Morphometric Assessment of Occipital Condyles and Foramen Magnum Reveals Enhanced Sexual Dimorphism Detection via 3D Imaging: A Systematic Review and Meta-Analysis Utilizing Classification and Regression Trees
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Study Identification and Selection
3.2. Studies’ Characteristics
3.3. Outcomes of the Statistical Analysis
3.3.1. Pooled Morphometric Means
3.3.2. Pooled Morphometric Mean Differences (MDs)
3.3.3. Multiple Moderator Analysis with Meta-CART
3.4. Neurosurgical and Forensic Implications
4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
FM | Foramen Magnum |
OC | Occipital Condyle |
OCL | Occipital Condyle Length |
OCW | Occipital Condyle Width |
OCT | Occipital Condyle Thickness |
FML | Foramen Magnum Length |
FMW | Foramen Magnum Width |
SD | Sagittal Diameter |
TD | Transverse Diameter |
APD | Anteroposterior Diameter |
ROC | Receiver Operating Characteristic |
AQUA | Anatomical Quality Assurance Tool |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
IOS | Influential Outlier Study |
MD | Mean Difference |
CI | Confidence Interval |
SSE | Small Study Effect |
I2 | Higgins’ I-squared Statistic |
CART | Classification and Regression Trees |
meta-CART | Meta-analysis with Classification and Regression Trees |
References
- Kamath, V.G.; Asif, M.; Shetty, R.; Avadhani, R. Binary Logistic Regression Analysis of Foramen Magnum Dimensions for Sex Determination. Anat. Res. Int. 2015, 2015, 459428. [Google Scholar] [CrossRef]
- Raghavendra Babu, Y.P.; Kanchan, T.; Attiku, Y.; Dixit, P.N.; Kotian, M.S. Sex Estimation from Foramen Magnum Dimensions in an Indian Population. J. Forensic Leg. Med. 2012, 19, 162–167. [Google Scholar] [CrossRef]
- Aljarrah, K.; Packirisamy, V.; Al Anazi, N.; Nayak, S.B. Morphometric Analysis of Foramen Magnum and Occipital Condyle Using CT Images for Sex Determination in a Saudi Arabian Population. Morphologie 2022, 106, 260–270. [Google Scholar] [CrossRef]
- Henry, B.M.; Tomaszewski, K.A.; Walocha, J.A. Methods of Evidence-Based Anatomy: A Guide to Conducting Systematic Reviews and Meta-Analysis of Anatomical Studies. Ann. Anat. 2016, 205, 16–21. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.M.; Tomaszewski, K.A.; Ramakrishnan, P.K.; Roy, J.; Vikse, J.; Loukas, M.; Tubbs, R.S.; Walocha, J.A. Development of the Anatomical Quality Assessment (AQUA) Tool for the Quality Assessment of Anatomical Studies Included in Meta-Analyses and Systematic Reviews. Clin. Anat. 2017, 30, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Zappalá, M.; Lightbourne, S.; Heneghan, N.R. The Relationship between Thoracic Kyphosis and Age, and Normative Values across Age Groups: A Systematic Review of Healthy Adults. J. Orthop. Surg. Res. 2021, 16, 447. [Google Scholar] [CrossRef]
- Balduzzi, S.; Rücker, G.; Schwarzer, G. How to Perform a Meta-Analysis with R: A Practical Tutorial. Evid. Based Ment. Health 2019, 22, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Viechtbauer, W.; Cheung, M.W.-L. Outlier and Influence Diagnostics for Meta-Analysis. Res. Synth. Methods 2010, 1, 112–125. [Google Scholar] [CrossRef]
- Lortie, C.J.; Harrer, M.; Cuijpers, P.; Furakawa, T.A.; Ebert, D.D. Doing Meta-Analysis with R: A Hands-on Guide. JSS J. Stat. Softw. 2021, 102, 1–4. [Google Scholar] [CrossRef]
- Schwarzer, G.; Rücker, G.; Semaca, C. LFK Index Does Not Reliably Detect Small-study Effects in Meta-analysis: A Simulation Study. Res. Synth. Methods 2024, 15, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.G.; Sharp, S.J. Explaining Heterogeneity in Meta-Analysis: A Comparison of Methods. Stat. Med. 1999, 18, 2693–2708. [Google Scholar] [CrossRef]
- Li, X.; Dusseldorp, E.; Meulman, J.J. Meta-CART: A Tool to Identify Interactions between Moderators in Meta-analysis. Br. J. Math. Stat. Psychol. 2017, 70, 118–136. [Google Scholar] [CrossRef] [PubMed]
- Aristotle, S.; Ramraj, B.; Patil, S.; Subramanian, S. Anatomical and Radiological Study of the Posterior Cranial Base in Relationship to Occipital Condyles and Foramen Magnum. Int. J. Res. Pharm. Sci. 2020, 11, 3528–3532. [Google Scholar] [CrossRef]
- Yildirim, Z.B.; Avci, E.; Torun, F.; Cengiz, M.; Çigdem, A.; Karabağ, H.; Karaman, H. Airway Management for Occipital Encephalocele in Neonatal Patients: A Review of 17 Cases. J. Neurosci. Rural. Pract. 2011, 02, 159–161. [Google Scholar] [CrossRef]
- Guidotti, A. Morphometrical Considerations on Occipital Condyles. Anthropol. Anz. 1984, 42, 117–119. [Google Scholar]
- Abdel-Karim, R.I.; Housseini, A.M.; Hashish, R.K. Adult Sex Estimation Using Three Dimensional Volume Rendering Multislice Computed Tomography of the Foramen Magnum and Occipital Condyles: A Study in Egyptian Population. Int. J. Adv. Res. 2015, 5, 1212–1215. [Google Scholar]
- Ads, H.O.; Attalla, S.M.; Abdalqader, M.A.; Khairulzaman, K.B. Computed Tomography Study of the Biometric and Morphometric Characteristics of the Occipital Condyles among Malaysian Population. Ann. Rom. Soc. Cell Biol. 2021, 25, 7646–7653. [Google Scholar]
- Anjum, A.; Pandurangam, G.; Garapati, S.; Bandarupalli, N.; Rabbani, H.; Divya, P. Morphology and Morphometric Study of Occipital Condyles. Int. J. Anat. Res. 2021, 9, 7905–7911. [Google Scholar] [CrossRef]
- Bayat, P.; Bagheri, M.; Ghanbari, A.; Raoofi, A. Characterization of Occipital Condyle and Comparison of Its Dimensions with Head and Foramen Magnum Circumferences in Dry Skulls of Iran. Int. J. Morphol. 2014, 32, 444–448. [Google Scholar] [CrossRef]
- Berge, J.K.; Bergman, R.A. Variations in Size and in Symmetry of Foramina of the Human Skull. Clin. Anat. 2001, 14, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, D.N.; Ikpeze, T.C.; Foxx, K.; Omar, A.; Mesfin, A. Anatomical Parameters for Occipital Condyle Screws: An Analysis of 500 Condyles Using CT Scans. Glob. Spine J. 2022, 12, 1475–1480. [Google Scholar] [CrossRef] [PubMed]
