Diagnosis, Pathophysiology and Management of Microvascular Dysfunction in Diabetes Mellitus
Abstract
:1. Introduction
2. Diagnosis of Microvascular Dysfunction in Diabetes
2.1. Laser Doppler Flowmetry and Imaging
2.2. Transcutaneous Oximetry
2.3. Near-Infrared Spectroscopy
2.4. Infrared Thermography
2.5. Endothelial Assessment
2.6. Computational Analysis of Microvascular Dynamics
Diagnosis | Technology/Methods | Principle and Representative Devices | Pros | Cons |
Laser Doppler Flowmetry and Laser Doppler Imaging [19] | The device is based on Doppler effect to use low-level laser (1–2 mW) to monitor blood flow velocity in perfusion unit. Major brands include Perimed PeriFlux 6000 and Moor moorVMS-LDF. |
|
| |
Transcutaneous Oximetry [14] | The device uses local heating to measure oxygen (O2) and carbon dioxide (CO2) molecules in mmHg. Major brands include Perimed tcpO2 and Radiometer TCM. |
|
| |
Infrared Thermography [42] | The device can measure the skin temperature in °F. Major brands include FLIR Systems E6-XT. |
|
| |
Near-infrared spectroscopy [23] | The use of Beer–Lambert Law to assess the concentration of hemoglobin in the tissue in μM. A number of brands are in market including Hamamatsu, Hitachi, NIRx and ISS. |
|
| |
Computational Methods [19,39] | The use of signal and imaging processing to classify microvascular status, including linear (thermal index, wavelet), nonlinear (sample entropy, fractal, correlation dimension, wavelet phase coherence) and machine learning (convolutional neural network, AlexNet, Vgg-19, GoogLeNet, ResNet-18). |
|
| |
Intervention | Modality | Principle | Benefits | Guidelines (Dosage) |
Weight-bearing exercise [9,10,43,44] | Weight-bearing exercise is recommended to people with diabetes, including people at risk for diabetic foot ulcers. |
| ||
Non-weight-bearing exercise [9] | Non-weight-bearing exercise is needed for people with open diabetic foot ulcers. |
|
| |
Local Vibration [45] | The use of vibration to stimulate blood flow control for improving microcirculation. |
|
| |
Thermal Therapy [46] | The use of heat to induce a vasodilatory response for improving microcirculation. |
|
|
3. Pathophysiology of Microvascular Dysfunction in Diabetes
3.1. Microvasculature
3.2. Microvascular Regulation
3.3. Microvascular Dysfunction in Diabetes
4. Management of Microvascular Dysfunction in Diabetes
4.1. Physical Activity and Exercise
4.2. Force-Based Interventions
4.3. Thermal Stress-Based Interventions
5. Future Directions
6. Conclusions
Funding
Conflicts of Interest
References
- Horton, W.B.; Barrett, E.J. Microvascular Dysfunction in Diabetes Mellitus and Cardiometabolic Disease. Endocr. Rev. 2021, 42, 29–55. [Google Scholar] [CrossRef] [PubMed]
- Stirban, A. Microvascular dysfunction in the context of diabetic neuropathy. Curr. Diab Rep. 2014, 14, 541. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, O.; Abou-Elenin, K.; LoGerfo, F.W.; Horton, E.S.; Veves, A. Contribution of nerve-axon reflex-related vasodilation to the total skin vasodilation in diabetic patients with and without neuropathy. Diabetes Care 2001, 24, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Schalkwijk, C.; Kroon, A.; Schram, M.T.; Stehouwer, C.; Houben, A. Different Measures of Hyperglycemia Are Negatively Associated With Skin Microvascular Flowmotion: The Maastricht Study. Microcirculation 2024, 31, e12882. [Google Scholar] [CrossRef]
