Study of the MTHFR 677C>T Polymorphism in Children and Adolescents with Hashimoto’s Thyroiditis: An Original Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HT | Hashimoto’s thyroiditis |
MTHFR | Methylenetetrahydrofolate reductase |
Anti-TPO | Thyroid peroxide autoantibodies |
Anti-TG | Thyroglobulin autoantibodies |
DNA | Deoxyribonucleic acid |
STROBE | Strengthening the Reporting of Observational Studies in Epidemiology |
ECLIA | Electrochemiluminescent immunoassays |
gDNA | Genomic Deoxyribonucleic acid |
RFLP | Restriction Fragment Length Polymorphism |
PCR | Polymerase Chain Reaction |
GAS | Genetic Association Study |
Nr | Normal Range |
TSH | Thyroid stimulating hormone |
fT4 | fT4: Free thyroxine |
OR | Odds ratio |
CI | Confidence Interval |
References
- Casto, C.; Pepe, G.; Pomi, A.L.; Corica, D.; Aversa, T.; Wasniewska, M. Hashimoto’s Thyroiditis and Graves’ Disease in Genetic Syndromes in Pediatric Age. Genes 2021, 12, 222. [Google Scholar] [CrossRef] [PubMed]
- Radetti, G. Clinical Aspects of Hashimoto’s Thyroiditis. Endocr. Dev. 2014, 26, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Uricoechea, H. Molecular Mechanisms in Autoimmune Thyroid Disease. Cells 2023, 12, 918. [Google Scholar] [CrossRef] [PubMed]
- Weetman, A.P. An Update on the Pathogenesis of Hashimoto’s Thyroiditis. J. Endocrinol. Investig. 2021, 44, 883–890. [Google Scholar] [CrossRef]
- Lee, H.S.; Hwang, J.S. The Natural Course of Hashimoto’s Thyroiditis in Children and Adolescents. J. Pediatr. Endocrinol. Metab. 2014, 27, 807–812. [Google Scholar] [CrossRef]
- Ralli, M.; Angeletti, D.; Fiore, M.; D’Aguanno, V.; Lambiase, A.; Artico, M.; de Vincentiis, M.; Greco, A. Hashimoto’s Thyroiditis: An Update on Pathogenic Mechanisms, Diagnostic Protocols, Therapeutic Strategies, and Potential Malignant Transformation. Autoimmun. Rev. 2020, 19, 102649. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Ye, X.P.; Zhou, Z.; Zhu, C.F.; Li, R.; Fang, Y.; Zhang, R.J.; Li, L.; Liu, W.; Wang, Z.; et al. Lymphocyte Infiltration and Thyrocyte Destruction Are Driven by Stromal and Immune Cell Components in Hashimoto’s Thyroiditis. Nat. Commun. 2022, 13, 775. [Google Scholar] [CrossRef]
- Tywanek, E.; Michalak, A.; Świrska, J.; Zwolak, A. Autoimmunity, New Potential Biomarkers and the Thyroid Gland—The Perspective of Hashimoto’s Thyroiditis and Its Treatment. Int. J. Mol. Sci. 2024, 25, 4703. [Google Scholar] [CrossRef]
- Radetti, G.; Loche, S.; D’Antonio, V.; Salerno, M.; Guzzetti, C.; Aversa, T.; Cassio, A.; Cappa, M.; Gastaldi, R.; Deluca, F.; et al. Influence of Hashimoto Thyroiditis on the Development of Thyroid Nodules and Cancer in Children and Adolescents. J. Endocr. Soc. 2019, 3, 607. [Google Scholar] [CrossRef]
- Bukarica, S.; Antić, J.; Fratrić, I.; Kravarušić, D.; Pajić, M.; Jokić, R. Thyroid Surgery in Children: A 5-Year Retrospective Study at a Single Paediatric Surgical Center and Systematic Review. Children 2022, 9, 1818. [Google Scholar] [CrossRef]