- Bosco, A.; Venugopal, P.; Shetty, A.P.; Shanmuganathan, R.; Kanna, R.M. Morphometric Evaluation of Occipital Condyles: Defining Optimal Trajectories and Safe Screw Lengths for Occipital Condyle-Based Occipitocervical Fixation in Indian Population. Asian Spine J. 2018, 12, 214–223. [Google Scholar] [CrossRef]
- Bozbuga, M.; Öztürk, A.; Bayraktar, B.; Ari, Z.; Sahinoglu, K.; Polat, G.; Güurel, I. Surgical Anatomy and Morphometric Analysis of the Occipital Condyles and Foramen Magnum. Okajimas Folia Anat. Jpn. 1999, 75, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Burdan, F.; Dworzanska, A.; Dworzanski, W.; Klepacz, R.; Cendrowska-Pinkosz, M.; Halasa, J.; Baka, J.; Szumilo, J. Foramen Magnum—New and Old Anthropological Data. Glob. J. Anthropol. Res. 2014, 1, 25–34. [Google Scholar] [CrossRef]
- Catalina-Herrera, C.J. Study of the Anatomic Metric Values of the Foramen Magnum and Its Relation to Sex. Cells Tissues Organs 1987, 130, 344–347. [Google Scholar] [CrossRef]
- Cheruiyot, I.; Mwachaka, P.; Saidi, H. Morphometry of Occipital Condyles: Implications for Transcondylar Approach to Craniovertebral Junction Lesions. Anat. J. Afr. 2018, 7, 1224–1231. [Google Scholar] [CrossRef]
- Abdullayev, A. The Correlation Between the Foramen Magnum Dimensions and the Main Craniometric Data of the Skull. Traumatol. Orthopaedics Kazakhstan 2024, 72, 25–32. [Google Scholar] [CrossRef]
- Degno, S.; Abrha, M.; Asmare, Y.; Muche, A. Anatomical Variation in Morphometry and Morphology of the Foramen Magnum and Occipital Condyle in Dried Adult Skulls. J. Craniofacial Surg. 2019, 30, 256–259. [Google Scholar] [CrossRef]
- Dubey, A.; Verma, S.K. The anatomy of occipital condyles and foramen magnum and their surgical importance: A morphometric study. Int. J. Anat. Res. 2017, 5, 3780–3783. [Google Scholar] [CrossRef]
- El-Barrany, U.M.; Ghaleb, S.S.; Ibrahim, S.F.; Nouri, M.; Mohammed, A.H. Sex Prediction Using Foramen Magnum and Occipital Condyles Computed Tomography Measurements in Sudanese Population. Arab. J. Forensic Sci. Forensic Med. 2016, 1, 414–423. [Google Scholar] [CrossRef]
- El-Gaidi, M.A.; Eissa, E.M.; El-Shaarawy, E.A.A. Free-Hand Placement of Occipital Condyle Screws: A Cadaveric Study. Eur. Spine J. 2014, 23, 2182–2188. [Google Scholar] [CrossRef] [PubMed]
- Fabián, E.G.E.; Carlos, A.P.; Leandro, O.B.; Erika, C.L.; Héctor, S.M. Morfometría Tomográfica Del Foramen Magno y Su Relación Con El Sexo y La Etnia Mapuche. Rev. ANACEM 2011, 5, 28–31. [Google Scholar]
- Anter Farid, S. Morphometric Study of Human Adult Occipital Condyle, Hypoglossal Canal and Foramen Magnum in Dry Skull of Modern Egyptians. Int. J. Clin. Dev. Anat. 2018, 4, 19. [Google Scholar] [CrossRef]
- Fetouh, F.; Awadalla, A. Morphometric Analysis of the Occipital Condyle and Its Surgical Implications in the Transcondylar Approach. Skull Base 2009, 19, A023. [Google Scholar] [CrossRef]
- Gapert, R.; Black, S.; Last, J. Sex Determination from the Occipital Condyle: Discriminant Function Analysis in an Eighteenth and Nineteenth Century British Sample. Am. J. Phys. Anthropol. 2009, 138, 384–394. [Google Scholar] [CrossRef] [PubMed]
- George, J.R.; Francis, T.; Francis, J.; Samuel, J.E. Morphometric study of dry human occipital bone and its clinical relevance. Int. J. Anat. Res. 2019, 7, 6230–6233. [Google Scholar] [CrossRef]
- Govsa, F.; Ozer, M.A.; Celik, S.; Ozmutaf, N.M. Three-Dimensional Anatomic Landmarks of the Foramen Magnum for the Craniovertebral Junction. J. Craniofacial Surg. 2011, 22, 1073–1076. [Google Scholar] [CrossRef]
- Gumussoy, I.; Duman, S.B. Morphometric Analysis of Occipital Condyles Using Alternative Imaging Technique. Surg. Radiol. Anat. 2020, 42, 161–169. [Google Scholar] [CrossRef]
- Hendricks, S.; Ishwarkumar, S.; Pillay, P. A Morphometric and Morphological Analysis of the Foramen Magnum, Hypoglossal Canal and Occipital Condyles in a Select South African Population. Folia Morphol. 2024, 83, 412–416. [Google Scholar] [CrossRef]
- Kalthur, S.; Padmashali, S.; Gupta, C.; Dsouza, A. Anatomic Study of the Occipital Condyle and Its Surgical Implications in Transcondylar Approach. J. Craniovertebr. Junction Spine 2014, 5, 71. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.K.; Mehra, S.; Bilodi, A.K.S. Morphometric study of occipital condyles in adult human skulls. Int. J. Sci. Res. 2013, 5, 31. [Google Scholar]
- Kizilkanat, E.D.; Boyan, N.; Soames, R.; Oguz, O. Morphometry of the Hypoglossal Canal, Occipital Condyle, and Foramen Magnum. Neurosurg. Q. 2006, 16, 121–125. [Google Scholar] [CrossRef]
- Lyrtzis, C.; Piagkou, M.; Gkioka, A.; Anastasopoulos, N.; Apostolidis, S.; Natsis, K. Foramen Magnum, Occipital Condyles and Hypoglossal Canals Morphometry: Anatomical Study with Clinical Implications. Folia Morphol. 2017, 76, 446–457. [Google Scholar] [CrossRef]
- Manoel, C.; Prado, F.B.; Caria, P.H.F.; Groppo, F.C. Morphometric Analysis of the Foramen Magnum in Human Skulls of Brazilian Individuals: Its Relation to Gender. J. Morphol. Sci. 2009, 26, 104–108. [Google Scholar]
- Murshed, K.A.Ç.A.E.; Morphometric, T.I. Evaluation of the Foramen Magnum and Variations in Its Shape: A Study on Computerized Tomographic Images of Normal Adults. Turk. J. Med. Sci. 2003, 33, 301–306. [Google Scholar]
- Muthukumar, N.; Swaminathan, R.; Venkatesh, G.; Bhanumathy, S.P. A Morphometric Analysis of the Foramen Magnum Region as It Relates to the Transcondylar Approach. Acta Neurochir. 2005, 147, 889–895. [Google Scholar] [CrossRef]
- Naderi, S.; Korman, E.; Çıtak, G.; Güvençer, M.; Arman, C.; Şenoğlu, M.; Tetik, S.; Arda, M.N. Morphometric Analysis of Human Occipital Condyle. Clin. Neurol. Neurosurg. 2005, 107, 191–199. [Google Scholar] [CrossRef]
- Natsis, K.; Piagkou, M.; Skotsimara, G.; Piagkos, G.; Skandalakis, P. A Morphometric Anatomical and Comparative Study of the Foramen Magnum Region in a Greek Population. Surg. Radiol. Anat. 2013, 35, 925–934. [Google Scholar] [CrossRef]
- de Oliviera, O.F.; Tinoco, R.L.R.; Júnior, E.D.; de Araujo, L.G.; da Silva, R.H.A.; Paranhos, L.R. Sex Determination from Occipital Condylar Measurements by Baudoin Index in Forensic Purposes. Int. J. Morphol. 2013, 31, 1297–1300. [Google Scholar] [CrossRef]
