 313.1 (26.4) | 306.8 (26.0) | <0.001 |
NE-SFL width, ch | 650.2 (97.1) | 632.5 (127.8) | <0.001 |
NE-FSC width, ch | 750.1 (96.3) | 738.5 (96.9) | 0.060 |
Immature granulocytes, ×109/L | 0.1 (0.3) | 0.1 (1.9) | <0.001 |
Basophils, ×109/L | 0 (0) | 0 (0) | <0.001 |
Eosinophils, ×109/L | 0.1 (0.2) | 0.2 (0.3) | <0.001 |
Lymphocytes | |||
Lymphocytes, ×109/L | 1.4 (2.7) | 1.8 (1.1) | <0.001 |
LY-SSC, ch | 78.8 (3.7) | 79.0 (3.6) | 0.246 |
LY-SFL, ch | 69.4 (5.8) | 70.6 (4.8) | <0.001 |
LY-FSC, ch | 58.2 (2.8) | 58.3 (2.1) | 0.170 |
LY-SSC width, ch | 582.4 (108.7) | 553.3 (79.2) | <0.001 |
LY-SFL width, ch | 900.7 (188.3) | 880.5 (110.4) | 0.179 |
LY-FSC width, ch | 601.3 (137.5) | 569.6 (90.9) | <0.001 |
HFLC, ×109/L | 0 (0.1) | 0 (0) | <0.001 |
Monocytes | |||
Monocytes, ×109/L | 0.7 (0.4) | 0.7 (1.4) | 0.142 |
MO-SSC, ch | 121.2 (3.3) | 120.0 (3.1) | <0.001 |
MO-SFL, ch | 114.6 (11.1) | 116.1 (8.7) | 0.017 |
MO-FSC, ch | 66.8 (4.0) | 67.4 (3.6) | 0.005 |
MO-SSC width, ch | 261.4 (37.3) | 259.7 (27.6) | 0.324 |
MO-SFL width, ch | 709.0 (131.3) | 685.9 (94.9) | <0.001 |
MO-FSC width, ch | 672.3 (126) | 668.5 (120.1) | 0.376 |
TNC | 8.6 (5.8) | 8.6 (9.9) | 0.988 |
Thrombocytes | |||
Plateletcrit | 0.2 (0.1) | 0.2 (0.1) | 0.015 |
P-LCR | 23.6 (8.6) | 21.7 (7.3) | <0.001 |
MPV | 9.9 (1.1) | 9.6 (0.9) | <0.001 |
PDW | 10.6 (2.5) | 10.2 (1.9) | 0.008 |
Ratios | |||
NLR | 7.2 (9.1) | 4.5 (6.3) | <0.001 |
PLR | 222.2 (159.7) | 174.3 (127.0) | <0.001 |
MLR | 0.6 (0.6) | 0.5 (0.7) | <0.001 |
Chemical assay | |||
Sodium | 138.7 (4.4) | 139.6 (3.7) | <0.001 |
Glucose | 125.5 (46.7) | 127.2 (54.6) | 0.914 |
Albumin | 3.3 (0.7) | 3.6 (0.7) | <0.001 |
Renal function test | |||
BUN | 20.8 (17.9) | 18.7 (13.8) | 0.039 |
Creatinine | 1.1 (1.3) | 1.0 (1.1) | 0.060 |
Liver function tests | |||
AST | 49.5 (165.7) | 54.5 (271.5) | 0.005 |
ALT | 50.8 (315.2) | 44.4 (254.4) | 0.079 |
ALP | 110.7 (91.6) | 112.0 (99.3) | 0.955 |
Total bilirubin | 0.9 (1.1) | 0.9 (1.5) | 0.259 |
Estimate | p-Value | |
---|---|---|
Age | −0.1 | 0.421 |
Sex, male | −0.4 | 0.072 |
CBC | ||
Hemoglobin, g/dL | 0.458 | 0.001 |
Leukocytes, ×109/L | −0.442 | 0.001 |
Granulocytes | ||
NE-SFL width, ch | −0.261 | 0.028 |
Lymphocytes | ||
Lymphocytes, ×109/L | 0.278 | 0.038 |
LY-SSC, ch | 0.407 | 0.008 |
LY-FSC, ch | −0.334 | 0.015 |
LY-SFL width, ch | −0.437 | 0.004 |
Monocytes | ||
MO-SSC, ch | −0.319 | 0.007 |
Thrombocytes | ||
Plateletcrit | 0.286 | 0.021 |
Ratio | ||
PLR | −0.353 | 0.003 |
Chemical assay | ||
Glucose | −0.233 | 0.047 |
Albumin | 0.832 | <0.001 |
Liver function tests | ||
AST | −0.786 | 0.003 |
Estimate | p-Value | |
---|---|---|
Age | −0.214 | <0.001 |
Sex, male | −0.5 | <0.001 |
CBC | ||
Hemoglobin, g/dL | 0.537 | <0.001 |
Leukocytes, ×109/L | −0.113 | 0.029 |
Erythrocytes | ||
MCV | −3.164 | <0.001 |
MCH | 3.653 | <0.001 |
MCHC | −1.886 | <0.001 |
RDW-CV | −0.292 | <0.001 |
Granulocytes | ||
NE-FSC, ch | −0.161 | <0.001 |
NE-SSC width, ch | −0.242 | <0.001 |
Eosinophils, ×109/L | 0.142 | <0.001 |
Lymphocytes | ||
Lymphocytes, ×109/L | ||
LY-SSC, ch | 0.263 | <0.001 |
LY-FSC, ch | −0.28 | <0.001 |
LY-SFL width, ch | −0.175 | <0.001 |
LY-FSC width, ch | −0.143 | 0.003 |
Monocytes | ||
MO-SSC, ch | −0.438 | <0.001 |
MO-SFL, ch | 0.175 | <0.001 |
MO-FSC width, ch | −0.099 | 0.029 |
Thrombocytes | ||
P-LCR | −0.095 | 0.003 |
Ratio | ||
NLR | −0.319 | <0.001 |
Chemical assay | ||
Sodium | 0.123 | <0.001 |
Albumin | 0.215 | <0.001 |
Renal function test | ||
BUN | −0.156 | 0.001 |
Creatinine | 0.166 | <0.001 |
Liver function tests | ||
AST | −0.107 | 0.004 |
ALP | −0.235 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-K.; Pak, D.; Lee, J.-H.; Ryu, S.W. Identifying Key Hematological and Biochemical Indicators of Disease Severity in COVID-19 and Non-COVID-19 Patients. Diagnostics 2025, 15, 1374. https://doi.org/10.3390/diagnostics15111374
Kim S-K, Pak D, Lee J-H, Ryu SW. Identifying Key Hematological and Biochemical Indicators of Disease Severity in COVID-19 and Non-COVID-19 Patients. Diagnostics. 2025; 15(11):1374. https://doi.org/10.3390/diagnostics15111374
Chicago/Turabian StyleKim, Soo-Kyung, Daewoo Pak, Jong-Han Lee, and Sook Won Ryu. 2025. "Identifying Key Hematological and Biochemical Indicators of Disease Severity in COVID-19 and Non-COVID-19 Patients" Diagnostics 15, no. 11: 1374. https://doi.org/10.3390/diagnostics15111374
APA StyleKim, S.-K., Pak, D., Lee, J.-H., & Ryu, S. W. (2025). Identifying Key Hematological and Biochemical Indicators of Disease Severity in COVID-19 and Non-COVID-19 Patients. Diagnostics, 15(11), 1374. https://doi.org/10.3390/diagnostics15111374