- Won, J.H.; Lee, J.Y.; Hong, H.S.; Jeong, S.H. Thyroid Nodules and Cancer in Children and Adolescents Affected by Hashimoto’s Thyroiditis. Br. J. Radiol. 2018, 91, 20180014. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Cho, Y.J.; Heo, Y.J.; Chung, E.J.; Choi, Y.H.; Kim, J., II; Park, Y.J.; Shin, C.H.; Lee, Y.A. Thyroid Nodules in Childhood-Onset Hashimoto’s Thyroiditis: Frequency, Risk Factors, Follow-up Course and Genetic Alterations of Thyroid Cancer. Clin. Endocrinol. 2021, 95, 638–648. [Google Scholar] [CrossRef]
- Corrias, A.; Cassio, A.; Weber, G.; Mussa, A.; Wasniewska, M.; Rapa, A.; Gastaldi, R.; Einaudi, S.; Baronio, F.; Vigone, M.C.; et al. Thyroid Nodules and Cancer in Children and Adolescents Affected by Autoimmune Thyroiditis. Arch. Pediatr. Adolesc. Med. 2008, 162, 526–531. [Google Scholar] [CrossRef]
- Silva de Morais, N.; Stuart, J.; Guan, H.; Wang, Z.; Cibas, E.S.; Frates, M.C.; Benson, C.B.; Cho, N.L.; Nehs, M.A.; Alexander, C.A.; et al. The Impact of Hashimoto Thyroiditis on Thyroid Nodule Cytology and Risk of Thyroid Cancer. J. Endocr. Soc. 2019, 3, 791–800. [Google Scholar] [CrossRef]
- Niedziela, M. Thyroid Nodules. Best. Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 245–277. [Google Scholar] [CrossRef]
- Paulson, V.A.; Rudzinski, E.R.; Hawkins, D.S. Thyroid Cancer in the Pediatric Population. Genes 2019, 10, 723. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, Y.; Choi, J.W.; Kim, Y.S. The Association between Papillary Thyroid Carcinoma and Histologically Proven Hashimoto’s Thyroiditis: A Meta-Analysis. Eur. J. Endocrinol. 2013, 168, 343–349. [Google Scholar] [CrossRef]
- Donnici, A.; Mirabelli, M.; Giuliano, S.; Misiti, R.; Tocci, V.; Greco, M.; Aiello, V.; Brunetti, F.S.; Chiefari, E.; Aversa, A.; et al. Coexistence of Hashimoto’s Thyroiditis in Differentiated Thyroid Cancer: Post-Operative Monitoring of Anti-Thyroglobulin Antibodies and Assessment of Treatment Response. Diagnostics 2024, 14, 166. [Google Scholar] [CrossRef] [PubMed]
- Mikosch, P.; Aistleitner, A.; Oehrlein, M.; Trifina-Mikosch, E.; Univ-Prof Mikosch, P.P.; Aistleitner, A.; Oehrlein, M.; Trifina-Mikosch, E. Hashimoto’s Thyroiditis and Coexisting Disorders in Correlation with HLA Status—An Overview. Wien. Med. Wochenschr. 2021, 173, 41. [Google Scholar] [CrossRef]
- Dermody, S.; Walls, A.; Harley, E.H. Pediatric Thyroid Cancer: An Update from the SEER Database 2007–2012. Int. J. Pediatr. Otorhinolaryngol. 2016, 89, 121–126. [Google Scholar] [CrossRef]
- Bauer, A.J. Molecular Genetics of Thyroid Cancer in Children and Adolescents. Endocrinol. Metab. Clin. N. Am. 2017, 46, 389–403. [Google Scholar] [CrossRef]
- Shaha, A.R.; Tuttle, R.M. Thyroid Cancer Staging and Genomics. Ann. Transl. Med. 2019, 7, S49. [Google Scholar] [CrossRef] [PubMed]
- Pozdeyev, N.; Gay, L.M.; Sokol, E.S.; Hartmaier, R.; Deaver, K.E.; Davis, S.; French, J.D.; Vanden Borre, P.; LaBarbera, D.V.; Tan, A.C.; et al. Genetic Analysis of 779 Advanced Differentiated and Anaplastic Thyroid Cancers. Clin. Cancer Res. 2018, 24, 3059–3068. [Google Scholar] [CrossRef]
