The Association of Placental Grading with Perinatal Outcomes: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Data Extraction
- Study Characteristics: Author(s), year of publication, journal name, country of study, study design (prospective/retrospective cohort, case-control, or controlled trial) and study duration.
- Population Details: Inclusion and exclusion criteria, definition and timing of PPC and description of the control group.
- Outcomes Reported: Raw data on adverse perinatal outcomes, where available, adjusted measures like adjusted odds ratios (aORs) or adjusted risk ratios (aRRs) were also extracted.
2.4. Quality and Risk of Bias Assessment
2.5. Statistical Analysis
2.6. Sensitivity Analyses
2.7. Outcomes
3. Results
3.1. Search Results and Study Selection
3.2. Quality Assessment of the Included Studies
4. Synthesis of Results
4.1. Analysis of Dichotomous Outcomes
4.1.1. Small-for-Gestational-Age Neonates
4.1.2. Fetal Growth Restriction
4.1.3. Preeclampsia
4.1.4. Fetal or Neonatal Death
4.1.5. Preterm Delivery
4.1.6. Cesarean Section
4.1.7. Low 5-Minute Apgar Score
4.1.8. Neonatal Intensive Care Unit Admission
4.1.9. Neonatal Resuscitation
4.1.10. Gestational Diabetes Mellitus
4.1.11. Suspected Fetal Hypoxia
4.2. Analysis of Continuous Outcomes
4.2.1. Birthweight
4.2.2. Gestational Age at Birth
4.3. Publication Bias
5. Discussion
5.1. Primary Findings
5.2. Interpretation of the Findings
5.3. Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winsberg, F. Echographic changes with placental ageing. J. Clin. Ultrasound 1973, 1, 52–55. [Google Scholar] [CrossRef]
- Grannum, P.A.; Berkowitz, R.L.; Hobbins, J.C. The ultrasonic changes in the maturing placenta and their relation to fetal pulmonic maturity. Am. J. Obstet. Gynecol. 1979, 133, 915–922. [Google Scholar] [CrossRef] [PubMed]
- McKenna, D.; Tharmaratnam, S.; Mahsud, S.; Dornan, J. Ultrasonic evidence of placental calcification at 36 weeks’ gestation: Maternal and fetal outcomes. Acta Obstet. Gynecol. Scand. 2005, 84, 7–10. [Google Scholar] [CrossRef]
- Dash, S.; Das, B.; Panda, S.R.; Rajguru, M.; Jena, P.; Mishra, A.; Rath, S.K. Perinatal Outcomes in Premature Placental Calcification and the Association of a Color Doppler Study: Report from a Tertiary Care Hospital in Eastern India. Clin. Pract. 2021, 11, 841–849. [Google Scholar] [CrossRef]
- Chitlange, S.M.; Hazari, K.T.; Joshi, J.V.; Shah, R.K.; Mehta, A.C. Ultrasonographically observed preterm grade III placenta and perinatal outcome. Int. J. Gynaecol. Obstet. 1990, 31, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.H.; Chen, L.R.; Lee, Y.H. The role of preterm placental calcification in high-risk pregnancy as a predictor of poor uteroplacental blood flow and adverse pregnancy outcome. Ultrasound Med. Biol. 2012, 38, 1011–1018. [Google Scholar] [CrossRef]
- Chen, K.H.; Seow, K.M.; Chen, L.R. The role of preterm placental calcification on assessing risks of stillbirth. Placenta 2015, 36, 1039–1044. [Google Scholar] [CrossRef]
- Sersam, L.W. Ultrasonographically Observed Grade III Placenta at 36 Weeks’ Gestation: Maternal and Fetal Outcomes. Iraqi. Postgrad. Med. J. 2011, 10, 67–72. [Google Scholar]