- Gutterman, D.D.; Chabowski, D.S.; Kadlec, A.O.; Durand, M.J.; Freed, J.K.; Ait-Aissa, K.; Beyer, A.M. The Human Microcirculation: Regulation of Flow and Beyond. Circ. Res. 2016, 118, 157–172. [Google Scholar] [CrossRef]
- Liao, F.Y.; Burns, S.; Jan, Y.K. Skin blood flow dynamics and its role in pressure ulcers. J. Tissue Viability 2013, 22, 25–36. [Google Scholar] [CrossRef]
- Mauricio, D.; Gratacos, M.; Franch-Nadal, J. Diabetic microvascular disease in non-classical beds: The hidden impact beyond the retina, the kidney, and the peripheral nerves. Cardiovasc. Diabetol. 2023, 22, 314. [Google Scholar] [CrossRef]
- Barrett, E.J.; Liu, Z.; Khamaisi, M.; King, G.L.; Klein, R.; Klein, B.E.K.; Hughes, T.M.; Craft, S.; Freedman, B.I.; Bowden, D.W.; et al. Diabetic Microvascular Disease: An Endocrine Society Scientific Statement. J. Clin. Endocrinol. Metab. 2017, 102, 4343–4410. [Google Scholar] [CrossRef]
- Crews, R.T.; Schneider, K.L.; Yalla, S.V.; Reeves, N.D.; Vileikyte, L. Physiological and psychological challenges of increasing physical activity and exercise in patients at risk of diabetic foot ulcers: A critical review. Diabetes. Metab. Res. Rev. 2016, 32, 791–804. [Google Scholar] [CrossRef]
- Liao, F.; An, R.; Pu, F.; Burns, S.; Shen, S.; Jan, Y.K. Effect of Exercise on Risk Factors of Diabetic Foot Ulcers: A Systematic Review and Meta-Analysis. Am. J. Phys. Med. Rehabil. 2019, 98, 103–116. [Google Scholar] [CrossRef]
- Neubauer-Geryk, J.; Hoffmann, M.; Wielicka, M.; Piec, K.; Kozera, G.; Bieniaszewski, L. Current methods for the assessment of skin microcirculation: Part 2. Postep. Dermatol. Alergol. 2019, 36, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Neubauer-Geryk, J.; Hoffmann, M.; Wielicka, M.; Piec, K.; Kozera, G.; Brzezinski, M.; Bieniaszewski, L. Current methods for the assessment of skin microcirculation: Part 1. Postep. Dermatol. Alergol. 2019, 36, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, A.P.; Oberg, P.A. (Eds.) Laser-Doppler Blood Flowmetry; Kluwer Academic Publishers Group: Norwell, MA, USA, 1990; pp. 57–58. [Google Scholar]
- Jan, Y.K.; Brienza, D.M. Technology for pressure ulcer prevention. Top. Spinal Cord. Inj. Rehabil. 2006, 11, 30–41. [Google Scholar] [CrossRef]
- Braverman, I.M. The cutaneous microcirculation. J. Investig. Dermatol. Symp. Proc. 2000, 5, 3–9. [Google Scholar] [CrossRef]
- Oberg, P.A. Laser Doppler flowmetry. Crit. Rev. Biomed. Eng. 1990, 18, 125–163. [Google Scholar]
- Bertuglia, S.; Colantuoni, A.; Arnold, M.; Witte, H. Dynamic coherence analysis of vasomotion and flow motion in skeletal muscle microcirculation. Microvasc. Res. 1996, 52, 235–244. [Google Scholar] [CrossRef]
- Geyer, M.J.; Jan, Y.K.; Brienza, D.M.; Boninger, M.L. Using wavelet analysis to characterize the thermoregulatory mechanisms of sacral skin blood flow. J. Rehabil. Res. Dev. 2004, 41, 797–806. [Google Scholar] [CrossRef]