- Luzón-Toro, B.; Fernández, R.M.; Villalba-Benito, L.; Torroglosa, A.; Antiñolo, G.; Borrego, S. Influencers on Thyroid Cancer Onset: Molecular Genetic Basis. Genes 2019, 10, 913. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Han, F.; Fu, H.; Xia, W.; Qin, X. Association between MTHFR C677T Polymorphism and Thyroid Cancer Risk: A Meta-Analysis. Tumor Biol. 2014, 35, 7707–7712. [Google Scholar] [CrossRef]
- Tiwari, D.; Rani, A.; Jha, H.C. Homocysteine and Folic Acid Metabolism. In Homocysteine Metabolism in Health and Disease; Springer: Singapore, 2022; pp. 1–36. [Google Scholar] [CrossRef]
- Levin, B.L.; Varga, E. MTHFR: Addressing Genetic Counseling Dilemmas Using Evidence-Based Literature. J. Genet. Couns. 2016, 25, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Zarembska, E.; Ślusarczyk, K.; Wrzosek, M. The Implication of a Polymorphism in the Methylenetetrahydrofolate Reductase Gene in Homocysteine Metabolism and Related Civilisation Diseases. Int. J. Mol. Sci. 2023, 25, 193. [Google Scholar] [CrossRef]
- Dean, L. Methylenetetrahydrofolate Reductase Deficiency. In Medical Genetics Summaries; National Center for Biotechnology Information: Bethesda, MD, USA, 2024. [Google Scholar]
- Zhang, S.F.; Li, L.Z.; Zhang, W.; Guo, J.R.; Liu, F.F.; Ma, K.; Chen, S.H.; Zhang, Y.Q. Association Between Plasma Homocysteine Levels and Subclinical Hypothyroidism in Adult Subjects: A Meta-Analysis. Horm. Metab. Res. 2020, 52, 625–638. [Google Scholar] [CrossRef]
- Raghubeer, S.; Matsha, T.E. Methylenetetrahydrofolate (MTHFR), the One-Carbon Cycle, and Cardiovascular Risks. Nutrients 2021, 13, 4562. [Google Scholar] [CrossRef]
- Nie, F.; Yu, M.; Zhang, K.; Yang, L.; Zhang, Q.; Liu, S.; Liu, M.; Shang, M.; Zeng, F.; Liu, W. Association of MTHFR Gene Polymorphisms with Pancreatic Cancer: Meta-Analysis of 17 Case-Control Studies. Int. J. Clin. Oncol. 2020, 25, 312–321. [Google Scholar] [CrossRef]
- Baghad, I.; Erreguibi, D.; Boufettal, R.; Eljai, S.R.; Chihab, F.; Nadifi, S. Association of Methylenetetrahydrofolate Reductase (MTHFR) C677T Polymorphism and the Risk of Sporadic Colorectal Cancer. Pan Afr. Med. J. 2021, 38, 287. [Google Scholar] [CrossRef] [PubMed]
- Lal, H.; Sharma, B.; Sambyal, V.; Guleria, K.; Singh, N.R.; Uppal, M.S.; Manjari, M.; Sudan, M. Association of MTHFR 677C>T Polymorphism with Breast Cancer Risk: A Case-Control Study and Meta-Analysis. J. Cancer Res. Ther. 2022, 18, 1451–1460. [Google Scholar] [CrossRef]
- Bennett, D.A.; Parish, S.; Millwood, I.Y.; Guo, Y.; Chen, Y.; Turnbull, I.; Yang, L.; Lv, J.; Yu, C.; Davey Smith, G.; et al. MTHFR and Risk of Stroke and Heart Disease in a Low-Folate Population: A Prospective Study of 156 000 Chinese Adults. Int. J. Epidemiol. 2023, 52, 1862–1869. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Liu, B.; Zhang, Y.; Zhou, Y. MTHFR Gene Polymorphisms in Diabetes Mellitus. Clin. Chim. Acta 2024, 561, 119825. [Google Scholar] [CrossRef] [PubMed]
- EL Alami, H.; Ouenzar, F.; Errafii, K.; Alidrissi, N.; Belyamani, L.; Ghazal, H.; Wakrim, L.; Abidi, O.; Naamane, A.; Daoud, R.; et al. Meta-Analysis of MTHFR C677T Polymorphism and Type 2 Diabetes Mellitus in MENA Region. Diabetes Metab. Syndr. 2024, 18, 102965. [Google Scholar] [CrossRef]