- Fouedjio, J.H.; Fouelifack, F.Y.; Fouogue, J.T.; Tetka, T.T. Associations between the grade of placental maturity at third trimester ultrasound and maternofetal outcomes at the maternity of the yaoundé central hospital: A prospective cohort study. Donald Sch. J. Ultrasound Obstet. Gynecol. 2015, 9, 230–233. [Google Scholar] [CrossRef]
- Mirza, F.G.; Ghulmiyyah, L.M.; Tamim, H.; Makki, M.; Jeha, D.; Nassar, A. To ignore or not to ignore placental calcifications on prenatal ultrasound: A systematic review and meta-analysis. J. Matern.-Fetal Neonatal Med. 2018, 31, 797–804. [Google Scholar] [CrossRef]
- Siargkas, A.; Tsakiridis, I.; Michos, G.; Liberis, A.; Stavros, S.; Kyriakakis, M.; Domali, E.; Mamopoulos, A.; Dagklis, T. Impact of Placental Grading on Pregnancy Outcomes: A Retrospective Cohort Study. Healthcare 2025, 13, 601. [Google Scholar] [CrossRef]
- Agababov, R.M.; Abashina, T.N.; Suzina, N.E.; Vainshtein, M.B.; Schwartsburd, P.M. Link between the early calcium deposition in placenta and nanobacterial-like infection. J. Biosci. 2007, 32, 1163–1168. [Google Scholar] [CrossRef] [PubMed]
- Ernst, L.M.; Parkash, V. Placental pathology in fetal bartter syndrome. Pediatr. Dev. Pathol. 2002, 5, 76–79. [Google Scholar] [CrossRef]
- Kajdy, A.; Modzelewski, J.; Cymbaluk-Płoska, A.; Kwiatkowska, E.; Bednarek-Jędrzejek, M.; Borowski, D.; Stefańska, K.; Rabijewski, M.; Torbé, A.; Kwiatkowski, S. Molecular Pathways of Cellular Senescence and Placental Aging in Late Fetal Growth Restriction and Stillbirth. Int. J. Mol. Sci. 2021, 22, 4186. [Google Scholar] [CrossRef] [PubMed]
- Ruffaner-Hanson, C.; Noor, S.; Sun, M.S.; Solomon, E.; Marquez, L.E.; Rodriguez, D.E.; Allan, A.M.; Caldwell, K.K.; Bakhireva, L.N.; Milligan, E.D. The maternal-placental-fetal interface: Adaptations of the HPA axis and immune mediators following maternal stress and prenatal alcohol exposure. Exp. Neurol. 2022, 355, 114121. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, j.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized Studies in Meta-Analysis; Ottawa Hospital Research Institute: Ottawa, ON, Canada, 2000. [Google Scholar]
- Hayden, J.A.; van der Windt, D.A.; Cartwright, J.L.; Côté, P.; Bombardier, C. Assessing bias in studies of prognostic factors. Ann. Intern. Med. 2013, 158, 280–286. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions Version 6.4 (Updated August 2023); Cochrane: London, UK, 2023. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; ISBN 3-900051-07-0. Available online: http://www.R-project.org/ (accessed on 26 March 2025).
- Tsakiridis, I.; Giouleka, S.; Arvanitaki, A.; Giannakoulas, G.; Papazisis, G.; Mamopoulos, A.; Athanasiadis, A.; Dagklis, T. Gestational Hypertension and Preeclampsia: An Overview of National and International Guidelines. Obs. Gynecol. Surv. 2021, 76, 613–633. [Google Scholar] [CrossRef]
- Sert, Z.S.; Dilmaç, A.E.; Alkan, E.; Sert, E.T. Predictors of adverse perinatal outcomes in women at 40 weeks or more of pregnancy. Eur. J. Clin. Exp. Med. 2023, 21, 711–715. [Google Scholar] [CrossRef]
- Rduch, T.; Tsolaki, E.; El Baz, Y.; Leschka, S.; Born, D.; Kinkel, J.; Anthis, A.H.C.; Fischer, T.; Jochum, W.; Hornung, R.; et al. The Role of Inorganics in Preeclampsia Assessed by Multiscale Multimodal Characterization of Placentae. Front. Med. 2022, 9, 857529. [Google Scholar] [CrossRef]