- Olivier, G. Biometry of the Human Occipital Bone. J. Anat. 1975, 120, 507–518. [Google Scholar] [PubMed]
- Osunwoke, E.; Oladipo, G. Morphometric Analysis of the Foramen Magnum and Jugular Foramen in Adult Skulls in Southern Nigerian Population. Am. J. Sci. Ind. Res. 2012, 3, 446–448. [Google Scholar] [CrossRef]
- Anwesa Pal, A.P.; Prerana Aggarwal, P.A.; Ghosal, A.K.; Indra Datta, I.D.; Shirshendu Ganguly, S.G. A Study on the Anatomical Variations of Occipital Condyles in the Dry Adult Human Occipital Bones. Natl. J. Med. Res. 2019, 9, 43–47. [Google Scholar]
- Rai, H.; Keluskar, V.; Patil, S.; Bagewadi, A. Accuracy of Measurements of Foramen Magnum and Occipital Condyle as an Indicator for Sex Determination Using Computed Tomography. Indian J. Health Sci. Biomed. Res. (KLEU) 2017, 10, 80. [Google Scholar] [CrossRef]
- Routal, R.V.; Pal, G.P.; Bhagvat, S.S.; Tamankar, B.P. Metrical Studies with Sexual Dimorphism in Foramen Magnum of Human Crania. J. Anat. Soc. India 1984, 33, 85–90. [Google Scholar]
- Musa, A.; Ayad, C.; Abdalla, E.A. Characterization of Occipital Condyles in Sudanese Using Computerized Tomography. Glob. Adv. Res. J. 2014, 3, 437–444. [Google Scholar]
- Saluja, S. Morphometric Analysis of the Occipital Condyle and Its Surgical Importance. J. Clin. And. Diagn. Res. 2016, 11, AC01–AC04. [Google Scholar] [CrossRef]
- Saralaya, V.V.; Murlimanju, B.V.; Vaderav, R.; Tonse, M.; Prameela, M.D.; Jiji, P.J. Occipital Condyle Morphometry and Incidence of Condylus Tertius: Phylogenetic and Clinical Significance. Clin. Ter. 2012, 163, 479–482. [Google Scholar]
- Sayee, R.; Jankiram, S.; Thomas, I.M. Foramen Magnum Measurements of Crania from Karnataka. J. Anat. Soc. India 1987, 36, 87–89. [Google Scholar]
- Sholapurkar, V.T.; Virupaxi, R.D.; Desai, S.P. Morphometric analysis of human occipital condyles for sex determination in dry adult skulls. Int. J. Anat. Res. 2017, 5, 3318–3323. [Google Scholar] [CrossRef]
- Faisal Siddiqui, H.; Cardona, J.J.; Chaiyamoon, A.; Gilkes, A.; Rajaram-Gilkes, M.; Keshavarzi, S.; Iwanaga, J.; Dumont, A.S.; Tubbs, R.S. Angulation Between the Occipital Condyle and the Hypoglossal Canal: An Anatomical Study with Application in Transcondylar Approaches and Occipital Condyle Screw Placement. Cureus 2022, 14, e32326. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Nanda, G.; Mahajan, R.; Nanda, A.; Mishra, N.; Karmaran, S.; Batra, S.; Chhabra, H.S. Computed Tomography-Based Occipital Condyle Morphometry in an Indian Population to Assess the Feasibility of Condylar Screws for Occipitocervical Fusion. Asian Spine J. 2017, 11, 847–853. [Google Scholar] [CrossRef]
- Suazo Galdames, I.C.; Perez Russo, P.; Zavando Matamala, D.A.; Smith, R.L. Sexual Dimorphism in the Foramen Magnum Dimensions. Int. J. Morphol. 2009, 27, 21–23. [Google Scholar] [CrossRef]
- Thintharua, P.; Chentanez, V. Morphological Analysis and Morphometry of the Occipital Condyle and Its Relationship to the Foramen Magnum, Jugular Foramen, and Hypoglossal Canal: Implications for Craniovertebral Junction Surgery. Anat. Cell Biol. 2023, 56, 61–68. [Google Scholar] [CrossRef]
- Tubbs, R.S.; Griessenauer, C.J.; Loukas, M.; Shoja, M.M.; Cohen-Gadol, A.A. Morphometric Analysis of the Foramen Magnum. Neurosurgery 2010, 66, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Ukoha, U.; Egwu, O.A.; Okafor, I.J.; Anyabolu, A.E.; Ndukwe, G.U.; Okpala, I. Sexual Dimorphism in the Foramen Magnum of Nigerian Adult. Int. J. Biol. Med. Res. 2011, 2, 878–881. [Google Scholar]
- Muhammad, F.; Ahmad, U.; Zyoud, T.Y.T.; Jibril, M.M.; Kwairanga, S.H. Computed Tomography-Based Analysis of Foramen Magnum and Occipital Condyles in Adult Nigerians: An Anatomical Study. medRxiv 2023. [Google Scholar] [CrossRef]
- Uysal, S.; Gokharman, D.; Kacar, M.; Tuncbilek, I.; Kosar, U. Estimation of Sex by 3D CT Measurements of the Foramen Magnum. J. Forensic Sci. 2005, 50, JFS2005058-5. [Google Scholar] [CrossRef]
- Verma, R.; Kumar, S.; Rai, A.; Mansoor, I.; Mehra, R. The Anatomical Perspective of Human Occipital Condyle in Relation to the Hypoglossal Canal, Condylar Canal, and Jugular Foramen and Its Surgical Significance. J. Craniovertebr. Junction Spine 2016, 7, 243. [Google Scholar] [CrossRef]
- Wanebo, J.E.; Chicoine, M.R. Quantitative Analysis of the Transcondylar Approach to the Foramen Magnum. Neurosurgery 2001, 49, 934–943. [Google Scholar] [CrossRef]
- Yu, Z.; Ma, X.; Jiang, J.; Jin, X.; Lv, F.; Wang, L.; Xia, X.; Wang, H. 0.10v Feasibility of Screw Placement in the Occipital Condyle of Chinese Patients for Occipitocervical Arthrodesis: A Cadaveric Study. Turk. Neurosurg. 2015, 25, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Zanutto, I.M.; Tolentino, E.d.S.; Iwaki, L.C.V.; Walewski, L.Â.; da Silva, M.C. Sexual Dimorphism of Foramen Magnum and Occipital Condyles Using Cone Beam Computed Tomography: A Morphometric Study. Forensic Imaging 2021, 24, 200429. [Google Scholar] [CrossRef]
- Triantafyllou, G.; Paschopoulos, I.; Węgiel, A.; Olewnik, Ł.; Tsakotos, G.; Zielinska, N.; Piagkou, M. The Accessory Renal Arteries: A Systematic Review with Meta-analysis. Clin. Anat. 2024; in press. [Google Scholar] [CrossRef]
- Triantafyllou, G.; Paschopoulos, I.; Duparc, F.; Tsakotos, G.; Tsiouris, C.; Olewnik, Ł.; Georgiev, G.; Zielinska, N.; Piagkou, M. The Superior Thyroid Artery Origin Pattern: A Systematic Review with Meta-Analysis. Surg. Radiol. Anat. 2024, 46, 1549–1560. [Google Scholar] [CrossRef]
- Fu, R.; Gartlehner, G.; Grant, M.; Shamliyan, T.; Sedrakyan, A.; Wilt, T.J.; Griffith, L.; Oremus, M.; Raina, P.; Ismaila, A.; et al. Conducting Quantitative Synthesis When Comparing Medical Interventions: AHRQ and the Effective Health Care Program. J. Clin. Epidemiol. 2011, 64, 1187–1197. [Google Scholar] [CrossRef]
- Niyas, S.; Pawan, S.J.; Anand Kumar, M.; Rajan, J. Medical Image Segmentation with 3D Convolutional Neural Networks: A Survey. Neurocomputing 2022, 493, 397–413. [Google Scholar] [CrossRef]
