Initial Serum Levels of Magnesium and Calcium as Predictors of Mortality in Traumatic Brain Injury Patients: A Retrospective Study
Abstract
1. Introduction
Methods
2. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodriguez, S.R.; Mallonee, S.; Archer, P.; Gofton, J. Evaluation of death certificate-based surveillance for traumatic brain injurye—Oklahoma 2002. Public Health Rep. 2006, 121, 282–289. [Google Scholar] [CrossRef]
- Faul, M.D.; Wald, M.M.; Xu, L.; Coronado, V.G. Traumatic Brain Injury in the United States; Emergency Department Visits, Hospitalizations, and Deaths, 2002–2006; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2010. [Google Scholar]
- Bruns, J., Jr.; Hauser, W.A. The epidemiology of traumatic brain injury: A review. Epilepsia 2003, 44 (Suppl. 10), 2–10. [Google Scholar] [CrossRef] [PubMed]
- Fleminger, S.; Ponsford, J. Long term outcome after traumatic brain injury. BMJ 2005, 331, 1419–1420. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, M.F.; Ahmed, N.; Khan, A.A. Serum electrolyte derangements in patients with traumatic brain injury. J. Ayub. Med. Coll. Abbottabad. 2013, 25, 162–164. [Google Scholar]
- Suman, S.; Kumar, N.; Singh, Y.; Kumar, V.; Yadav, G.; Gupta, B.K.; Pandey, A.R.; Pandey, S. Evaluation of Serum Electrolytes in Traumatic Brain Injury Patients: Prospective Randomized Observational Study. J. Anesth. Crit. Care Open Access 2016, 5, 00184. [Google Scholar]
- Holcomb, J.B.; McMullin, N.R.; Pearse, L.; Caruso, J.; Wade, C.E.; Oetjen-Gerdes, L.; Champion, H.R.; Lawnick, M.; Farr, W.; Rodriguez, S.; et al. Causes of death in, U.S. Special Operations Forces in the global war on terrorism: 2001–2004. Ann Surg. 2007, 245, 986–991. [Google Scholar] [CrossRef]
- Ditzel, R.M., Jr.; Anderson, J.L.; Eisenhart, W.J.; Rankin, C.J.; DeFeo, D.R.; Oak, S.; Siegler, J. A review of transfusion- and traumainduced hypocalcemia: Is it time to change the lethal triad to the lethal diamond? J. Trauma Acute Care Surg. 2020, 88, 434–439. [Google Scholar] [CrossRef]
- Cannon, J.W.; Khan, M.A.; Raja, A.S.; Cohen, M.J.; Como, J.J.; Cotton, B.A.; Dubose, J.J.; Erin, E.; Inaba, K.; Duchesne, J.C.; et al. Damage control resuscitation in patients with severe traumatic hemorrhage. J. Trauma Acute Care Surg. 2017, 82, 605–617. [Google Scholar] [CrossRef]
- Wray, J.P.; Bridwell, R.E.; Schauer, S.G.; Shackelford, S.A.; Bebarta, V.S.; Wright, F.L.; Bynum, J.; Long, B. The diamond of death: Hypocalcemia in trauma and resuscitation. Am. J. Emerg. Med. 2021, 41, 104–109. [Google Scholar] [CrossRef]
- Fox, C.; Ramsoomair, D.; Carter, C. Magnesium: Its proven and potential clinical significance. South Med. J. 2001, 94, 1195–1202. [Google Scholar] [CrossRef]
- Ozgurtas, T.; Kahraman, S. State of the art of new data on the role of magnesium in brain injury: Clinical interest of measurements of total and ionized magnesium. Magnes Res. 2004, 17, 327–334. [Google Scholar]