- Yang, R.; Pu, D.; Tan, R.; Wu, J. Association of Methylenetetrahydrofolate Reductase (MTHFR) Gene Polymorphisms (C677T and A1298C) with Thyroid Dysfunction: A Meta-Analysis and Trial Sequential Analysis. Arch. Endocrinol. Metab. 2022, 66, 551. [Google Scholar] [CrossRef]
- Fang, Y.; Cui, Y.; Yin, Z.; Hou, M.; Guo, P.; Wang, H.; Liu, N.; Cai, C.; Wang, M. Comprehensive Systematic Review and Meta-Analysis of the Association between Common Genetic Variants and Autism Spectrum Disorder. Gene 2023, 887, 147723. [Google Scholar] [CrossRef]
- Tabatabaei, R.S.; Fatahi-Meibodi, N.; Meibodi, B.; Javaheri, A.; Abbasi, H.; Hadadan, A.; Bahrami, R.; Mirjalili, S.R.; Karimi-Zarchi, M.; Neamatzadeh, H. Association of Fetal MTHFR C677T Polymorphism with Susceptibility to Neural Tube Defects: A Systematic Review and Update Meta-Analysis. Fetal Pediatr. Pathol. 2022, 41, 225–241. [Google Scholar] [CrossRef]
- Bahrami, R.; Schwartz, D.A.; Asadian, F.; Karimi-Zarchi, M.; Dastgheib, S.A.; Tabatabaie, R.S.; Meibodi, B.; Neamatzadeh, H. Association of MTHFR 677C>T Polymorphism with IUGR and Placental Abruption Risk: A Systematic Review and Meta-Analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 256, 130–139. [Google Scholar] [CrossRef]
- Hasan, T.; Arora, R.; Bansal, A.K.; Bhattacharya, R.; Sharma, G.S.; Singh, L.R. Disturbed Homocysteine Metabolism Is Associated with Cancer. Exp. Mol. Med. 2019, 51, 1–13. [Google Scholar] [CrossRef]
- Bolal, M.; Ates, I.; Demir, B.F.; Altay, M.; Turhan, T.; Yilmaz, N. The Relationship between Homocysteine and Autoimmune Subclinical Hypothyroidism. Int. J. Med. Biochem. 2020, 3, 1–7. [Google Scholar] [CrossRef]
- Cuschieri, S. The STROBE Guidelines. Saudi J. Anaesth. 2019, 13, S31. [Google Scholar] [CrossRef] [PubMed]
- Antonaros, F.; Olivucci, G.; Cicchini, E.; Ramacieri, G.; Pelleri, M.C.; Vitale, L.; Strippoli, P.; Locatelli, C.; Cocchi, G.; Piovesan, A.; et al. MTHFR C677T Polymorphism Analysis: A Simple, Effective Restriction Enzyme-Based Method Improving Previous Protocols. Mol. Genet. Genom. Med. 2019, 7, e628. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.; Zhao, M.; Niu, H.; Yang, K.X.; Shou, T.; Zhang, G.Q.; Yan, X.M. Relationship between Hashimoto’s Thyroiditis and Papillary Thyroid Carcinoma in Children and Adolescents. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 7778–7787. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhou, Q.; Xu, Y.; Yuan, S.L.; Liu, Q.A. Positive Thyroid Antibodies and Risk of Thyroid Cancer: A Systematic Review and Meta-Analysis. Mol. Clin. Oncol. 2019, 11, 234. [Google Scholar] [CrossRef]
Categories | Control Group | Patient Group | p-Value |
---|---|---|---|
Total Participants | 130 | 130 | |
Gender | |||
Male | 41 (32%) | 36 (27.7%) | - |
Female | 89 (68%) | 94 (72.3%) | 0.497 |
Age groups | |||
4–10 years | 60 (46.1%) | 67 (51.7%) | - |
11–18 years | 70 (53.9%) | 63 (48.3%) | 0.385 |
Age (mean value in years) | 10.50 | 9.98 | 0.308 |
Laboratory findings | |||
TSH (μΙU/mL, n.r. 0.27–4.20) | 2.59 | 2.87 | 0.218 |
fT4 (ng/dL, n.r. 0.98–1.63) | 1.32 | 1.37 | 0.300 |
Anti-TPO (IU/mL, n.r. <34) | 11.67 | 119.14 | <0.001 |