- Xiao, H.; Li, L.; Liu, Q.; Zhu, X.; Zhang, Q. Transformers in Medical Image Segmentation: A Review. Biomed. Signal Process Control 2023, 84, 104791. [Google Scholar] [CrossRef]
- Bulten, W.; Pinckaers, H.; van Boven, H.; Vink, R.; de Bel, T.; van Ginneken, B.; van der Laak, J.; Hulsbergen-van de Kaa, C.; Litjens, G. Automated Deep-Learning System for Gleason Grading of Prostate Cancer Using Biopsies: A Diagnostic Study. Lancet Oncol. 2020, 21, 233–241. [Google Scholar] [CrossRef]
- Takahashi, S.; Sakaguchi, Y.; Kouno, N.; Takasawa, K.; Ishizu, K.; Akagi, Y.; Aoyama, R.; Teraya, N.; Bolatkan, A.; Shinkai, N.; et al. Comparison of Vision Transformers and Convolutional Neural Networks in Medical Image Analysis: A Systematic Review. J. Med. Syst. 2024, 48, 84. [Google Scholar] [CrossRef]
- Muley, M.K.; Muley, K.D. Morphological Variations of the Foramen Magnum and Their Clinical Implications: A Comparative Study. Res. J. Med. Sci. 2024, 19, 466–470. [Google Scholar] [CrossRef]
- Misra, D.; Bateja, S. Analyzing Morphometry of Foramen Magnum Using CBCT: A Forensic Radiology Study. J. Indian. Acad. Oral. Med. Radiol. 2024, 36, 442–446. [Google Scholar] [CrossRef]
- Femi-Akinlosotu, O.M.; Igado, O.O.; Adeniji, K.O. Morphometrics of Human Skulls and Mandibles Obtained from Southwestern Nigeria: Implications in Clinical Manoeuvres. J. Basic. Appl. Zool. 2024, 85, 58. [Google Scholar] [CrossRef]
- Chuang, Y.-C.; Carrasquilla, A.; Bilgili, G.; Pionteck, A.; Liu, X.; Abderezaei, J.; Quinones, A.; Shuman, W.H.; Zhao, S.; Ellenbogen, R.; et al. Multi-Dimensional Morphometric and Volumetric Analysis of the Posterior Cranial Fossa to Study Type I Chiari Malformation. World Neurosurg. 2024, 191, e279–e288. [Google Scholar] [CrossRef] [PubMed]
- Thornton, R.; Mendelow, M.G.; Hutchinson, E.F. Bone Mineral Density and Geometric Morphometrics: Indicators of Growth in the Immature Pars Basilaris. Forensic Sci. Int. 2024, 361, 112111. [Google Scholar] [CrossRef]
- Alpergin, B.C.; Eroglu, U.; Zaimoglu, M.; Kılınç, M.C.; Özpişkin, Ö.M.; Erdin, E.; Beger, O. Topographic Anatomy and Pneumatization of the Posterior Clinoid Process in Chiari Type I Malformation. World Neurosurg. 2024, 185, e767–e773. [Google Scholar] [CrossRef]
- Skadorwa, T.; Wierzbieniec, O. The Foramen Magnum in Scaphocephaly. Child’s Nerv. Syst. 2022, 38, 2163–2170. [Google Scholar] [CrossRef]
# | Study | Year | Risk of Bias * D1/D2/D3/D4/D5 | Quality | Morphometry | Nationality | Study Type | No. of Skulls | Estimated Mean | No. of OCs | Νο. of FMs |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Abdel-Karim et al. [17] | 2015 | ✖/✔/✖/✔/✖ | Low | OCs and FM | Africa | Imaging | 70 | per sex and side | 140 | |
per sex | 140 | 70 | |||||||||
2 | Ads et al. [18] | 2021 | ✖/✔/✖/✔/✔ | Moderate | OCs | Africa | Imaging | 48 | per sex and side | 96 | |
3 | Aljarrah et al. [3] | 2021 | ✖/✔/✖/✔/✔ | Moderate | OCs and FM | Asia | Imaging | 472 | per sex | 854 | 427 |
per sex and side | 854 | ||||||||||
4 | Anjum et al. [19] | 2021 | ✖/✔/✖/✔/✔ | Moderate | OCs and FM | Asia | Osteological | 100 | per sex | 200 | 100 |
per sex and side | 200 | ||||||||||
5 | Aristotle et al. [14] | 2020 | ✖/✔/✖/✔/✖ | Low | OCs and FM | Asia | Osteological | 70 | οverall | 70 | |
per side | 140 | ||||||||||
Imaging | 70 | οverall | 70 | ||||||||
per side | 140 | ||||||||||
6 | Avci et al. [15] | 2011 | ✖/✔/✖/✔/✖ | Low | OCs and FM | Asia | Osteological | 30 | οverall | 30 | |
per side | 60 | ||||||||||
Imaging | 30 | per side | 60 | ||||||||
7 | Bayat et al. [20] | 2014 | ✖/✖/✖/✖/✖ | Low | OCs | Asia | Osteological | 50 | οverall | 95 | |
per side | 95 | ||||||||||
8 | Berge and Bergman [21] | 2001 | ✖/✔/✖/✖/✖ | Low | FM | Unknown | Osteological | 100 | οverall | 100 | |
9 | Bernstein et al. [22] | 2022 | ✔/✔/✖/✔/✔ | Moderate | OCs | America | Imaging | 250 | οverall | 500 | |
per side | 500 | ||||||||||
per sex and side | 500 | ||||||||||
10 | Bosco et al. [23] | 2018 | ✔/✔/✖/✔/✔ | Moderate | OCs | Asia | Imaging | 70 | οverall | 140 | |
per sex | 140 | ||||||||||
11 | Bozbuga et al. [24] | 1999 | ✖/✔/✖/✖/✖ | Low | OCs | Asia | Osteological | 84 | οverall | 168 | |
12 | Burdan et al. [25] | 2012 | ✔/✔/✖/✔/✔ | Moderate | FM | Europe | Imaging | 313 | per sex | 313 | |
13 | Catalina-Herrera [26] | 1987 | ✖/✖/✖/✖/✖ | Low | FM | Europe | Osteological | 100 | per sex | 100 | |
14 | Cheruiyot et al. [27] | 2018 | ✖/✔/✖/✔/✔ | Moderate | OCs | Africa | Osteological | 52 | οverall | 104 | |
per side | 104 | ||||||||||
per sex | 104 | ||||||||||
15 | Chetnan et al. [28] | 2012 | ✖/✔/✖/✔/✖ | Low | FM | Asia | Osteological | 53 | οverall | 53 | |
16 | Degno et al. [29] | 2019 | ✖/✔/✖/✖/✖ | Low | OCs and FM | Africa | Osteological | 54 | οverall | 54 | |
per side | 108 | ||||||||||
17 | Dubey et al. [30] | 2017 | ✖/✔/✖/✔/✖ | Low | OCs and FM | Asia | Osteological | 80 | per sex | 80 | |
per sex and side | 160 | ||||||||||
18 | El-Barrany et al. [31] | 2016 | ✖/✔/✖/✔/✔ | Moderate | OCs and FM | Africa | Imaging | 400 | per sex | 400 | |
per sex and side | 800 | ||||||||||
19 | El-Gaidi et al. [32] | 2014 | ✖/✔/✖/✔/✖ | Low | OCs | Africa | Osteological | 50 | οverall | 100 | |
per side | 100 | ||||||||||
20 | Espinoza et al. [33] | 2011 | ✖/✖/✖/✔/✖ | Low | FM | America | Imaging | 100 | per sex | 100 | |
21 | Farid and Fattah [34] | 2018 | ✖/✔/✖/✔/✖ | Low | OCs and FM | Africa | Osteological | 75 | οverall | 150 | 75 |
per side | 150 | ||||||||||
22 | Fetouh and Awadalla [35] | 2009 | ✖/✔/✖/✔/✔ | Moderate | OCs and FM | Africa | Osteological | 100 | οverall | 100 | |
per side | 200 | ||||||||||
23 | Gapert et al. [36] | 2009 | ✔/✔/✖/✔/✔ | Moderate | OCs | Europe | Osteological | 146 | per sex and side | 292 | |
24 | George et al. [37] | 2019 | ✖/✔/✖/✖/✖ | Low | OCs | Asia | Osteological | 30 | per side | 60 | |
25 | Govsa et al. [38] | 2011 | ✖/✔/✖/✔/✔ | Moderate | FM | Asia | Osteological | 144 | οverall | 144 | |
26 | Guidotti [16] | 1984 | ✖/✖/✖/✖/✖ | Low | OCs | Europe | Osteological | 741 | per sex and side | 1482 | |
