Deep Learning-Based Aortic Diameter Measurement in Traumatic Hemorrhage Using Shallow Attention Network: A Path Forward
Abstract
1. Introduction
- The proposed DL-based aortic segmentation model automatically measures thoracic AoD from CT images. Unlike those in previous studies, our model focuses on patients with traumatic hemorrhages and enables efficient tracking of clinically significant changes in AoD.
- The model incorporates an attention mechanism to highlight the structural features of the aorta while suppressing irrelevant background information, thereby improving segmentation accuracy. The proposed AoD measurement model, which is based on a 2D DL architecture, is computationally efficient and clinically applicable, enabling rapid and accurate assessment in time-sensitive settings.
- The proposed ellipse-based calibration technique is effective for the segmentation output, which is particularly beneficial given the urgency and procedural requirements of REBOA in critically injured patients. This ellipse-based rejection strategy resulted in a noticeable improvement in overall segmentation performance. Notably, cases flagged by the rejection process can be referred for expert review, thereby enhancing clinical safety.
- When applied to thoracic CT images of 300 patients from a single level I trauma center, the model demonstrated excellent performance. The automatically measured AoDs differed from those obtained by experienced clinicians by approximately 2.11 mm.
2. Methods
2.1. Study Design and Population
2.2. Image Acquisition and Preprocessing
2.3. DL Model Development and Training
2.4. Ellipse Fitting of the Aorta
2.5. Model Evaluation
3. Results
3.1. Patient Characteristics
3.2. DL Segmentation
3.3. Performance of AoD Measurement
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berger, T.; Voetsch, A.; Alaloh, D.; Kreibich, M.; Krombholz-Reindl, P.; Winkler, A.; Rylski, B.; Wolfgruber, T.; Beyersdorf, F.; Siepe, M.; et al. Diameter changes in traumatic aortic injury: Implications for stent-graft sizing. Thorac. Cardiovasc. Surg. 2022, 70, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Jonker, F.H.; Verhagen, H.J.; Mojibian, H.; Davis, K.A.; Moll, F.L.; Muhs, B.E. Aortic endograft sizing in trauma patients with hemodynamic instability. J. Vasc. Surg. 2010, 52, 39–44. [Google Scholar] [CrossRef]
- Cassidy, S.; Allouni, K.; Day, C.; Wells, D.; Pherwani, A.; Ablett, D. Blunt thoracic aortic injury and acute trauma: The effect on aortic diameter and the consequences for stent-graft sizing. Ann. Vasc. Surg. 2021, 72, 563–570. [Google Scholar] [CrossRef]
- Jonker, F.; Mojibian, H.; Schlösser, F.; Botta, D.; Indes, J.; Moll, F.; Muhs, B. The impact of hypovolaemic shock on the aortic diameter in a porcine model. Eur. J. Vasc. Endovasc. Surg. 2010, 40, 564–571. [Google Scholar] [CrossRef]
- Bae, M.; Jeon, C.H. Optimal sizing of aortic stent graft for blunt thoracic aortic injury considering hypotension-related decrease in aortic diameter. J. Endovasc. Ther. 2024, 31, 651–657. [Google Scholar] [CrossRef]
- Kim, D.H.; Chang, S.W.; Matsumoto, J. The utilization of resuscitative endovascular balloon occlusion of the aorta: Preparation, technique, and the implementation of a novel approach to stabilizing hemorrhage. J. Thorac. Dis. 2018, 10, 5550–5559. [Google Scholar] [CrossRef]