- Jan, Y.K.; Liao, F.Y.; Cheing, G.L.Y.; Pu, F.; Ren, W.Y.; Choi, H.M.C. Differences in skin blood flow oscillations between the plantar and dorsal foot in people with diabetes mellitus and peripheral neuropathy. Microvasc. Res. 2019, 122, 45–51. [Google Scholar] [CrossRef]
- Liao, F.; Jan, Y.K. Nonlinear dynamics of skin blood flow response to mechanical and thermal stresses in the plantar foot of diabetics with peripheral neuropathy. Clin. Hemorheol. Microcirc. 2017, 66, 197–210. [Google Scholar] [CrossRef]
- Liu, M.H.; Grimm, D.R.; Teodorescu, V.; Kronowitz, S.J.; Bauman, W.A. Transcutaneous oxygen tension in subjects with tetraplegia with and without pressure ulcers: A preliminary report. J. Rehabil. Res. Dev. 1999, 36, 202–206. [Google Scholar]
- Catella, J.; Long, A.; Mazzolai, L. What Is Currently the Role of TcPO2 in the Choice of the Amputation Level of Lower Limbs? A Comprehensive Review. J. Clin. Med. 2021, 10, 1413. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Mo, P.C.; Lin, C.F.; Pauly, S.; Kundal, N.; Hernandez, M.E.; Jan, Y.K. Using near-infrared spectroscopy to investigate the effects of pressures and durations of cupping therapy on muscle blood volume and oxygenation. J. Biophotonics 2023, 16, e202200342. [Google Scholar] [CrossRef] [PubMed]
- Barstow, T.J. Understanding near infrared spectroscopy and its application to skeletal muscle research. J. Appl. Physiol. (1985) 2019, 126, 1360–1376. [Google Scholar] [CrossRef]
- Perrey, S.; Ferrari, M. Muscle Oximetry in Sports Science: A Systematic Review. Sports Med. 2018, 48, 597–616. [Google Scholar] [CrossRef]
- Mo, P.C.; Lin, C.F.; Li, Y.; Hernandez, M.E.; Liao, J.C.; Hung, I.Y.; Jan, Y.K. Application of near-infrared spectroscopy to assess the effect of the cupping size on the spatial hemodynamic response from the area inside and outside the cup of the biceps. PLoS ONE 2024, 19, e0302828. [Google Scholar] [CrossRef]
- Sanders, J.E. Thermal response of skin to cyclic pressure and pressure with shear: A technical note. J. Rehabil. Res. Dev. 2000, 37, 511–515. [Google Scholar]
- Sprigle, S.; Linden, M.; McKenna, D.; Davis, K.; Riordan, B. Clinical skin temperature measurement to predict incipient pressure ulcers. Adv. Skin Wound Care 2001, 14, 133–137. [Google Scholar] [CrossRef]
- Bus, S.A. Innovations in plantar pressure and foot temperature measurements in diabetes. Diabetes Metab. Res. 2016, 32, 221–226. [Google Scholar] [CrossRef]
- Flammer, A.J.; Anderson, T.; Celermajer, D.S.; Creager, M.A.; Deanfield, J.; Ganz, P.; Hamburg, N.M.; Luscher, T.F.; Shechter, M.; Taddei, S.; et al. The assessment of endothelial function: From research into clinical practice. Circulation 2012, 126, 753–767. [Google Scholar] [CrossRef]
- Thijssen, D.H.; Black, M.A.; Pyke, K.E.; Padilla, J.; Atkinson, G.; Harris, R.A.; Parker, B.; Widlansky, M.E.; Tschakovsky, M.E.; Green, D.J. Assessment of flow-mediated dilation in humans: A methodological and physiological guideline. Am. J. Physiol. Heart. Circ. Physiol. 2011, 300, H2–H12. [Google Scholar] [CrossRef]