27 | Gummusoy and Duman [39] | 2019 | ✔/✔/✖/✔/✔ | Moderate | OCs | Asia | Imaging | 100 | οverall | 200 | |
per side | 200 | ||||||||||
per sex | 200 | ||||||||||
per sex and side | 200 | ||||||||||
28 | Hendricks et al. [40] | 2024 | ✖/✖/✖/✖/✖ | Low | OCs and FM | Africa | Osteological | 50 | οverall | 100 | 50 |
per side | 100 | ||||||||||
29 | Kalthur et al. [41] | 2014 | ✔/✔/✖/✔/✔ | Moderate | OCs | Asia | Osteological | 71 | οverall | 142 | |
per sex and side | 142 | ||||||||||
30 | Kavitha et al. [42] | 2013 | ✖/✔/✖/✖/✖ | Low | OCs | Asia | Osteological | 145 | per side | 290 | |
31 | Kizilkanat et al. [43] | 2006 | ✖/✖/✖/✖/✖ | Low | OCs and FM | Asia | Osteological | 59 | οverall | 118 | 59 |
per side | 118 | ||||||||||
32 | Lyrtzis et al. [44] | 2017 | ✔/✔/✖/✔/✔ | Moderate | OCs and FM | Europe | Osteological | 141 | οverall | 141 | |
per side | 282 | ||||||||||
per sex and side | 282 | ||||||||||
33 | Manoel et al. [45] | 2009 | ✔/✔/✖/✔/✔ | Moderate | FM | America | Osteological | 215 | per sex | 215 | |
34 | Murshed et al. [46] | 2003 | ✔/✔/✖/✔/✔ | Moderate | FM | Asia | Imaging | 110 | per sex | 110 | |
35 | Muthukumar et al. [47] | 2005 | ✖/✔/✖/✖/✖ | Low | OCs and FM | Asia | Osteological | 50 | οverall | 100 | 50 |
36 | Naderi et al. [48] | 2005 | ✔/✔/✖/✔/✔ | Moderate | OCs and FM | Asia | Osteological | 202 | οverall | 404 | 202 |
per side | 404 | ||||||||||
37 | Natsis et al. [49] | 2013 | ✔/✔/✖/✔/✔ | Moderate | OCs and FM | Europe | Osteological | 143 | οverall | 143 | |
per side | 286 | ||||||||||
per sex | 143 | ||||||||||
per sex and side | 286 | ||||||||||
38 | Oliveira et al. [50] | 2013 | ✖/✔/✖/✖/✖ | Low | OCs | America | Osteological | 100 | per sex and side | 200 | |
39 | Olivier [51] | 1975 | ✖/✖/✖/✖/✖ | Low | OCs and FM | Europe | Osteological | 125 | οverall | 250 | 125 |
40 | Osunwoke et al. [52] | 2012 | ✖/✔/✖/✔/✔ | Moderate | FM | Africa | Osteological | 120 | οverall | 120 | |
41 | Pal et al. [53] | 2019 | ✖/✔/✖/✖/✖ | Low | OCs | Asia | Osteological | 150 | per side | 300 | |
42 | RaghavendraBabu et al. [2] | 2012 | ✖/✔/✖/✔/✔ | Moderate | FM | Asia | Osteological | 90 | per sex | 90 | |
43 | Rai et al. [54] | 2017 | ✖/✔/✖/✖/✖ | Low | OCs and FM | Asia | Imaging | 200 | per sex | 200 | |
per sex and side | 400 | ||||||||||
44 | Routal et al. [55] | 1984 | ✖/✖/✖/✖/✖ | Low | FM | Asia | Osteological | 141 | per sex | 141 | |
45 | Salih et al. [56] | 2014 | ✔/✔/✖/✖/✖ | Low | OCs and FM | Africa | Imaging | 123 | οverall | 123 | |
per side | 246 | ||||||||||
per sex and side | 246 | ||||||||||
46 | Saluja et al. [57] | 2016 | ✖/✔/✖/✖/✖ | Low | OCs | Asia | Osteological | 114 | οverall | 228 | |
per side | 228 | ||||||||||
47 | Saralaya et al. [58] | 2012 | ✖/✖/✖/✖/✖ | Low | OCs | Asia | Osteological | 70 | οverall | 140 | |
per side | 140 | ||||||||||
48 | Sayee et al. [59] | 1987 | ✖/✖/✖/✖/✖ | Low | FM | Asia | Osteological | 350 | per sex | 350 | |
49 | Sholapurkar et al. [60] | 2017 | ✖/✖/✖/✖/✖ | Low | OCs | Asia | Osteological | 100 | per sex and side | 200 | |
50 | Siddiqui et al. [61] | 2022 | ✖/✔/✖/✖/✖ | Low | OCs and FM | America | Osteological | 30 | οverall | 60 | 30 |
per side | 60 | ||||||||||
51 | Srivastava et al. [62] | 2017 | ✔/✔/✖/✖/✖ | Low | OCs | Asia | Imaging | 41 | οverall | 82 | |
per side | 82 | ||||||||||
per sex | 82 | ||||||||||
per sex and side | 82 | ||||||||||
52 | Suazo et al. [63] | 2009 | ✖/✖/✖/✖/✖ | Low | FM | America | Osteological | 211 | per sex | 211 | |
53 | Thintharua and Chentanez [64] | 2023 | ✔/✔/✖/✔/✔ | Moderate | OCs | Asia | Osteological | 100 | οverall | 200 | |
per sex | 200 | ||||||||||
per sex and side | 200 | ||||||||||
54 | Tubbs et al. [65] | 2010 | ✖/✔/✖/✖/✖ | Low | FM | Europe | Osteological | 72 | οverall | 72 | |
55 | Ukoha et al. [66] | 2011 | ✖/✔/✖/✖/✖ | Low | FM | Africa | Osteological | 100 | per sex | 100 | |
56 | Uthman et al. [67] | 2011 | ✖/✔/✖/✖/✖ | Low | FM | Unknown | Imaging | 88 | per sex | 88 | |
57 | Uysal et al. [68] | 2005 | ✖/✔/✖/✖/✖ | Low | FM | Asia | Osteological | 100 | per sex | 100 | |
58 | Verma et al. [69] | 2016 | ✖/✔/✖/✔/✖ | Low | OCs | Asia | Osteological | 50 | per side | 100 | |
59 | Wanebo et al. [70] | 2001 | ✖/✔/✖/✖/✖ | Low | OCs and FM | America | Osteological | 38 | οverall | 76 | 38 |
60 | Yu et al. [71] | 2015 | ✔/✔/✖/✖/✖ | Low | OCs | Asia | Imaging | 20 | per sex and side | 40 | |
61 | Zanutto et al. [72] | 2020 | ✔/✔/✖/✔/✔ | Moderate | OCs and FM | America | Imaging | 309 | per sex | 309 | |
per sex and side | 618 |
Overall Estimation | Subgroup Analyses | ||||||
---|---|---|---|---|---|---|---|
# | Mean [95%-CI] Heterogeneity: I2 Small-Study Effect (SSE) Influential Outlier Study (IOS) | Moderator | Subgroups | k | Mean [95%-CI] | Heterogeneity: I2 | p-Value of Test for Subgroup Differences |
1 | OC Length 21.5081 [20.2170; 22.7991] I2 = 99.5% [99.5%; 99.6%] SSE: p-value = 0.1081 IOS: none | Continent of origin | America | 2 | 20.7872 [16.4754; 25.0990] | 99.4% | 0.0158 |
Asia | 8 | 21.1932 [19.4751; 22.9113] | 99.5% | ||||
Africa | 2 | 22.3826 [18.8450; 25.9203] | 98.7% | ||||
Europe | 1 | 23.7500 [23.4104; 24.0896] | -- | ||||
Study’s design | imaging | 4 | 18.5543 [17.5809; 19.5276] | 97.2% | <0.0001 | ||
osteological | 9 | 22.8223 [21.9595; 23.6851] | 97.7% | ||||
2 | OC Width 11.2299 [10.4276; 12.0322] I2 = 99.2% [99.0%; 99.3%] SSE: p-value = 0.4199 IOS: none | Continent of origin | Asia | 9 | 10.8433 [9.9630; 11.7236] | 99.2% | <0.0001 |
America | 1 | 10.5000 [10.3948; 10.6052] | -- | ||||
Africa | 2 | 13.2098 [11.2793; 15.1404] | 98.7% | ||||
Europe | 1 | 11.5000 [11.3512; 11.6488] | -- | ||||
Study’s design | osteological | 9 | 11.7117 [10.7091; 12.7144] | 99.2% | 0.0052 | ||
imaging | 4 | 10.1543 [9.7205; 10.5880] | 95.5 | ||||
3 | OC Thickness 9.1061 [8.3275; 9.8848] I2 = 99.6% [99.5%; 99.6%] SSE: p-value = 0.5070 IOS: none | Continent of origin | Asia | 7 | 8.6229 [7.9836; 9.2621] | 98.6% | <0.0001 |
America | 1 | 11.4000 [11.2861; 11.5139] | -- | ||||
Africa | 2 | 9.6680 [7.6591; 11.6769] | 98.8% | ||||