- Jakovac, M.B.; Etrusco, A.; Mikuš, M.; Roje, D.; Marusic, J.; Palada, I.; Kosovic, I.; Aracic, N.; Sunj, M.; Laganà, A.S.; et al. Evaluation of placental oxygenation by near-infrared spectroscopy in relation to ultrasound maturation grade in physiological term pregnancies. Open Med. 2023, 18, 20230843. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.H.; Chen, L.R.; Lee, Y.H. Exploring the relationship between preterm placental calcification and adverse maternal and fetal outcome. Ultrasound Obstet. Gynecol. 2011, 37, 328–334. [Google Scholar] [CrossRef]
- Sun, H.; Jiao, J.; Ren, Y.; Guo, Y.; Wang, Y. Model application to quantitatively evaluate placental features from ultrasound images with gestational diabetes. J. Clin. Ultrasound 2022, 50, 976–983. [Google Scholar] [CrossRef]
- Dane, B.; Dane, C.; Aksoy, F.; Cetin, A.; Yayla, M. Antenatal Bartter syndrome: Analysis of two cases with placental findings. Fetal. Pediatr. Pathol. 2010, 29, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Theophilou, G.; Sahashrabudhe, N.; Martindale, E.A.; Heazell, A.E. Correlation between abnormal placental appearance at routine 2nd trimester ultrasound scan and histological examination of the placenta after birth. J. Obstet. Gynaecol. 2012, 32, 760–763. [Google Scholar] [CrossRef] [PubMed]
- Pinar, H.; Carpenter, M. Placenta and umbilical cord abnormalities seen with stillbirth. Clin. Obstet. Gynecol. 2010, 53, 656–672. [Google Scholar] [CrossRef]
- Amir, H.; Weintraub, A.; Aricha-Tamir, B.; Apel-Sarid, L.; Holcberg, G.; Sheiner, E. A piece in the puzzle of intrauterine fetal death: Pathological findings in placentas from term and preterm intrauterine fetal death pregnancies. J. Matern.-Fetal Neonatal Med. 2009, 22, 759–764. [Google Scholar] [CrossRef]
- Klaritsch, P.; Haeusler, M.; Karpf, E.; Schlembach, D.; Lang, U. Spontaneous intrauterine umbilical artery thrombosis leading to severe fetal growth restriction. Placenta 2008, 29, 374–377. [Google Scholar] [CrossRef]
- Kajdy, A.; Sys, D.; Modzelewski, J.; Bogusławska, J.; Cymbaluk-Płoska, A.; Kwiatkowska, E.; Bednarek-Jędrzejek, M.; Borowski, D.; Stefańska, K.; Rabijewski, M.; et al. Evidence of Placental Aging in Late SGA, Fetal Growth Restriction and Stillbirth-A Systematic Review. Biomedicines 2023, 11, 1785. [Google Scholar] [CrossRef]
- Rahman, S.; Islam, M.S.; Roy, A.K.; Hasan, T.; Chowdhury, N.H.; Ahmed, S.; Raqib, R.; Baqui, A.H.; Khanam, R. Maternal serum biomarkers of placental insufficiency at 24-28 weeks of pregnancy in relation to the risk of delivering small-for-gestational-age infant in Sylhet, Bangladesh: A prospective cohort study. BMC Pregnancy Childbirth 2024, 24, 418. [Google Scholar] [CrossRef]
- Ciampa, E.J.; Flahardy, P.; Srinivasan, H.; Jacobs, C.; Tsai, L.; Karumanchi, S.A.; Parikh, S.M. Hypoxia-inducible factor 1 signaling drives placental aging and can provoke preterm labor. Elife 2023, 12, RP85597. [Google Scholar] [CrossRef] [PubMed]
Study, Year | Study Period | Type | Country | Inclusion Criteria | Exclusion Criteria | Time of Diagnosis | Outcomes | Groups |
---|---|---|---|---|---|---|---|---|
Chen, 2011 [25] | July 2007 to June 2009 | Prospective cohort | Taiwan | Singleton pregnancies | Smoking, alcohol consumption, chronic or pregnancy-induced hypertension (including pre-eclampsia), severe anemia (Hb < 8 g/dL), maternal thalassemia, placenta previa, diabetes (overt or gestational), multiple gestations, or major congenital anomalies detected on antenatal examination | 28–32 and 32–36 wks | Birthweight, fetal/neonatal death, gestational age at birth, low 5 min Apgar score, placental abruption, preterm delivery, SGA | Grade 3 vs. no calcification |