- Takase, B.; Uehata, A.; Akima, T.; Nagai, T.; Nishioka, T.; Hamabe, A.; Satomura, K.; Ohsuzu, F.; Kurita, A. Endothelium-dependent flow-mediated vasodilation in coronary and brachial arteries in suspected coronary artery disease. Am. J. Cardiol. 1998, 82, 1535–1539. [Google Scholar] [CrossRef] [PubMed]
- Villano, A.; Mencarelli, E.; Melita, V.; Rizzi, A.; Lamendola, P.; De Vita, A.; Manfredonia, L.; Ravenna, S.E.; Pitocco, D.; Lanza, G.A.; et al. Endothelial dysfunction and cardiovascular outcome in asymptomatic patients with type 2 diabetes: A pilot study. Diabetes Metab. Res. Rev. 2020, 36, e3215. [Google Scholar] [CrossRef] [PubMed]
- Krogh, A. Studies on the physiology of capillaries: II. The reactions to local stimuli of the blood-vessels in the skin and web of the frog. J. Physiol. 1921, 55, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.C.; Wayland, H. Regulation of blood flow in single capillaries. Am. J. Physiol. 1967, 212, 1405–1415. [Google Scholar] [CrossRef]
- Griffith, T.M. Temporal chaos in the microcirculation. Cardiovasc. Res. 1996, 31, 342–358. [Google Scholar] [CrossRef]
- Parthimos, D.; Edwards, D.H.; Griffith, T.M. Comparison of chaotic and sinusoidal vasomotion in the regulation of microvascular flow. Cardiovasc. Res. 1996, 31, 388–399. [Google Scholar] [CrossRef]
- Ursino, M.; Cavalcanti, S.; Bertuglia, S.; Colantuoni, A. Theoretical analysis of complex oscillations in multibranched microvascular networks. Microvasc. Res. 1996, 51, 229–249. [Google Scholar] [CrossRef]
- Liao, F.; Jan, Y.K. Assessing skin blood flow function in people with spinal cord injury using the time domain, time–frequency domain and deep learning approaches. Biomed. Signal Process. Control 2023, 84, 104790. [Google Scholar] [CrossRef]
- Stefanovska, A.; Bracic, M.; Kvernmo, H.D. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans. Biomed. Eng. 1999, 46, 1230–1239. [Google Scholar] [CrossRef]
- Humeau, A.; Koitka, A.; Abraham, P.; Saumet, J.L.; L’Huillier, J.P. Time-frequency analysis of laser Doppler flowmetry signals recorded in response to a progressive pressure applied locally on anaesthetized healthy rats. Phys. Med. Biol. 2004, 49, 843–857. [Google Scholar] [CrossRef]
- Sebok, J.; Edel, Z.; Vancsa, S.; Farkas, N.; Kiss, S.; Eross, B.; Torok, Z.; Balogh, G.; Balogi, Z.; Nagy, R.; et al. Heat therapy shows benefit in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Int. J. Hyperth. 2021, 38, 1650–1659. [Google Scholar] [CrossRef] [PubMed]
- Gholami, F.; Naderi, A.; Saeidpour, A.; Lefaucheur, J.P. Effect of exercise training on glycemic control in diabetic peripheral neuropathy: A GRADE assessed systematic review and meta-analysis of randomized-controlled trials. Prim. Care Diabetes 2024, 18, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Olver, T.D.; Laughlin, M.H. Endurance, interval sprint, and resistance exercise training: Impact on microvascular dysfunction in type 2 diabetes. Am. J. Physiol. Heart. Circ. Physiol. 2016, 310, H337–H350. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.Y.; Pu, F.; Luan, H.Q.; Duan, Y.J.; Su, H.L.; Fan, Y.B.; Jan, Y.K. Effects of Local Vibration With Different Intermittent Durations on Skin Blood Flow Responses in Diabetic People. Front. Bioeng. Biotech. 2019, 7, 310. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, B.M.; Houben, A.J.; Berendschot, T.T.; Schouten, J.S.; Kroon, A.A.; van der Kallen, C.J.; Henry, R.M.; Koster, A.; Sep, S.J.; Dagnelie, P.C.; et al. Prediabetes and Type 2 Diabetes Are Associated With Generalized Microvascular Dysfunction: The Maastricht Study. Circulation 2016, 134, 1339–1352. [Google Scholar] [CrossRef]
- Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005, 54, 1615–1625. [Google Scholar] [CrossRef]
- Rosenberry, R.; Nelson, M.D. Reactive hyperemia: A review of methods, mechanisms, and considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 318, R605–R618. [Google Scholar] [CrossRef]
- Holowatz, L.A.; Thompson-Torgerson, C.S.; Kenney, W.L. The human cutaneous circulation as a model of generalized microvascular function. J. Appl. Physiol. 2008, 105, 370–372. [Google Scholar] [CrossRef]
- Cracowski, J.L.; Roustit, M. Human Skin Microcirculation. Compr. Physiol. 2020, 10, 1105–1154. [Google Scholar] [CrossRef]
- Braverman, I.M. Ultrastructure and organization of the cutaneous microvasculature in normal and pathologic states. J. Investig. Dermatol. 1989, 93, S2–S9. [Google Scholar] [CrossRef]
- Popel, A.S.; Johnson, P.C. Microcirculation and Hemorheology. Annu. Rev. Fluid. Mech. 2005, 37, 43–69. [Google Scholar] [CrossRef] [PubMed]
- Cracowski, J.L.; Minson, C.T.; Salvat-Melis, M.; Halliwill, J.R. Methodological issues in the assessment of skin microvascular endothelial function in humans. Trends Pharmacol. Sci. 2006, 27, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.; Kohen, A.; Brouder, D.; Rahim, F.; Adler, S.; Garrick, R.; Goligorsky, M.S. Noninvasive interrogation of microvasculature for signs of endothelial dysfunction in patients with chronic renal failure. Am. J. Physiol. Heart. Circ. Physiol. 2004, 287, H2687–H2696. [Google Scholar] [CrossRef] [PubMed]
- Wong, B.J.; Wilkins, B.W.; Holowatz, L.A.; Minson, C.T. Nitric oxide synthase inhibition does not alter the reactive hyperemic response in the cutaneous circulation. J. App.l Physiol. (1985) 2003, 95, 504–510. [Google Scholar] [CrossRef]
- Howe, E.E.; Apollinaro, M.; Bent, L.R. Mechanoreceptor sensory feedback is impaired by pressure induced cutaneous ischemia on the human foot sole and can predict cutaneous microvascular reactivity. Front. Neurosci. 2024, 18, 1329832. [Google Scholar] [CrossRef]
- Minson, C.T.; Berry, L.T.; Joyner, M.J. Nitric oxide and neurally mediated regulation of skin blood flow during local heating. J. Appl. Physiol. 2001, 91, 1619–1626. [Google Scholar] [CrossRef]
- Kellogg, D.L., Jr.; Zhao, J.L.; Wu, Y. Endothelial nitric oxide synthase control mechanisms in the cutaneous vasculature of humans in vivo. Am. J. Physiol. Heart. Circ. Physiol. 2008, 295, H123–H129. [Google Scholar] [CrossRef]
- Hodges, G.J.; Kosiba, W.A.; Zhao, K.; Johnson, J.M. The involvement of norepinephrine, neuropeptide Y, and nitric oxide in the cutaneous vasodilator response to local heating in humans. J. Appl. Physiol. 2008, 105, 233–240. [Google Scholar] [CrossRef]
- Johnson, J.M.; Kellogg, D.L. Local thermal control of the human cutaneous circulation. J. Appl. Physiol. 2010, 109, 1229–1238. [Google Scholar] [CrossRef]