Study’s design | osteological | 7 | 8.7771 [7.9163; 9.6380] | 98.8% | 0.2169 | ||
imaging | 3 | 9.8697 [8.3641; 11.3754] | 99.6% | ||||
4 | FM Length 35.0221 [34.3424; 35.7018] I2 = 94.8% [93.0%; 96.2%] SSE: p-value = 0.3637 IOS: “Chethan_2012” | Continent of origin | Asia | 7 | 34.6175 [32.9976; 36.2373] | 97.7% | 0.3221 |
Africa | 6 | 35.0909 [34.5327; 35.6490] | 84.1% | ||||
Europe | 3 | 35.4117 [35.0140; 35.8093] | 54.4% | ||||
America | 1 | 36.0000 [35.0462; 36.9538] | -- | ||||
Study’s design | osteological | 15 | 35.1419 [34.3901; 35.8938] | 95.1% | 0.0204 | ||
imaging | 2 | 34.1199 [33.6946; 34.5452] | 0.0% | ||||
Re-estimation after excluding the IOS: “Chethan_2012” | |||||||
FM Length 35.2959 [34.8175; 35.7744] I2 = 89.9% [85.2%; 93.1%] SSE: p-value = 0.2837 | Continent of origin | Asia | 6 | 35.2616 [33.9997; 36.5234] | 95.4% | 0.4390 | |
Africa | 6 | 35.0909 [34.5327; 35.6490] | 84.1% | ||||
Europe | 3 | 35.4117 [35.0140; 35.8093] | 54.4% | ||||
America | 1 | 36.0000 [35.0462; 36.9538] | -- | ||||
Study’s design | osteological | 14 | 35.4730 [34.9970; 35.9491] | 88.9% | <0.0001 | ||
imaging | 2 | 34.1199 [33.6946; 34.5452] | 0.0% | ||||
5 | FM Width 28.9364 [27.5202; 30.3526] I2 = 99.4% [99.3%; 99.5%] SSE: p-value = 0.9082 IOS: “Olivier_1975” | Continent of origin | Asia | 6 | 29.2409 [27.2463; 31.2356] | 98.6% | 0.0022 |
Africa | 5 | 29.3470 [28.7042; 29.9898] | 72.5% | ||||
Europe | 3 | 27.1122 [20.9630; 33.2614] | 99.9% | ||||
America | 1 | 31.0000 [30.3641; 31.6359] | -- | ||||
Study’s design | osteological | 13 | 28.9621 [27.3258; 30.5983] | 99.5% | 0.8631 | ||
imaging | 2 | 28.7817 [27.5471; 30.0162] | 91.2% | ||||
Re-estimation after excluding the IOS: “Olivier_1975” | |||||||
FM Width 29.5317 [28.6352; 30.4282] I2 = 96.8% [95.7%; 97.6%] SSE: p-value = 0.2929 | Continent of origin | Asia | 6 | 29.2409 [27.2463; 31.2356] | 98.6% | 0.0032 | |
Africa | 5 | 29.3470 [28.7042; 29.9898] | 72.5% | ||||
Europe | 2 | 30.2482 [29.9297; 30.5668] | 0.0% | ||||
America | 1 | 31.0000 [30.3641; 31.6359] | -- | ||||
Study’s design | osteological | 12 | 29.6587 [28.6352; 30.6821] | 96.9% | 0.2838 | ||
imaging | 2 | 28.7817 [27.5471; 30.0162] | 91.2% | ||||
6 | OC Length (Left) 22.3982 [21.4997; 23.2967] I2 = 99.5% [99.4%; 99.5%] SSE: p-value = 0.1321 IOS: none | Continent of origin | Asia | 14 | 22.0987 [21.0366; 23.1607] | 99.1% | <0.0001 |
America | 1 | 18.6000 [18.4510; 18.7490] | -- | ||||
Africa | 7 | 22.9035 [21.1630; 24.6440] | 99.0% | ||||
Europe | 2 | 24.6299 [22.7288; 26.5311] | 98.7% | ||||
Study’s design | osteological | 18 | 23.1296 [22.3342; 23.9251] | 97.8% | 0.0045 | ||
imaging | 6 | 20.2217 [18.3783; 22.0652] | 99.2% | ||||
7 | OC Length (Right) 22.3209 [21.4481; 23.1937] I2 = 99.4% [99.4%; 99.5%] SSE: p-value = 0.2777 IOS: none | Continent of origin | Asia | 13 | 21.9779 [20.8525; 23.1034] | 99.1% | <0.0001 |
America | 1 | 18.7000 [18.5510; 18.8490] | -- | ||||
Africa | 7 | 22.8120 [21.4691; 24.1548] | 98.2% | ||||
Europe | 2 | 24.6297 [22.7286; 26.5309] | 98.5% | ||||
Study’s design | osteological | 18 | 23.0680 [22.3494; 23.7865] | 97.7% | 0.0001 | ||
imaging | 5 | 19.6593 [18.0760; 21.2426] | 99.1% | ||||
8 | OC Width (Left) 12.3730 [11.8102; 12.9358] I^2 = 99.3% [99.3%; 99.4%] SSE: p-value = 0.0467 IOS: none | Continent of origin | Asia | 14 | 11.9937 [11.2558; 12.7316] | 99.3% | <0.0001 |
America | 1 | 10.4000 [10.3036; 10.4964] | -- | ||||
Africa | 7 | 13.3975 [12.6732; 14.1219] | 97.8% | ||||
Europe | 2 | 12.4282 [11.2914; 13.5649] | 98.3% | ||||
Study’s design | osteological | 18 | 12.7265 [12.1511; 13.3020] | 98.9% | 0.0294 | ||
imaging | 6 | 11.3146 [10.1821; 12.4470] | 99.4% | ||||
9 | OC Width (Right) 12.2715 [11.7169; 12.8260] I2 = 99.4% [99.3%; 99.5%] SSE: p-value = 0.2743 IOS: none | Continent of origin | Asia | 14 | 11.8729 [11.1402; 12.6056] | 99.3% | <0.0001 |
America | 1 | 10.5000 [10.3948; 10.6052] | -- | ||||
Africa | 7 | 13.2796 [12.5813; 13.9779] | 96.8% | ||||
Europe | 2 | 12.4318 [11.1382; 13.7254] | 99.3% | ||||
Study’s design | osteological | 18 | 12.5728 [12.0085; 13.1372] | 98.9% | 0.0861 | ||
imaging | 6 | 11.3721 [10.1227; 12.6216] | 99.6% | ||||
10 | OC Thickness (Left) 9.3255 [8.7375; 9.9136] I2 = 99.1% [98.9%; 99.3%] SSE: p-value = 0.1359 IOS: none | Continent of origin | Asia | 6 | 8.8000 [8.2886; 9.3114] | 88.8% | <0.0001 |
America | 1 | 11.2000 [11.0861; 11.3139] | -- | ||||
Africa | 3 | 9.5411 [8.5053; 10.5769] | 97.2% | ||||
Europe | 1 | 10.0300 [9.8608; 10.1992] | -- | ||||
Study’s design | osteological | 9 | 9.1529 [8.5956; 9.7102] | 96.2% | 0.4041 | ||
imaging | 2 | 10.1009 [7.9449; 12.2568] | 99.8% | ||||
11 | OC Thickness (Right) 9.6186 [8.9022; 10.3350] I2 = 99.3% [99.1%; 99.4%] SSE: p-value = 0.4233 IOS: none | Continent of origin | Asia | 6 | 9.2055 [8.1967; 10.2144] | 98.4% | <0.0001 |
America | 1 | 11.4000 [11.2861; 11.5139] | -- | ||||
Africa | 3 | 9.6856 [8.4679; 10.9033] | 98.2% | ||||
Europe | 1 | 10.0900 [9.8963; 10.2837] | -- | ||||
Study’s design | osteological | 9 | 9.4767 [8.7094; 10.2440] | 98.3% | 0.5233 | ||
imaging | 2 | 10.2520 [7.9981; 12.5060] | 99.7% |
Overall Estimation | Subgroup Analyses | ||||||
---|---|---|---|---|---|---|---|
# | Mean Difference [95%-CI] p-Value of Mean Difference Heterogeneity: I2 Small-Study Effect (SSE) Influential Outlier Study (IOS) | Moderator | Subgroups | k | Mean Difference [95%-CI] | Heterogeneity: I2 | p-Value of the Test for Subgroup Differences |
1 | OC Length: Left vs. Right −0.0326 [−0.2146; 0.1494] p-value = 0.7254 I2 = 61.8% [40.0%; 75.7%] SSE: p-value = 0.2154 IOS: “Salih_2014” | Continent of origin | Asia | 13 | −0.0227 [−0.2211; 0.1757] | 24.9% | 0.9261 |
America | 1 | −0.1000 [−0.3107; 0.1107] | -- | ||||
Africa | 7 | 0.0333 [−0.5021; 0.5687] | 84.4% | ||||
Europe | 2 | 0.0000 [−0.3235; 0.3235] | 0.0% | ||||
Study’s design | osteological | 18 | 0.0130 [−0.1524; 0.1785] | 22.8% | 0.4734 | ||
imaging | 5 | −0.1811 [−0.6852; 0.3231] | 87.6% | ||||
Re-estimation after excluding the IOS: “Salih_2014” | |||||||