- Teasdale, G.; Jennett, B. Assessment of coma and impaired consciousness: A practical scale. Lancet 1974, 2, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Copes, W.S.; Champion, H.R.; Sacco, W.J.; Lawnick, M.M.; Gann, D.S.; Gennarelli, T.; MacKenzie, E.; Schwaitzberg, S. Progress in characterizing anatomic injury. J. Trauma 1990, 30, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.P.; O’Neill, B.; Haddon, W., Jr.; Long, W.B. The injury severity score: A method for describing patients with multiple injuries and evaluating emergency care. J. Trauma 1974, 14, 187–196. [Google Scholar] [CrossRef]
- Cherry, R.A.; Bradburn, E.; Carney, D.E.; Shaffer, M.L.; Gabbay, R.A.; Cooney, R.N. Do early ionized calcium levels really matter in trauma patients? J. Trauma 2006, 61, 774–779. [Google Scholar] [CrossRef]
- Magnotti, L.J.; Bradburn, E.H.; Webb, D.L.; Berry, S.D.; Fischer, P.E.; Zarzaur, B.L.; Schroeppel, T.J.; Fabian, T.C.; Croce, M.A. Admission ionized calcium levels predict the need for multiple transfusions: A prospective study of 591 critically ill trauma patients. J. Trauma 2011, 70, 391–395. [Google Scholar] [CrossRef]
- Vasudeva, M.; Mathew, J.K.; Fitzgerald, M.C.; Cheung, Z.; Mitra, B. Hypocalcaemia and traumatic coagulopathy: An observational analysis. Vox Sang. 2020, 115, 189–195. [Google Scholar] [CrossRef]
- Sen, A.P.; Gulati, A. Use of magnesium in traumatic brain injury. Neurotherapeutics 2010, 7, 91–99. [Google Scholar] [CrossRef]
- Vinas-Rios, J.M.; Sanchez-Aguilar, M.; Sanchez-Rodriguez, J.J.; Gonzalez-Aguirre, D.; Heinen, C.; Meyer, F.; Kretschmer, T. Hypocalcaemia as a prognostic factor of early mortality in moderate and severe traumatic brain injury. Neurol. Res. 2014, 36, 102–106. [Google Scholar] [CrossRef]
- Manuel, V.R.; Martin, S.A.; Juan, S.R.; Fernando, M.A.; Frerk, M.; Thomas, K.; Christian, H. Hypocalcemia as a prognostic factor in mortality and morbidity in moderate and severe traumatic brain injury. Asian J. Neurosurg. 2015, 10, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Polderman, K.H.; Bloemers, F.W.; Peerdeman, S.M.; Girbes, A.R. Hypomagnesemia and hypophosphatemia at admission in patients with severe head injury. Crit. Care Med. 2000, 28, 2022–2025. [Google Scholar] [CrossRef] [PubMed]
- Mendez, D.R.; Corbett, R.; Macias, C.; Laptook, A. Total and ionized plasma magnesium concentrations in children after traumatic brain injury. Pediatr. Res. 2005, 57, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; He, M.; Xu, J. Initial Serum Magnesium Level Is Associated with Mortality Risk in Traumatic Brain Injury Patients. Nutrients 2022, 14, 4174. [Google Scholar] [CrossRef]
- Laupland, K.B.; Tabah, A.; Jacobs, N.; Ramanan, M. Determinants of serum magnesium abnormalities and outcome among admissions to the intensive care unit. Anaesth. Crit Care Pain Med. 2020, 39, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Kumar, R.; Tarat, A. Evaluation of Electrolyte Imbalance in Patients with Traumatic Brain Injury Admitted in the Central ICU of a Tertiary Care Centre: A Prospective Observational Study. Cureus 2021, 28, e17517. [Google Scholar] [CrossRef]

| Variable | Value |
|---|---|
| Age [mean± standard deviation (SD)] | 32.2 ± 15.0 |