- Wasicek, P.J.; Teeter, W.A.; Brenner, M.L.; Hoehn, M.R.; Scalea, T.M.; Morrison, J.J. Resuscitative endovascular balloon occlusion of the aorta: Rupture risk and implications for blind inflation. Trauma Surg. Acute Care Open 2018, 3, e000141. [Google Scholar] [CrossRef]
- Perry, J.W.; Schoenhagen, P.; Huang, S.S.L.; Kirksey, L.; Rowse, J.W.; Smolock, C.J.; Lyden, S.P.; Hardy, D.M.; Caputo, F.J. Standardizing methods of reading CT maximum aortic diameters amongst experts reduces variations and discordance, improving accuracy. Ann. Vasc. Surg. 2022, 79, 264–272. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Zhang, K.; Fung, K.M.; Thai, T.C.; Moore, K.; Mannel, R.S.; Liu, H.; Zheng, B.; Qiu, Y. Recent advances and clinical applications of deep learning in medical image analysis. Med. Image Anal. 2022, 79, 102444. [Google Scholar] [CrossRef]
- López-Linares, K.; Aranjuelo, N.; Kabongo, L.; Maclair, G.; Lete, N.; Ceresa, M.; García-Familiar, A.; Macía, I.; González Ballester, M.A. Fully automatic detection and segmentation of abdominal aortic thrombus in post-operative CTA images using deep convolutional neural networks. Med. Image Anal. 2018, 46, 202–214. [Google Scholar] [CrossRef]
- Brutti, F.; Fantazzini, A.; Finotello, A.; Müller, L.O.; Auricchio, F.; Pane, B.; Conti, G.S.M. Deep learning to automatically segment and analyze abdominal aortic aneurysm from computed tomography angiography. Cardiovasc. Eng. Technol. 2022, 13, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, A.; Handa, A.; Shivakumar, N.; Lapolla, P.; Uberoi, R.; Grau, V.; Lee, R. A deep learning pipeline to automate high-resolution arterial segmentation with or without intravenous contrast. Ann. Surg. 2022, 276, e1017–e1027. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Cheng, J.Z.; Xue, Z.; Shi, F.; Ji, Y.; Wang, X.; Yang, F. Segment aorta and localize landmarks simultaneously on noncontrast CT using a multitask learning framework for patients without severe vascular disease. Comput. Biol. Med. 2023, 160, 107002. [Google Scholar] [CrossRef]
- Piccolo, F.L.; Hinck, D.; Segeroth, M.; Sperl, J.; Cyriac, J.; Yang, S.; Rapaka, S.; Bremerich, J.; Sauter, A.W.; Pradella, M. Impact of retraining a deep learning algorithm for improving guideline-compliant aortic diameter measurements on non-gated chest CT. Eur. J. Radiol. 2023, 168, 111093. [Google Scholar] [CrossRef]
- Wang, H.; Xie, S.; Lin, L.; Iwamoto, Y.; Han, X.H.; Chen, Y.W.; Tong, R. Mixed Transformer U-Net for medical image segmentation. arXiv 2021, arXiv:2111.04734. [Google Scholar]
- Imran, M.; Krebs, J.R.; Gopu, V.R.R.; Fazzone, B.; Sivaraman, V.B.; Kumar, A.; Viscardi, C.; Heithaus, R.E.; Shickel, B.; Zhou, Y.; et al. CIS-UNet: Multi-class segmentation of the aorta in computed tomography angiography via context-aware shifted window self-attention. Comput. Med. Imaging Graph. 2024, 118, 102470. [Google Scholar] [CrossRef]
- Xiang, D.; Qi, J.; Wen, Y.; Zhao, H.; Zhang, X.; Qin, J.; Ma, X.; Ren, Y.; Hu, H.; Liu, W.; et al. ADSeg: A flap-attention-based deep learning approach for aortic dissection segmentation. Patterns 2023, 4, 100727. [Google Scholar] [CrossRef]
- Lalys, F.; Esneault, S.; Castro, M.; Royer, L.; Haigron, P.; Auffret, V.; Tomasi, J. Automatic aortic root segmentation and anatomical landmarks detection for TAVI procedure planning. Minim. Invasive Ther. Allied Technol. 2019, 28, 157–164. [Google Scholar] [CrossRef]