OC Length: Left vs. Right 0.0185 [−0.1136; 0.1506] p-value = 0.7836 I2 = 16.9% [0.0%; 50.3%] SSE: p-value = 0.3144 | Continent of origin | Asia | 13 | −0.0227 [−0.2211; 0.1757] | 24.9% | 0.2817 | |
America | 1 | −0.1000 [−0.3107; 0.1107] | -- | ||||
Africa | 6 | 0.2422 [−0.0362; 0.5207] | 7.4% | ||||
Europe | 2 | 0.0000 [−0.3235; 0.3235] | 0.0% | ||||
Study’s design | osteological | 18 | 0.0130 [−0.1524; 0.1785] | 22.8% | 0.8593 | ||
imaging | 4 | 0.0390 [−0.1958; 0.2738] | 8.0% | ||||
2 | OC Width: Left vs. Right 0.0598 [−0.0580; 0.1775] p-value = 0.3198 I2 = 68.8% [52.5%; 79.5%] SSE: p-value = 0.0118 IOS: none | Continent of origin | Asia | 14 | 0.0988 [ 0.0088; 0.1888] | 0.0% | 0.1340 |
America | 1 | −0.1000 [−0.2427; 0.0427] | -- | ||||
Africa | 7 | 0.0867 [−0.3157; 0.4892] | 88.3% | ||||
Europe | 2 | −0.0011 [−0.1838; 0.1816] | 0.0% | ||||
Study’s design | osteological | 18 | 0.0807 [−0.0011; 0.1625] | 21.0% | 0.3157 | ||
imaging | 6 | −0.0747 [−0.3671; 0.2177] | 87.3% | ||||
3 | OC Thickness: Left vs. Right −0.3008 [−0.6837; 0.0821] p-value = 0.1236 I2 = 91.9% [87.5%; 94.7%] SSE: p-value = 0.8154 IOS: “Verma_2016” | Continent of origin | Asia | 6 | −0.4422 [−1.1539; 0.2696] | 95.7% | 0.6033 |
America | 1 | −0.2000 [−0.3611; −0.0389] | -- | ||||
Africa | 3 | −0.0879 [−0.2866; 0.1107] | 0.0% | ||||
Europe | 1 | −0.0600 [−0.3173; 0.1973] | -- | ||||
Study’s design | osteological | 9 | −0.3361 [−0.8112; 0.1389] | 93.5% | 0.5229 | ||
imaging | 2 | −0.1747 [−0.3141; −0.0354] | 0.0% | ||||
Re-estimation after excluding the IOS: “Verma_2016” | |||||||
OC Thickness: Left vs. Right −0.1149 [−0.1969; −0.0330] p-value = 0.0060 I2 = 0.0% [0.0%; 62.4%] SSE: p-value = 0.8255 | Continent of origin | Asia | 5 | −0.0897 [−0.2093; 0.0299] | 0.0% | 0.6851 | |
America | 1 | −0.2000 [−0.3611; −0.0389] | -- | ||||
Africa | 3 | −0.0879 [−0.2866; 0.1107] | 0.0% | ||||
Europe | 1 | −0.0600 [−0.3173; 0.1973] | -- | ||||
Study’s design | osteological | 8 | −0.0833 [−0.1846; 0.0181] | 0.0% | 0.2980 | ||
imaging | 2 | −0.1747 [−0.3141; −0.0354] | 0.0% | ||||
4 | OC Length: Males vs. Females 1.7063 [1.4052; 2.0074] p-value < 0.0001 I2 = 14.6% [0.0%; 82.2%] SSE: k* = 5 < 10 (k.min = 10) IOS: none | Continent of origin | Asia | 4 | 1.6071 [1.2952; 1.9190] | 0.0% | 0.1257 |
Africa | 1 | 2.1800 [1.5164; 2.8436] | -- | ||||
Study’s design | imaging | 3 | 1.5902 [1.1800; 2.0003] | 14.5% | 0.4127 | ||
osteological | 2 | 1.8831 [1.3149; 2.4513] | 34.2% | ||||
5 | OC Width: Males vs. Females 0.3339 [−0.0358; 0.7037] p-value = 0.0767 I2 = 75.5% [40.0%; 90.0%] SSE: k* = 5 < 10 (k.min = 10) IOS: none | Continent of origin | Asia | 4 | 0.4000 [−0.0344; 0.8343] | 79.4% | 0.2869 |
Africa | 1 | 0.0400 [−0.4601; 0.5401] | -- | ||||
Study’s design | imaging | 3 | 0.6415 [ 0.4023; 0.8808] | 0.0% | 0.0002 | ||
osteological | 2 | −0.1095 [−0.4166; 0.1976] | 0.0% | ||||
6 | OC Thickness: Males vs. Females 0.7107 [0.2647; 1.1567] p-value = 0.0018 I2 = 82.3% [54.5%; 93.1%] SSE: k* = 4 < 10 (k.min = 10) IOS: none | Continent of origin | Asia | 3 | 0.7184 [0.0900; 1.3468] | 88.1% | 0.9822 |
Africa | 1 | 0.7100 [0.3198; 1.1002] | -- | ||||
Study’s design | imaging | 2 | 0.9980 [ 0.4100; 1.5859] | 73.2% | 0.1561 | ||
osteological | 2 | 0.4399 [−0.0590; 0.9388] | 75.5% | ||||
7 | FM Length: Males vs. Females 2.2145 [1.3813; 3.0477] p-value < 0.0001 I2 = 99.3% [99.1%; 99.4%] SSE: p-value = 0.9388 IOS: “Rai_2017” | Continent of origin | Africa | 3 | 2.1933 [0.6144; 3.7722] | 50.5% | 0.4315 |
Asia | 8 | 2.8364 [1.1942; 4.4786] | 98.9% | ||||
Europe | 3 | 1.8321 [1.5953; 2.0689] | 0.0% | ||||
America | 3 | 1.1800 [0.2815; 2.0785] | 94.8% | ||||
Unknown | 1 | 2.0000 [1.1641; 2.8359] | -- | ||||
Study’s design | imaging | 8 | 2.8564 [1.4335; 4.2793] | 99.2% | 0.1490 | ||
osteological | 10 | 1.6417 [0.8074; 2.4761] | 96.3% | ||||
Re-estimation after excluding the IOS: “Rai_2017” | |||||||
FM Length: Males vs. Females 1.8209 [1.3266; 2.3152] p-value < 0.0001 I2 = 94.8% [93.0%; 96.2%] SSE: p-value = 0.2193 | Continent of origin | Africa | 3 | 2.1933 [0.6144; 3.7722] | 50.5% | 0.6131 | |
Asia | 7 | 2.1295 [1.0710; 3.1880] | 86.0% | ||||
Europe | 3 | 1.8321 [1.5953; 2.0689] | 0.0% | ||||
America | 3 | 1.1800 [0.2815; 2.0785] | 94.8% | ||||
Unknown | 1 | 2.0000 [1.1641; 2.8359] | -- | ||||
Study’s design | imaging | 7 | 1.9514 [1.6853; 2.2175] | 23.6% | 0.4883 | ||
osteological | 10 | 1.6417 [0.8074; 2.4761] | 96.3% | ||||
8 | FM Width: Males vs. Females 2.0167 [1.3484; 2.6850] p-value < 0.0001 I2 = 98.0% [97.4%; 98.4%] SSE: p-value = 0.6425 IOS: “Rai_2017” | Continent of origin | Africa | 3 | 1.7473 [0.9057; 2.5889] | 52.4% | < 0.0001 |
Asia | 6 | 2.7994 [1.2816; 4.3172] | 97.6% | ||||
Europe | 3 | 1.5824 [1.2711; 1.8937] | 33.0% | ||||
America | 3 | 0.9022 [0.8415; 0.9629] | 0.0% | ||||
Unknown | 1 | 2.2000 [1.2143; 3.1857] | -- | ||||
Study’s design | imaging | 8 | 2.3961 [1.4066; 3.3856] | 97.7% | 0.2519 | ||
osteological | 8 | 1.6294 [0.7685; 2.4903] | 94.5% | ||||
Re-estimation after excluding the IOS: “Rai_2017” | |||||||
FM Width: Males vs. Females 1.7486 [1.2524; 2.2447] p-value < 0.0001 I2 = 92.2% [88.8%; 94.6%] SSE: p-value = 0.0956 | Continent of origin | Africa | 3 | 1.7473 [0.9057; 2.5889] | 52.4% | <0.0001 | |
Asia | 5 | 2.2536 [0.9137; 3.5934] | 92.0% | ||||
Europe | 3 | 1.5824 [1.2711; 1.8937] | 33.0% | ||||
America | 3 | 0.9022 [0.8415; 0.9629] | 0.0% | ||||
Unknown | 1 | 2.2000 [1.2143; 3.1857] | -- | ||||
Study’s design | imaging | 7 | 1.8686 [1.3577; 2.3794] | 75.6% | 0.6396 | ||
osteological | 8 | 1.6294 [0.7685; 2.4903] | 94.5% | ||||
9 | OC Length (Left): Males vs. Females 1.9085 [1.4429; 2.3742] p-value < 0.0001 I2 = 97.3% [96.6%; 97.8%] SSE: p-value = 0.1582 IOS: none | Continent of origin | Africa | 4 | 2.7115 [1.5484; 3.8746] | 95.3% | 0.1599 |
Asia | 10 | 1.7444 [0.9768; 2.5120] | 98.2% | ||||
America | 3 | 2.0307 [1.0915; 2.9699] | 97.0% | ||||
Europe | 4 | 1.4413 [1.0823; 1.8002] | 52.5% | ||||
Study’s design | imaging | 11 | 2.2590 [1.5636; 2.9544] | 98.3% | 0.0913 | ||