| Males | 863 (93.6%) |
| TBI types | |
| Epidural hematoma | 204 (22.1%) |
| Subdural hematoma | 321 (34.8%) |
| Subarachnoid hemorrhage | 387 (42.0%) |
| Compression of basal cisterns | 110 (11.9%) |
| Effacement of Sulci | 171 (18.5%) |
| Midline Shifts | 206 (22.3%) |
| Injury Severity Score [median (interquartile range, IQR)] | 27 (18–34) |
| Glasgow Coma Scale [median (IQR)] | 3 (3–9) |
| Shock index [median (IQR)] | 0.8 (0.7–1.0) |
| Abbreviated Injury Scale (AIS) (mean ± SD) | |
| Head AIS | 3.9 ± 0.97 |
| Chest AIS | 2.78 ± 0.70 |
| Abdomen AIS | 2.65 ± 1.0 |
| Cervical spine AIS | 2.26 ± 0.67 |
| Thoracic spine AIS | 2.16 ± 0.65 |
| Lumbar spine AIS | 2.01 ± 0.09 |
| Laboratory findings [median (IQR)] | |
| Initial serum Sodium | 141.0 (139–143) |
| Initial serum Potassium | 3.8 (3.4–4.1) |
| Initial serum Calcium | 2.0 (1.8–2.1) |
| Initial serum Magnesium | 0.7 (0.6–0.8) |
| Initial serum Phosphate | 0.9 (0.7–1.2) |
| Initial serum Bicarbonate | 19.6 (16.7–23.0) |
| Initial serum Lactic acid | 2.9 (2.0–4.3) |
| Prothrombin time [median (IQR)] | 12.0 (11.1–13.5) |
| Activated partial thromboplastin time [median (IQR)] | 26.2 (24.0–31.0) |
| International normalized ratio [median (IQR)] | 1.1 (1.1–1.3) |
| Initial serum hemoglobin [median (IQR)] | 13.0 (11.3–14.4) |
| Initial serum glucose [median (IQR)] | 8.0 (6.7–10.1) |
| Intubation | 827 (89.7%) |
| Massive transfusion protocol activation | 138 (15.0%) |
| Ventilator associated pneumonia | 121 (13.1%) |
| Mechanical ventilator days [median (IQR)] | 5 (2–11) |
| Intensive care unit days [median (IQR)] | 9 (4–17) |
| Hospital length of stay [median (IQR)] | 17 (7–32) |
| In-hospital mortality | 204 (22.1%) |
| Mild GCS (13–15) (n = 88) | Moderate (9–12) (n = 144) | Severe (3–8) (n = 681) | Total | |
|---|---|---|---|---|
| Initial serum calcium (Ca) levels at admission | ||||
| Normal | 29 (33.0%) | 49 (34.0%) | 79 (11.6%) | 157 (17.2%) |
| Hypocalcemia | 59 (67.0%) | 94 (65.3%) | 596 (87.5%) | 749 (82.0%) |
| Hypercalcemia | 0 | 1 (0.7%) | 6 (0.9%) | 7 (0.8%) |
| Total | 88 (100%) | 144 (100%) | 681 (100%) | 913 (100%) * |
| Initial serum magnesium (Mg) levels at admission | ||||
| Normal | 64 (72.7%) | 97 (67.4%) | 449 (66.8%) | 610 (67.5%) |
| Hypomagnesemia | 24 (27.3%) | 46 (31.9%) | 212 (31.5%) | 282 (31.2%) |
| Hypermagnesemia | 0 | 1 (0.7%) | 11 (1.6%) | 12 (1.3%) |
| Total | 88 (100%) | 144 (100%) | 672 (100%) | 904 (100%) * |
| Initial Calcium Imbalance | ||||||||
| Normal (n = 158) | Hypercalcemia (n = 7) | Hypocalcemia (n = 757) | Total (n = 922) | |||||
| TBI Types | ||||||||
| Epidural hemorrhage | 41 | 25.9% | 1 | 14.3% | 162 | 21.4% | 204 | 22.1% |
| Subdural hemorrhage | 43 | 27.2% | 1 | 14.3% | 277 | 36.6% | 321 | 34.8% |
| Subarachnoid hemorrhage | 51 | 32.3% | 2 | 28.6% | 334 | 44.1% | 387 | 42.0% |
| Compression of basal cisterns | 18 | 11.4% | 2 | 28.6% | 90 | 11.9% | 110 | 11.9% |
| Effacement of sulci | 35 | 22.2% | 4 | 57.1% | 132 | 17.4% | 171 | 18.5% |
| Midline shift | 34 | 21.5% | 1 | 14.3% | 171 | 22.6% | 206 | 22.3% |