Chen, 2015 [7] | - | Prospective cohort | Taiwan | Singleton pregnancies | Lost to follow-up, missing data, multifetal gestations, major fetal congenital anomalies, termination before 24 wks, cord accidents, suspected intrauterine infection, or antepartum complications (hypertension, diabetes, placenta previa, severe anemia) | 28 wks | Fetal/neonatal death | Grade 3 vs. no calcification |
Chitlange, 1990 [5] | - | Prospective cohort | India | Singleton and uncomplicated pregnancies | 31–34 wks | FGR, suspected fetal hypoxia, preeclampsia, SGA | Grade 3 vs. 1 | |
Dash, 2021 [4] | October 2017 to September 2019 | Prospective cohort | India | All pregnant women attending after 28 wks | Multifetal gestation, congenital anomalies, smoking or alcohol history, previous diabetes or hypertension, or lack of consent | 28–36 wks | Birthweight, cesarean section, suspected fetal hypoxia, fetal/neonatal death, FGR, gestational age at birth, low 5 min Apgar score, NICU, preeclampsia, preterm birth | Grade 3 vs. 1, 2 |
Fouedjio, 2015 [9] | 2 January 2012 to 30 July 2013 | Prospective cohort | Cameroon | Singleton pregnancies | Sickle cell disease, diabetes, hypertensive disorders before 34 wks, multifetal gestation, or fetal malformations | 34–36 wks | Preeclampsia, cesarean section, suspected fetal hypoxia, neonatal resuscitation, SGA, low 5 min Apgar score | Grade 3 vs. 0, 1, 2 |
McKenna, 2005 [3] | - | Prospective cohort | UK | Singleton pregnancies and known gestational age confirmed by ultrasound at <20 wk. | Multiple pregnancy, maternal medical condition, obstetric complication in a previous pregnancy, obstetric complication before 36 wks in this pregnancy, or known fetal abnormality | 36 wks | Suspected fetal hypoxia, neonatal resuscitation, NICU, preeclampsia, SGA | Grade 3 vs. 0, 1, 2 |
Sersam, 2011 [8] | 1 of August 2009 to end of July 2010 | Prospective cohort | Iraq | Singleton pregnancies with known gestational age confirmed by ultrasound at <20 wk | Multiple pregnancy, maternal medical condition, obstetric complication in a previous pregnancy, obstetric complication before 36 wks, or known fetal abnormality | 36 wks | Suspected fetal hypoxia, meconium, low 5 min Apgar score, preeclampsia | Grade 3 vs. 0, 1, 2 |
Sun, 2022 [26] | November 2020 to April 2021 | Prospective cohort | China | Singleton pregnancy with prenatal care and delivery at the hospital, complete medical history available, and no fetal congenital or chromosomal abnormalities | <37 wks and ≥37 wks | GDM | Grade 3 vs. 0, 1, 2 | |
Siargkas, 2025 [11] | 2 January 2018 to 30 December 2023 | Retrospective cohort | Greece | Singleton pregnancies carrying a live fetus within the specified gestational age range | Pregnancies with genetic anomalies or major fetal defects, as well as pregnancies lost to follow-up | 31–36 wks | FGR, fetal/neonatal death, gestational age at birth, gestational hypertension, preeclampsia, SGA | Grade 3 vs. 0, 1 |
First Author, Year | Study Type | S1 | S2 | S3 | S4 | C | O1 | O2 | O3 | Total Score |
---|---|---|---|---|---|---|---|---|---|---|