osteological | 10 | 1.5114 [0.9923; 2.0305] | 82.1% | ||||
10 | OC Length (Right): Males vs. Females 2.0960 [1.5687; 2.6232] p-value < 0.0001 I2 = 98.1% [97.7%; 98.5%] SSE: p-value = 0.1357 IOS: “Rai_2017” | Continent of origin | Africa | 4 | 2.7650 [1.6842; 3.8457] | 95.9% | 0.0585 |
Asia | 10 | 2.1949 [1.2589; 3.1308] | 98.8% | ||||
America | 3 | 1.7341 [0.6807; 2.7876] | 97.3% | ||||
Europe | 4 | 1.4283 [1.1458; 1.7108] | 0.0% | ||||
Study’s design | imaging | 11 | 2.5735 [1.6979; 3.4491] | 98.9% | 0.0268 | ||
osteological | 10 | 1.5398 [1.2746; 1.8051] | 31.5% | ||||
Re-estimation after excluding the IOS: “Rai_2017” | |||||||
OC Length (Right): Males vs. Females 1.8948 [1.5266; 2.2630] p-value < 0.0001 I2 = 94.0% [92.1%; 95.5%] SSE: p-value = 0.5164 | Continent of origin | Africa | 4 | 2.7650 [1.6842; 3.8457] | 95.9% | 0.0935 | |
Asia | 9 | 1.7422 [1.3343; 2.1501] | 77.7% | ||||
America | 3 | 1.7341 [0.6807; 2.7876] | 97.3% | ||||
Europe | 4 | 1.4283 [1.1458; 1.7108] | 0.0% | ||||
Study’s design | imaging | 10 | 2.2191 [1.6087; 2.8296] | 96.8% | 0.0454 | ||
osteological | 10 | 1.5398 [1.2746; 1.8051] | 31.5% | ||||
11 | OC Width (Left): Males vs. Females 0.6660 [0.1992; 1.1328] p-value = 0.0052 I2 = 97.1% [96.2%; 97.7%] SSE: p-value = 0.0566 IOS: “Rai_2017” | Continent of origin | Africa | 4 | 0.7610 [ 0.4237; 1.0983] | 75.4% | 0.2270 |
Asia | 8 | 0.4979 [−0.5777; 1.5735] | 98.7% | ||||
America | 3 | 0.9961 [ 0.6507; 1.3415] | 88.3% | ||||
Europe | 3 | 0.5765 [ 0.3607; 0.7923] | 0.0% | ||||
Study’s design | imaging | 10 | 0.9990 [ 0.3050; 1.6930] | 98.2% | 0.0819 | ||
osteological | 8 | 0.2732 [−0.1593; 0.7058] | 83.4% | ||||
Re-estimation after excluding the IOS: “Rai_2017” | |||||||
OC Width (Left): Males vs. Females 0.5054 [0.2685; 0.7423] p-value < 0.0001 I2 = 89.1% [84.2%; 92.5%] SSE: p-value = 0.0133 | Continent of origin | Africa | 4 | 0.7610 [ 0.4237; 1.0983] | 75.4% | 0.0027 | |
Asia | 7 | 0.0793 [−0.2769; 0.4354] | 76.4% | ||||
America | 3 | 0.9961 [ 0.6507; 1.3415] | 88.3% | ||||
Europe | 3 | 0.5765 [ 0.3607; 0.7923] | 0.0% | ||||
Study’s design | imaging | 9 | 0.6748 [ 0.4156; 0.9340] | 90.8% | 0.1186 | ||
osteological | 8 | 0.2732 [−0.1593; 0.7058] | 83.4% | ||||
12 | OC Width (Right): Males vs. Females 0.6800 [0.1887; 1.1714] p-value = 0.0067 I2 = 98.9% [98.7%; 99.1%] SSE: p-value = 0.0050 IOS: “Rai_2017” | Continent of origin | Africa | 3 | 0.7238 [ 0.3357; 1.1120] | 76.6% | 0.1596 |
Asia | 8 | 0.6190 [−0.4468; 1.6849] | 99.4% | ||||
America | 3 | 0.9595 [ 0.6905; 1.2286] | 77.7% | ||||
Europe | 3 | 0.4889 [ 0.1814; 0.7964] | 52.5% | ||||
Study’s design | imaging | 9 | 1.1159 [ 0.4003; 1.8314] | 99.4% | 0.0353 | ||
osteological | 8 | 0.2019 [−0.2589; 0.6627] | 83.0% | ||||
Re-estimation after excluding the IOS: “Rai_2017” | |||||||
OC Width (Right): Males vs. Females 0.5107 [0.2560; 0.7653] p-value < 0.0001 I2 = 87.5% [81.3%; 91.6%] SSE: p-value = 0.0045 | Continent of origin | Africa | 3 | 0.7238 [ 0.3357; 1.1120] | 76.6% | 0.0296 | |
Asia | 7 | 0.1813 [−0.3557; 0.7184] | 85.2% | ||||
America | 3 | 0.9595 [ 0.6905; 1.2286] | 77.7% | ||||
Europe | 3 | 0.4889 [ 0.1814; 0.7964] | 52.5% | ||||
Study’s design | imaging | 8 | 0.7573 [ 0.5347; 0.9799] | 88.1% | 0.0334 | ||
osteological | 8 | 0.2019 [−0.2589; 0.6627] | 83.0% | ||||
13 | OC Thickness (Left): Males vs. Females 0.6261 [0.3134; 0.9388] p-value < 0.0001 I2 = 73.4% [39.0%; 88.4%] SSE: k* = 6 < 10 (k.min = 10) IOS: none | Continent of origin | Africa | 1 | 0.9700 [0.4859; 1.4541] | -- | 0.3747 |
Asia | 4 | 0.5729 [0.1016; 1.0442] | 79.9% | ||||
America | 1 | 0.6000 [0.3706; 0.8294] | -- | ||||
Study’s design | imaging | 3 | 0.6759 [ 0.4966; 0.8553] | 0.0% | 0.7118 | ||
osteological | 3 | 0.5442 [−0.1311; 1.2196] | 84.2% | ||||
14 | OC Thickness (Right): Males vs. Females 0.3680 [0.1856; 0.5505] p-value < 0.0001 I2 = 32.9% [0.0%; 72.9%] SSE: k* = 6 < 10 (k.min = 10) IOS: none | Continent of origin | Africa | 1 | 0.6100 [0.1469; 1.0731] | -- | 0.5984 |
Asia | 4 | 0.3275 [0.0367; 0.6184] | 45.3% | ||||
America | 1 | 0.4000 [0.1642; 0.6358] | -- | ||||
Study’s design | imaging | 3 | 0.4674 [ 0.2741; 0.6606] | 0.0% | 0.0796 | ||
osteological | 3 | 0.2031 [−0.0205; 0.4266] | 41.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiouris, C.; Triantafyllou, G.; Karangeli, N.; Botis, G.G.; Papadopoulos-Manolarakis, P.; Kalamatianos, T.; Tsakotos, G.; Piagkou, M. Morphometric Assessment of Occipital Condyles and Foramen Magnum Reveals Enhanced Sexual Dimorphism Detection via 3D Imaging: A Systematic Review and Meta-Analysis Utilizing Classification and Regression Trees. Diagnostics 2025, 15, 1359. https://doi.org/10.3390/diagnostics15111359
Tsiouris C, Triantafyllou G, Karangeli N, Botis GG, Papadopoulos-Manolarakis P, Kalamatianos T, Tsakotos G, Piagkou M. Morphometric Assessment of Occipital Condyles and Foramen Magnum Reveals Enhanced Sexual Dimorphism Detection via 3D Imaging: A Systematic Review and Meta-Analysis Utilizing Classification and Regression Trees. Diagnostics. 2025; 15(11):1359. https://doi.org/10.3390/diagnostics15111359
Chicago/Turabian StyleTsiouris, Christos, George Triantafyllou, Nektaria Karangeli, George G. Botis, Panagiotis Papadopoulos-Manolarakis, Theodosis Kalamatianos, George Tsakotos, and Maria Piagkou. 2025. "Morphometric Assessment of Occipital Condyles and Foramen Magnum Reveals Enhanced Sexual Dimorphism Detection via 3D Imaging: A Systematic Review and Meta-Analysis Utilizing Classification and Regression Trees" Diagnostics 15, no. 11: 1359. https://doi.org/10.3390/diagnostics15111359
APA StyleTsiouris, C., Triantafyllou, G., Karangeli, N., Botis, G. G., Papadopoulos-Manolarakis, P., Kalamatianos, T., Tsakotos, G., & Piagkou, M. (2025). Morphometric Assessment of Occipital Condyles and Foramen Magnum Reveals Enhanced Sexual Dimorphism Detection via 3D Imaging: A Systematic Review and Meta-Analysis Utilizing Classification and Regression Trees. Diagnostics, 15(11), 1359. https://doi.org/10.3390/diagnostics15111359