| Initial Magnesium imbalance | ||||||||
| Normal (n = 616) | Hypermagnesemia (n = 12) | Hypomagnesemia (n = 285) | Total (n = 913) | |||||
| TBI Types | ||||||||
| Epidural hemorrhage | 145 | 23.5% | 1 | 8.3% | 58 | 20.4% | 204 | 22.3% |
| Subdural hemorrhage | 205 | 33.3% | 3 | 25.0% | 111 | 38.9% | 319 | 34.9% |
| Subarachnoid hemorrhage | 250 | 40.6% | 7 | 58.3% | 128 | 44.9% | 385 | 42.2% |
| Compression of basal cisterns | 80 | 13.0% | 3 | 25.0% | 24 | 8.4% | 107 | 11.7% |
| Effacement of sulci | 112 | 18.2% | 4 | 33.3% | 54 | 18.9% | 170 | 18.6% |
| Midline shift | 136 | 22.1% | 3 | 25.0% | 67 | 23.5% | 206 | 22.6% |
| Variables | Normal Ca Level (n = 158, 17.3%) | Hypocalcemia (n = 757, 82.7%) | p-Value | Normal Mg Level (n = 616, 68.4%) | Hypomagnesemia (n = 285, 31.6%) | p-Value |
|---|---|---|---|---|---|---|
| Age | 32.5 ± 17.2 | 32.2 ± 14.5 | 0.843 | 32.0 ± 15.3 | 32.5 ± 14.1 | 0.645 |
| Males | 144 (91.1) | 713 (94.2) | 0.153 | 580 (94.2) | 264 (92.6) | 0.382 |
| Epidural hematoma | 41 (25.9) | 162 (21.4) | 0.211 | 145 (23.5) | 58 (20.4) | 0.287 |
| Subdural hematoma | 43 (27.2) | 277 (36.6) | 0.025 | 205 (33.3) | 111 (38.9) | 0.097 |
| Subarachnoid hemorrhage | 51 (32.3) | 334 (44.1) | 0.006 | 250 (40.6) | 128 (44.9) | 0.221 |
| Compression of basal cisterns | 18 (11.4) | 90 (11.9) | 0.860 | 80 (13.0) | 24 (8.4) | 0.046 |
| Effacement of sulci | 35 (22.2) | 132 (17.4) | 0.163 | 112 (18.2) | 54 (18.9) | 0.076 |
| Midline shifts | 34 (21.5) | 171 (22.6) | 0.769 | 136 (22.1) | 57 (23.5) | 0.633 |
| Intubation | 121 (76.6) | 699 (92.3) | 0.001 | 537 (87.2) | 269 (94.4) | 0.001 |
| Massive transfusion protocol | 9 (6.7) | 127 (16.8) | 0.001 | 83 (13.5) | 45 (15.8) | 0.355 |
| Craniotomy/craniectomy | 30 (19.0) | 160 (21.1) | 0.545 | 120 (19.5) | 70 (24.6) | 0.082 |
| Ventilator associated pneumonia | 11 (7.0) | 109 (14.4) | 0.012 | 77 (12.5) | 44 (15.4) | 0.229 |
| Glasgow Coma Scale | 8 (3–12) | 3 (3–8) | 0.001 | 3 (3–9) | 3 (3–8) | 0.208 |
| Head AIS | 3.97 ± 0.97 | 3.91 ± 0.97 | 0.702 | 3.9 ± 0.9 | 3.9 ± 1.0 | 0.951 |
| Injury Severity Score | 22.8 ± 10.5 | 27.7 ± 10.2 | 0.001 | 26.3 ± 10.4 | 28.0 ± 10.5 | 0.024 |
| Mechanical ventilator days | 2 (1–7.5) | 6 (2–12) | 0.001 | 4 (1–11) | 7 (3–12) | 0.001 |
| Intensive care unit days | 6 (2–12) | 8 (3–17) | 0.012 | 7 (3–14) | 10.5 (5–18) | 0.001 |
| Hospital length of stay in days | 12 (5–22) | 17 (7–31) | 0.003 | 14 (6–28) | 20.5 (10–35) | 0.001 |
| In-hospital mortality | 19 (12.0) | 180 (23.8) | 0.001 | 144 (23.4) | 44 (15.4) | 0.006 |
| Variables | Normal Ca Level (n = 158, 17.3%) | Hypocalcemia (n = 757, 82.7%) | p-Value | Normal Mg Level (n = 616, 68.4%) | Hypomagnesemia (n = 285, 31.6%) | p-Value |
|---|---|---|---|---|---|---|
| Initial serum sodium | 140.0 ± 4.0 | 141.3 ± 4.9 | 0.002 | 140.9 ± 4.5 | 141.2 ± 4.4 | 0.382 |
| Initial serum potassium | 3.8 ± 0.6 | 3.8 ± 0.7 | 0.175 | 3.82 ± 0.6 | 3.77 ± 0.6 | 0.273 |
| Initial serum calcium | 2.34 ± 0.23 | 1.90 ± 0.20 | 0.001 | 2.01 ± 0.26 | 1.90 ± 0.24 | 0.001 |
| Initial serum magnesium | 0.75 ± 0.13 | 0.69 ± 0.11 | 0.001 | 0.74 ± 0.07 | 0.59 ± 0.05 | 0.001 |