Anti-TG (IU/mL, n.r. <115) | 15.31 | 244.37 | <0.001 |
Genotype of 677 C>T | Patients (n = 130) | Controls (n = 130) | OR | CI (95%) | p-Value |
---|---|---|---|---|---|
CC | 50 (38.4%) | 80 (61.6%) | 0.39 | 0.23–0.64 | <0.001 |
CT | 65 (50%) | 41 (31.5%) | 2.17 | 1.31–3.59 | 0.002 |
TT | 15 (11.6%) | 9 (6.9%) | 1.75 | 0.73–4.16 | 0.20 |
CT and TT vs. CC | 80 (61.6%) | 50 (38.4%) | 2.56 | 1.55–4.22 | <0.001 |
C allele * | 165 | 201 | 0.49 | 0.21–1.15 | 0.10 |
T allele * | 95 | 59 | 2.57 | 1.59–4.16 | <0.001 |
Autoantibodies of the Thyroid | Genotype of the 677C>T Polymorphism | Number of Patients (n) | Mean Value | SD | SE | One-Way ANOVA (p-Value) * |
---|---|---|---|---|---|---|
Anti-TPO | CC | 50 | 150.79 | 189.43 | 26.79 | - |
CT | 65 | 135.37 | 134.96 | 16.74 | - | |
TT | 15 | 207.68 | 265.21 | 68.47 | - | |
Total | 130 | 175.48 | 175.48 | 15.39 | 0.357 | |
Anti-TG | CC | 50 | 759.87 | 759.87 | 107.46 | - |
CT | 65 | 811.02 | 811.02 | 100.59 | - | |
TT | 15 | 354.84 | 354.84 | 91.62 | - | |
Total | 130 | 750.48 | 750.48 | 65.82 | 0.643 |
Autoantibodies of the Thyroid Gland | Genotype of 677C>T Polymorphism | Negative Autoantibody Titers | Positive Autoantibody Titers | Odds Ratio | CI 95% | p-Value |
---|---|---|---|---|---|---|
Anti-TPO | CC | 4 | 46 | 0.37 | 0.11–1.20 | 0.100 |
CT | 13 | 52 | 2.45 | 0.87–6.93 | 0.089 | |
TT | 19 | 13 | 0.88 | 0.18–4.28 | 0.881 | |
CT and TT | 15 | 65 | 2.65 | 0.82–8.51 | 0.100 | |
Anti-TG | CC | 30 | 20 | 2.13 | 1.04–4.38 | 0.038 |
CT | 28 | 37 | 0.64 | 0.32–1.29 | 0.220 | |
TT | 5 | 10 | 0.49 | 0.15–1.52 | 0.219 | |
CT and TT | 33 | 47 | 0.46 | 0.22–0.96 | 0.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolanis, S.; Georgiou, E.; Kotanidou, E.P.; Tsinopoulou, V.R.; Sapountzi, E.; Hatzipantelis, E.; Fidani, L.; Galli-Tsinopoulou, A. Study of the MTHFR 677C>T Polymorphism in Children and Adolescents with Hashimoto’s Thyroiditis: An Original Case–Control Study. Diagnostics 2025, 15, 1310. https://doi.org/10.3390/diagnostics15111310
Kolanis S, Georgiou E, Kotanidou EP, Tsinopoulou VR, Sapountzi E, Hatzipantelis E, Fidani L, Galli-Tsinopoulou A. Study of the MTHFR 677C>T Polymorphism in Children and Adolescents with Hashimoto’s Thyroiditis: An Original Case–Control Study. Diagnostics. 2025; 15(11):1310. https://doi.org/10.3390/diagnostics15111310
Chicago/Turabian StyleKolanis, Savvas, Elisavet Georgiou, Eleni P. Kotanidou, Vasiliki Rengina Tsinopoulou, Evdoxia Sapountzi, Emmanouel Hatzipantelis, Liana Fidani, and Assimina Galli-Tsinopoulou. 2025. "Study of the MTHFR 677C>T Polymorphism in Children and Adolescents with Hashimoto’s Thyroiditis: An Original Case–Control Study" Diagnostics 15, no. 11: 1310. https://doi.org/10.3390/diagnostics15111310
APA StyleKolanis, S., Georgiou, E., Kotanidou, E. P., Tsinopoulou, V. R., Sapountzi, E., Hatzipantelis, E., Fidani, L., & Galli-Tsinopoulou, A. (2025). Study of the MTHFR 677C>T Polymorphism in Children and Adolescents with Hashimoto’s Thyroiditis: An Original Case–Control Study. Diagnostics, 15(11), 1310. https://doi.org/10.3390/diagnostics15111310