- Pradella, M.; Weikert, T.; Sperl, J.I.; Kärgel, R.; Cyriac, J.; Achermann, R.; Sauter, A.W.; Bremerich, J.; Stieltjes, B.; Brantner, P.; et al. Fully automated guideline-compliant diameter measurements of the thoracic aorta on ECG-gated CT angiography using deep learning. Quant. Imaging Med. Surg. 2021, 11, 4245–4257. [Google Scholar] [CrossRef]
- Takata, T.; Yamada, K.; Yamamoto, M.; Kondo, H. REBOA zone estimation from the body surface using semantic segmentation. J. Med. Syst. 2023, 47, 42. [Google Scholar] [CrossRef]
- Lin, V.S.; Sun, E.; Yau, S.; Abeyakoon, C.; Seamer, G.; Bhopal, S.; Tucker, H.; Doree, C.; Brunskill, S.J.; McQuilten, Z.K.; et al. Definitions of massive transfusion in adults with critical bleeding: A systematic review. Crit. Care 2023, 27, 265. [Google Scholar] [CrossRef] [PubMed]
- Isselbacher, E.M.; Preventza, O.; Black, J.H., III; Augoustides, J.G.; Beck, A.W.; Bolen, M.A.; Braverman, A.C.; Bray, B.E.; Brown-Zimmerman, M.M.; Chen, E.P.; et al. 2022 ACC/AHA guideline for the diagnosis and management of aortic disease: A report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, 80, e223–e393. [Google Scholar]
- Wei, J.; Hu, Y.; Zhang, R.; Li, Z.; Zhou, S.K.; Cui, S. Shallow Attention Network for polyp segmentation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, 27 September –1 October 2021; Proceedings, Part I 24. Springer: Berlin/Heidelberg, Germany, 2021; pp. 699–708. [Google Scholar]
- Gao, S.H.; Cheng, M.M.; Zhao, K.; Zhang, X.Y.; Yang, M.H.; Torr, P. Res2Net: A new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 652–662. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Fox, A.D.; Livingston, D.H. Chapter 13: Initial assessment. In Trauma, 9th ed.; Mattox, K., Moore, E., Feliciano, D., Eds.; McGraw Hill: New York, NY, USA, 2020. [Google Scholar]
- Ciesla, D.J.; Kerwin, A.J.; Tepas, J.J., III. Chapter 4: Trauma systems, triage, and transport. In Trauma, 9th ed.; Mattox, K., Moore, E., Feliciano, D., Eds.; McGraw Hill: New York, NY, USA, 2020. [Google Scholar]
- Singh, K.; Jacobsen, B.K.; Solberg, S.; Bønaa, K.H.; Kumar, S.; Bajic, R.; Arnesen, E. Intra- and interobserver variability in the measurements of abdominal aortic and common iliac artery diameter with computed tomography. The Tromsø study. Eur. J. Vasc. Endovasc. Surg. 2003, 25, 399–407. [Google Scholar] [CrossRef]
- Hamelink, I.I.; de Heide, E.E.J.; Kwee, T.T.; van Ooijen, P.P.; de Bock, G.T.; Vliegenthart, R.R. Validation of an AI-based algorithm for measurement of the thoracic aorta diameter in low-dose chest CT. Eur. J. Radiol. 2023, 167, 111067. [Google Scholar] [CrossRef]
- Borna, S.; Barry, B.A.; Makarova, S.; Parte, Y.; Haider, C.R.; Sehgal, A.; Leibovich, B.C.; Forte, A.J. Artificial intelligence algorithms for expert identification in medical domains: A scoping review. Eur. J. Investig. Heal. Psychol. Educ. 2024, 14, 1182–1196. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, X.; Liu, F.; Chen, J.; Zhou, Y.; Shen, W.; Fishman, E.K.; Yuille, A.L. Deep Distance Transform for tubular structure segmentation in CT scans. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Virtual Conference, 13–19 June 2020; pp. 3833–3842. [Google Scholar]