Chen, 2011 [25] | Prospective cohort | a * | a * | a * | a * | a,b ** | a * | a * | a * | 9 |
Chen, 2015 [7] | Prospective cohort | a * | a * | a * | a * | a,b ** | a * | a * | a * | 9 |
Chitlange, 1990 [5] | Prospective cohort | a * | a * | a * | d | - | a * | a * | a * | 6 |
Dash, 2021 [4] | Prospective cohort | a * | a * | a * | a * | - | a * | a * | a * | 7 |
Fouedjio, 2015 [9] | Prospective cohort | a * | a * | a * | a * | - | a * | a * | a * | 7 |
McKenna, 2005 [3] | Prospective cohort | a * | a * | a * | a * | - | a * | a * | a * | 7 |
Sersam, 2011 [8] | Prospective cohort | a * | a * | a * | a * | - | a * | a * | a * | 7 |
Sun, 2022 [26] | Prospective cohort | a * | a * | a * | a * | - | a * | a * | a * | 7 |
Siargkas, 2025 [11] | Retrospective cohort | a * | a * | a * | a * | a,b ** | a * | a * | a * | 9 |
Risk Factor | Number of Studies | Study Group | Control Group | RR | 95% CI | I2; p-Value |
---|---|---|---|---|---|---|
SGA | 7 | 127/597 | 732/5982 | 1.99 | 1.46, 2.70 | 60%, 0.02 |
SGA sensitivity analysis | 3 | 88/436 | 550/3378 | 1.80 | 1.13, 2.87 | 78%, 0.01 |
FGR | 3 | 66/436 | 268/3378 | 2.31 | 1.30, 4.09 | 77%, 0.01 |
Preeclampsia | 6 | 56/342 | 122/5461 | 5.27 | 2.24, 12.40 | 75%, 0.001 |
Fetal or neonatal death | 3 | 10/436 | 19/3378 | 2.75 | 0.87, 8.71 | 40%, 0.19 |
Preterm delivery | 3 | 56/436 | 297/3378 | 2.11 | 1.00, 4.45 | 85%, 0.001 |
Cesarean section | 4 | 177/452 | 1537/3474 | 1.26 | 0.90, 1.78 | 85%, <0.001 |
Cesarean section sensitivity analysis | 3 | 175/436 | 1522/3378 | 1.30 | 0.91, 1.85 | 89%, <0.001 |
Low 5 min Apgar | 4 | 36/424 | 65/1539 | 2.28 | 1.50, 3.44 | 0%, 0.43 |
NICU | 4 | 18/237 | 83/2752 | 1.80 | 1.02, 3.18 | 0%, 0.75 |
Neonatal resuscitation | 3 | 73/97 | 1753/2398 | 1.04 | 0.92, 1.16 | 0%, 0.70 |
GDM | 3 | 29/188 | 561/3149 | 1.17 | 0.81, 1.70 | 0%, 0.98 |
Suspected fetal hypoxia | 5 | 48/301 | 326/2958 | 1.71 | 1.13, 2.56 | 22%, 0.27 |
Birthweight | 3 | 587 | 3164 | −187.46 | −413.14, +38.21 | 91%, <0.001 |
Gestational age at birth | 3 | 373 | 3378 | −0.62 | −1.36, +0.11 | 92%, <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siargkas, A.; Pachi, C.; Nigdelis, M.P.; Stavros, S.; Domali, E.; Mamopoulos, A.; Tsakiridis, I.; Dagklis, T. The Association of Placental Grading with Perinatal Outcomes: A Systematic Review and Meta-Analysis. Diagnostics 2025, 15, 1264. https://doi.org/10.3390/diagnostics15101264
Siargkas A, Pachi C, Nigdelis MP, Stavros S, Domali E, Mamopoulos A, Tsakiridis I, Dagklis T. The Association of Placental Grading with Perinatal Outcomes: A Systematic Review and Meta-Analysis. Diagnostics. 2025; 15(10):1264. https://doi.org/10.3390/diagnostics15101264
Chicago/Turabian StyleSiargkas, Antonios, Christina Pachi, Meletios P. Nigdelis, Sofoklis Stavros, Ekaterini Domali, Apostolos Mamopoulos, Ioannis Tsakiridis, and Themistoklis Dagklis. 2025. "The Association of Placental Grading with Perinatal Outcomes: A Systematic Review and Meta-Analysis" Diagnostics 15, no. 10: 1264. https://doi.org/10.3390/diagnostics15101264
APA StyleSiargkas, A., Pachi, C., Nigdelis, M. P., Stavros, S., Domali, E., Mamopoulos, A., Tsakiridis, I., & Dagklis, T. (2025). The Association of Placental Grading with Perinatal Outcomes: A Systematic Review and Meta-Analysis. Diagnostics, 15(10), 1264. https://doi.org/10.3390/diagnostics15101264