- Jan, Y.K.; Lee, B.; Liao, F.; Foreman, R.D. Local cooling reduces skin ischemia under surface pressure in rats: An assessment by wavelet analysis of laser Doppler blood flow oscillations. Physiol. Meas. 2012, 33, 1733–1745. [Google Scholar] [CrossRef]
- Minson, C.T. Thermal provocation to evaluate microvascular reactivity in human skin. J. Appl. Physiol. (1985) 2010, 109, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, F.; Sone, R.; Zhao, K.; Alvarez, G.E.; Kosiba, W.A.; Johnson, J.M. Rate dependency and role of nitric oxide in the vascular response to direct cooling in human skin. J. Appl. Physiol. (1985) 2006, 100, 42–50. [Google Scholar] [CrossRef] [PubMed]
- The Action to Control Cardiovascular Risk in Diabetes Study Group; Gerstein, H.C.; Miller, M.E.; Byington, R.P.; Goff, D.C., Jr.; Bigger, J.T.; Buse, J.B.; Cushman, W.C.; Genuth, S.; Ismail-Beigi, F.; et al. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 2008, 358, 2545–2559. [Google Scholar] [CrossRef] [PubMed]
- Group, A.C.; Patel, A.; MacMahon, S.; Chalmers, J.; Neal, B.; Billot, L.; Woodward, M.; Marre, M.; Cooper, M.; Glasziou, P.; et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2008, 358, 2560–2572. [Google Scholar] [CrossRef]
- Ceriello, A.; Ihnat, M.A.; Thorpe, J.E. Clinical review 2: The “metabolic memory”: Is more than just tight glucose control necessary to prevent diabetic complications? J. Clin. Endocrinol. Metab. 2009, 94, 410–415. [Google Scholar] [CrossRef]
- An, Y.; Xu, B.T.; Wan, S.R.; Ma, X.M.; Long, Y.; Xu, Y.; Jiang, Z.Z. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovasc. Diabetol. 2023, 22, 237. [Google Scholar] [CrossRef]
- Costantino, S.; Paneni, F.; Battista, R.; Castello, L.; Capretti, G.; Chiandotto, S.; Tanese, L.; Russo, G.; Pitocco, D.; Lanza, G.A.; et al. Impact of Glycemic Variability on Chromatin Remodeling, Oxidative Stress, and Endothelial Dysfunction in Patients With Type 2 Diabetes and With Target HbA(1c) Levels. Diabetes 2017, 66, 2472–2482. [Google Scholar] [CrossRef]
- Paul, S.; Ali, A.; Katare, R. Molecular complexities underlying the vascular complications of diabetes mellitus—A comprehensive review. J. Diabetes Complicat. 2020, 34, 107613. [Google Scholar] [CrossRef]
- Kaze, A.D.; Santhanam, P.; Ahima, R.S.; Bertoni, A.G.; Echouffo-Tcheugui, J.B. Association Between Microvascular Disease and Cardiorespiratory Fitness Among Adults With Type 2 Diabetes. Diabetes Care 2024, 47, 1408–1414. [Google Scholar] [CrossRef]
- Jan, Y.K.; Shen, S.; Foreman, R.D.; Ennis, W.J. Skin blood flow response to locally applied mechanical and thermal stresses in the diabetic foot. Microvasc. Res. 2013, 89, 40–46. [Google Scholar] [CrossRef]
- Colberg, S.R.; Parson, H.K.; Nunnold, T.; Herriott, M.T.; Vinik, A.I. Effect of an 8-week resistance training program on cutaneous perfusion in type 2 diabetes. Microvasc. Res. 2006, 71, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Vinik, A.I.; Erbas, T.; Park, T.S.; Pierce, K.K.; Stansberry, K.B. Methods for evaluation of peripheral neurovascular dysfunction. Diabetes Technol. Ther. 2001, 3, 29–50. [Google Scholar] [CrossRef] [PubMed]