- Harris, R.; Kim, S.; Lohr, J.; Towey, S.; Velichkovich, Z.; Kabachenko, T.; Driscoll, I.; Baker, B. Classification of aortic dissection and rupture on post-contrast CT images using a convolutional neural network. J. Digit. Imaging 2019, 32, 939–946. [Google Scholar] [CrossRef]
- Shivdeo, A.; Lokwani, R.; Kulkarni, V.; Kharat, A.; Pant, A. Comparative evaluation of 3D and 2D deep learning techniques for semantic segmentation in CT scans. In Proceedings of the 2021 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (ICABCD), Durban, South Africa, 5–6 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–8. [Google Scholar]
- Graby, J.; Harris, M.; Jones, C.; Waring, H.; Lyen, S.; Hudson, B.J.; Rodrigues, J.C.L. Assessing the role of an artificial intelligence assessment tool for thoracic aorta diameter on routine chest CT. Br. J. Radiol. 2023, 96, 20220853. [Google Scholar] [CrossRef]
- Wong, H.; Gotway, M.B.; Sasson, A.D.; Jeffrey, R.B. Periaortic hematoma at diaphragmatic crura at helical CT: Sign of blunt aortic injury in patients with mediastinal hematoma. Radiology 2004, 231, 185–189. [Google Scholar] [CrossRef]
Variables | Overall (n = 300) |
---|---|
Age (y) | 53.6 ± 17.7 |
Sex, male (%) | 240 (80.0) |
Body mass index (km/m2) | 23.6 ± 3.3 |
Height (cm) | 168.5 ± 7.8 |
Body weight (kg) | 67.4 ± 11.9 |
Injury mechanism, blunt (%) | 289 (96.3) |
Injury severity score * | 30.0 (25.0, 38.0) |
Abbreviated trauma score | |
1. Head | 2.6 ± 2.2 |
2. Chest | 2.4 ± 1.6 |
3. Abdomen | 1.7 ± 1.6 |
4. Extremities | 2.0 ± 1.7 |
Initial vital signs * | |
1. Systolic blood pressure (mmHg) | 103.5 (70.0, 135.0) |
2. Heart rate (beats/min) | 100.0 (74.8, 118.0) |
3. Revised trauma score | 9.0 (7.0, 10.0) |
Initial laboratories * | |
1. pH | 7.3 (7.2, 7.4) |
2. Base excess (mmol/L) | −5.8 (−10.4, −2.0) |
3. Lactate (mmol/L) | 4.8 (3.0, 8.1) |
4. Hemoglobin (g/dL) | 11.9 (10.2, 13.2) |
In-hospital mortality (%) | 149 (49.7) |
Test Set | Dice | IoU | ||
---|---|---|---|---|
w/o Rejection | w/ Rejection | w/o Rejection | w/ Rejection | |
Fold 1 | 0.8776 | 0.9025 | 0.9987 | 0.9991 |
Fold 2 | 0.8548 | 0.8891 | 0.9988 | 0.9990 |
Fold 3 | 0.8728 | 0.9102 | 0.9988 | 0.9990 |
Fold 4 | 0.8211 | 0.8483 | 0.9984 | 0.9988 |
Fold 5 | 0.8693 | 0.8872 | 0.9990 | 0.9994 |
Fold 6 | 0.8701 | 0.9004 | 0.9987 | 0.9991 |
Fold 7 | 0.8978 | 0.9122 | 0.9991 | 0.9993 |
Fold 8 | 0.8705 | 0.8997 | 0.9987 | 0.9990 |
Fold 9 | 0.8480 | 0.8739 | 0.9988 | 0.9992 |
Fold 10 | 0.8682 | 0.8943 | 0.9987 | 0.9991 |
Fold average | 0.8650 | 0.8918 | 0.9988 | 0.9991 |
Test Set | Dice | IoU | ||
---|---|---|---|---|
w/o Rejection | w/ Rejection | w/o Rejection | w/ Rejection | |
Fold 1 | 0.7824 | 0.8145 | 0.9211 | 0.9345 |
Fold 2 | 0.7591 | 0.7733 | 0.8935 | 0.9077 |
Fold 3 | 0.7763 | 0.7992 | 0.9048 | 0.9217 |
Fold 4 | 0.7199 | 0.7345 | 0.8887 | 0.9066 |
Fold 5 | 0.7549 | 0.7861 | 0.8994 | 0.9091 |
Fold 6 | 0.7688 | 0.7819 | 0.9042 | 0.9244 |
Fold 7 | 0.7894 | 0.8037 | 0.9178 | 0.9317 |
Fold 8 | 0.7666 | 0.7911 | 0.8944 | 0.9112 |
Fold 9 | 0.7331 | 0.7658 | 0.8773 | 0.8947 |
Fold 10 | 0.7543 | 0.7883 | 0.9013 | 0.9176 |
Fold average | 0.7604 | 0.7838 | 0.9002 | 0.9159 |
Study | Year | Method | Input | AoD | Features |
---|---|---|---|---|---|
2D/3D CNN-Based Models | |||||
López-Linares et al. [10] | 2018 | FCN + ROI Detection | CTA | ✓ | Fully automatic thrombus segmentation using fully convolutional network (FCN) and region of interest (ROI) modeling in post-EVAR CTA. |