| Initial serum phosphate | 1.0 ± 0.4 | 1.0 ± 0.5 | 0.763 | 1.04 ± 0.46 | 0.93 ± 0.35 | 0.001 |
| Initial serum bicarbonate | 21.5 ± 4.5 | 19.0 ± 4.1 | 0.001 | 4.17 ± 0.16 | 3.95 ± 0.23 | 0.092 |
| Initial serum lactic acid | 3.8 ± 2.9 | 3.7 ± 2.7 | 0.680 | 3.80 ± 2.81 | 3.24 ± 1.88 | 0.001 |
| Initial serum hemoglobin | 13.7 ± 2.4 | 12.5 ± 2.3 | 0.001 | 12.80 ± 2.32 | 12.53 ± 2.42 | 0.120 |
| Initial serum glucose | 11.5 ± 4.9 | 8.5 ± 3.8 | 0.001 | 9.08 ± 3.96 | 8.71 ± 3.43 | 0.175 |
| Prothrombin time | 12.1 ± 3.3 | 13.8 ± 9.3 | 0.001 | 13.29 ± 6.76 | 12.60 ± 3.13 | 0.036 |
| Activated partial thromboplastin time | 29.3 ± 16.8 | 32.8 ± 23.0 | 0.030 | 31.39 ± 18.55 | 30.23 ± 16.77 | 0.369 |
| International normalized ratio | 3.8 ± 2.9 | 1.3 ± 0.8 | 0.001 | 1.27 ± 0.58 | 1.23 ± 0.28 | 0.039 |
| Odds Ratio | 95% CI Lower | 95% CI Upper | p-Value | |
|---|---|---|---|---|
| Initial serum sodium | 1.024 | 0.974 | 1.077 | 0.345 |
| Initial serum potassium | 1.112 | 0.792 | 1.563 | 0.539 |
| Initial serum calcium | 0.523 | 0.202 | 1.355 | 0.182 |
| Initial serum bicarbonate | 0.926 | 0.869 | 0.987 | 0.018 |
| Initial serum phosphate | 0.963 | 0.596 | 1.555 | 0.877 |
| Initial serum magnesium | 16.315 | 2.381 | 111.771 | 0.004 |
| Initial serum hemoglobin | 1.034 | 0.933 | 1.146 | 0.526 |
| Injury severity score | 1.052 | 1.028 | 1.077 | 0.001 |
| GCS on admission | 0.887 | 0.824 | 0.955 | 0.001 |
| Prothrombin time | 1.034 | 0.859 | 1.244 | 0.726 |
| Activated partial thromboplastin time | 1.049 | 1.022 | 1.077 | 0.001 |
| International normalized ratio | 2.34 | 0.294 | 18.632 | 0.422 |
| Initial serum lactate level | 1.156 | 1.053 | 1.269 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mekkodathil, A.; El-Menyar, A.; Hakim, S.; Al Jogol, H.; Parchani, A.; Peralta, R.; Rizoli, S.; Al-Thani, H. Initial Serum Levels of Magnesium and Calcium as Predictors of Mortality in Traumatic Brain Injury Patients: A Retrospective Study. Diagnostics 2023, 13, 1172. https://doi.org/10.3390/diagnostics13061172
Mekkodathil A, El-Menyar A, Hakim S, Al Jogol H, Parchani A, Peralta R, Rizoli S, Al-Thani H. Initial Serum Levels of Magnesium and Calcium as Predictors of Mortality in Traumatic Brain Injury Patients: A Retrospective Study. Diagnostics. 2023; 13(6):1172. https://doi.org/10.3390/diagnostics13061172
Chicago/Turabian StyleMekkodathil, Ahammed, Ayman El-Menyar, Suhail Hakim, Hisham Al Jogol, Ashok Parchani, Ruben Peralta, Sandro Rizoli, and Hassan Al-Thani. 2023. "Initial Serum Levels of Magnesium and Calcium as Predictors of Mortality in Traumatic Brain Injury Patients: A Retrospective Study" Diagnostics 13, no. 6: 1172. https://doi.org/10.3390/diagnostics13061172
APA StyleMekkodathil, A., El-Menyar, A., Hakim, S., Al Jogol, H., Parchani, A., Peralta, R., Rizoli, S., & Al-Thani, H. (2023). Initial Serum Levels of Magnesium and Calcium as Predictors of Mortality in Traumatic Brain Injury Patients: A Retrospective Study. Diagnostics, 13(6), 1172. https://doi.org/10.3390/diagnostics13061172