- Kilo, S.; Berghoff, M.; Hilz, M.; Freeman, R. Neural and endothelial control of the microcirculation in diabetic peripheral neuropathy. Neurology 2000, 54, 1246–1252. [Google Scholar] [CrossRef] [PubMed]
- Boulton, A.J.; Scarpello, J.H.; Ward, J.D. Venous oxygenation in the diabetic neuropathic foot: Evidence of arteriovenous shunting? Diabetologia 1982, 22, 6–8. [Google Scholar] [CrossRef]
- Pu, F.; Ren, W.; Fu, H.; Zheng, X.; Yang, M.; Jan, Y.K.; Fan, Y. Plantar blood flow response to accumulated pressure stimulus in diabetic people with different peak plantar pressure: A non-randomized clinical trial. Med. Biol. Eng. Comput. 2018, 56, 1127–1134. [Google Scholar] [CrossRef]
- Umpierre, D.; Ribeiro, P.A.; Kramer, C.K.; Leitao, C.B.; Zucatti, A.T.; Azevedo, M.J.; Gross, J.L.; Ribeiro, J.P.; Schaan, B.D. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: A systematic review and meta-analysis. JAMA 2011, 305, 1790–1799. [Google Scholar] [CrossRef]
- van Netten, J.J.; Sacco, I.C.N.; Lavery, L.; Monteiro-Soares, M.; Paton, J.; Rasmussen, A.; Raspovic, A.; Bus, S.A. Clinical and biomechanical effectiveness of foot-ankle exercise programs and weight-bearing activity in people with diabetes and neuropathy: A systematic review and meta-analysis. Diabetes. Metab. Res. Rev. 2024, 40, e3649. [Google Scholar] [CrossRef]
- Laughlin, M.H. Physical activity-induced remodeling of vasculature in skeletal muscle: Role in treatment of type 2 diabetes. J. Appl. Physiol. (1985) 2016, 120, 1–16. [Google Scholar] [CrossRef]
- Armstrong, D.G.; Nguyen, H.C.; Lavery, L.A.; van Schie, C.H.; Boulton, A.J.; Harkless, L.B. Off-loading the diabetic foot wound: A randomized clinical trial. Diabetes Care 2001, 24, 1019–1022. [Google Scholar] [CrossRef]
- Kanade, R.V.; van Deursen, R.W.; Price, P.; Harding, K. Risk of plantar ulceration in diabetic patients with single-leg amputation. Clin. Biomech. 2006, 21, 306–313. [Google Scholar] [CrossRef]
- Waaijman, R.; Keukenkamp, R.; de Haart, M.; Polomski, W.P.; Nollet, F.; Bus, S.A. Adherence to wearing prescription custom-made footwear in patients with diabetes at high risk for plantar foot ulceration. Diabetes Care 2013, 36, 1613–1618. [Google Scholar] [CrossRef] [PubMed]
- Crews, R.T.; Shen, B.J.; Campbell, L.; Lamont, P.J.; Boulton, A.J.; Peyrot, M.; Kirsner, R.S.; Vileikyte, L. Role and Determinants of Adherence to Off-loading in Diabetic Foot Ulcer Healing: A Prospective Investigation. Diabetes Care 2016, 39, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care 2016, 39, 2065–2079. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Duan, Y.; Jan, Y.K.; Ye, W.; Li, J.; Liu, W.; Liu, H.; Guo, J.; Pu, F.; Fan, Y. Effect of Exercise Volume on Plantar Microcirculation and Tissue Hardness in People With Type 2 Diabetes. Front. Bioeng. Biotechnol. 2021, 9, 732628. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Duan, Y.; Jan, Y.K.; Li, J.; Liu, W.; Pu, F.; Fan, Y. Effect of intermittent pneumatic compression with different inflation pressures on the distal microvascular responses of the foot in people with type 2 diabetes mellitus. Int. Wound J. 2022, 19, 968–977. [Google Scholar] [CrossRef]