Chandrashekar et al. [12] | 2022 | Attention U-Net | CTA + NCCT | ✓ | Uses attention modules for thrombus and lumen segmentation across both contrast and non-contrast CTs (NCCT). |
Brutti et al. [11] | 2022 | Dual-view CNN | CTA | ✓ | Employs dual-view CNN from axial and coronal planes to assess thrombus and aortic wall. |
Yang et al. [13] | 2023 | Multitask CNN | NCCT | ✓ | Simultaneous aortic segmentation and anatomical landmark localization on NCCT with a squeeze-excitation CNN. |
Lo Piccolo et al. [14] | 2023 | Retrained 3D U-Net | Chest CT | ✓ | Improved robustness for AoD measurement in non-ECG-gated CT by retraining on local clinical data. |
Transformer-Based and Hybrid CNN Models | |||||
Wang et al. [15] | 2021 | Mixed Transformer U-Net | CT | ✓ | Combines CNN encoding with global–local self-attention and external memory for enhanced vessel context learning. |
Imran et al. [16] | 2024 | CIS-UNet (CNN + Swin Transformer) | CTA | ✓ | Performs multi-class segmentation of aorta and 13 branches with transformer-enhanced CNN encoder. |
Geometry-Aware Models | |||||
Wang et al. [31] | 2020 | Deep Distance Transform (DDT) | CT | ✓ | Predicts distance maps and tubular cross-sectional radii for geometry-aware segmentation and scale estimation. |
Landmark-Based TAVI and Diameter Pipelines | |||||
Lalys et al. [18] | 2019 | Statistical + Deformable Hybrid | ECG-gated CTA | ✓ | Aortic root and annulus landmark detection using statistical atlases and active contours; designed for TAVI planning. |
Pradella et al. [19] | 2021 | CNN + Landmark Detection | ECG-gated CTA | ✓ | Fully automated, guideline-compliant AoD measurement with DL-based centerline fitting and landmark detection. |
Dissection and Triage-Specific Models | |||||
Harris et al. [32] | 2019 | CNN Classifier | CTA | Dissection and rupture detection via CNN-based emergency triage tool in post-contrast CT. | |
Xiang et al. [17] | 2023 | ADSeg (Flap Attention) | CTA | ✓ | Specialized attention for intimal flap delineation in aortic dissection cases using ADSeg. |
Trauma and REBOA-Specific Models | |||||
Takata et al. [20] | 2023 | DeepLabV3+ | External Body Surface (2D) | Predicts internal REBOA zones by segmenting external torso surfaces; requires no aortic imaging. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heo, Y.; Lee, G.-E.; Cho, J.; Choi, S.-I. Deep Learning-Based Aortic Diameter Measurement in Traumatic Hemorrhage Using Shallow Attention Network: A Path Forward. Diagnostics 2025, 15, 1312. https://doi.org/10.3390/diagnostics15111312
Heo Y, Lee G-E, Cho J, Choi S-I. Deep Learning-Based Aortic Diameter Measurement in Traumatic Hemorrhage Using Shallow Attention Network: A Path Forward. Diagnostics. 2025; 15(11):1312. https://doi.org/10.3390/diagnostics15111312
Chicago/Turabian StyleHeo, Yoonjung, Go-Eun Lee, Jungchan Cho, and Sang-Il Choi. 2025. "Deep Learning-Based Aortic Diameter Measurement in Traumatic Hemorrhage Using Shallow Attention Network: A Path Forward" Diagnostics 15, no. 11: 1312. https://doi.org/10.3390/diagnostics15111312
APA StyleHeo, Y., Lee, G.-E., Cho, J., & Choi, S.-I. (2025). Deep Learning-Based Aortic Diameter Measurement in Traumatic Hemorrhage Using Shallow Attention Network: A Path Forward. Diagnostics, 15(11), 1312. https://doi.org/10.3390/diagnostics15111312