- Jarl, G.; van Netten, J.J.; Lazzarini, P.A.; Crews, R.T.; Najafi, B.; Mueller, M.J. Should weight-bearing activity be reduced during healing of plantar diabetic foot ulcers, even when using appropriate offloading devices? Diabetes Res. Clin. Pract. 2021, 175, 108733. [Google Scholar] [CrossRef]
- Maley, M.J.; Hunt, A.P.; Stewart, I.B.; Faulkner, S.H.; Minett, G.M. Passive heating and glycaemic control in non-diabetic and diabetic individuals: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0214223. [Google Scholar] [CrossRef]
- Petrofsky, J.S.; Lawson, D.; Suh, H.J.; Rossi, C.; Zapata, K.; Broadwell, E.; Littleton, L. The influence of local versus global heat on the healing of chronic wounds in patients with diabetes. Diabetes Technol. Ther. 2007, 9, 535–544. [Google Scholar] [CrossRef]
- Turan, Y.; Ertugrul, B.M.; Lipsky, B.A.; Bayraktar, K. Does physical therapy and rehabilitation improve outcomes for diabetic foot ulcers? World J. Exp. Med. 2015, 5, 130–139. [Google Scholar] [CrossRef]
- Wang, S.C.Y.; Nickel, G.; Venkatesh, K.P.; Raza, M.M.; Kvedar, J.C. AI-based diabetes care: Risk prediction models and implementation concerns. NPJ Digit. Med. 2024, 7, 36. [Google Scholar] [CrossRef]
- Kwong, J.C.C.; Nickel, G.C.; Wang, S.C.Y.; Kvedar, J.C. Integrating artificial intelligence into healthcare systems: More than just the algorithm. NPJ Digit. Med. 2024, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Elafros, M.A.; Andersen, H.; Bennett, D.L.; Savelieff, M.G.; Viswanathan, V.; Callaghan, B.C.; Feldman, E.L. Towards prevention of diabetic peripheral neuropathy: Clinical presentation, pathogenesis, and new treatments. Lancet Neurol. 2022, 21, 922–936. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.D.; Lin, J.; Mahoney, T.; Ume, N.; Yang, G.; Gabbay, R.A.; ElSayed, N.A.; Bannuru, R.R. Economic Costs of Diabetes in the U.S. in 2022. Diabetes Care 2024, 47, 26–43. [Google Scholar] [CrossRef] [PubMed]
- Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Economic Burden of Cardiovascular Disease in Type 2 Diabetes: A Systematic Review. Value Health 2018, 21, 881–890. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jan, Y.-K.; Kelhofer, N.; Tu, T.; Mansuri, O.; Onyemere, K.; Dave, S.; Pappu, S. Diagnosis, Pathophysiology and Management of Microvascular Dysfunction in Diabetes Mellitus. Diagnostics 2024, 14, 2830. https://doi.org/10.3390/diagnostics14242830
Jan Y-K, Kelhofer N, Tu T, Mansuri O, Onyemere K, Dave S, Pappu S. Diagnosis, Pathophysiology and Management of Microvascular Dysfunction in Diabetes Mellitus. Diagnostics. 2024; 14(24):2830. https://doi.org/10.3390/diagnostics14242830
Chicago/Turabian StyleJan, Yih-Kuen, Nicolas Kelhofer, Tony Tu, Owaise Mansuri, Kingsley Onyemere, Shruti Dave, and Suguna Pappu. 2024. "Diagnosis, Pathophysiology and Management of Microvascular Dysfunction in Diabetes Mellitus" Diagnostics 14, no. 24: 2830. https://doi.org/10.3390/diagnostics14242830
APA StyleJan, Y.-K., Kelhofer, N., Tu, T., Mansuri, O., Onyemere, K., Dave, S., & Pappu, S. (2024). Diagnosis, Pathophysiology and Management of Microvascular Dysfunction in Diabetes Mellitus. Diagnostics, 14(24), 2830. https://doi.org/10.3390/diagnostics14242830