PD-L1 Tumor Expression as a Predictive Biomarker of Immune Checkpoint Inhibitors’ Response and Survival in Advanced Melanoma Patients in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. PD-L1 Tumor Expression
2.3. BRAF and NRAS Mutation Status
2.4. Statistical Analysis
3. Results
3.1. Clinicopathological Data
3.2. PD-L1 Expression Analysis
3.3. Biomarkers of Therapeutical Response and Survival
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Soerjomataram, I. The Changing Global Burden of Cancer: Transitions in Human Development and Implications for Cancer Prevention and Control. In Disease Control Priorities: Cancer, 3rd ed.; The World Bank: Washington, DC, USA, 2015; Volume 3. [Google Scholar]
- Moskovitz, J.M.; Ferris, R.L. Tumor Immunology and Immunotherapy for Head and Neck Squamous Cell Carcinoma. J. Dent. Res. 2018, 97, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Cancer Society. About Basal and Squamous Cell Skin Cancer; American Cancer Society: Atlanta, GA, USA, 2016. [Google Scholar]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- NCCN. National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology—Melanoma: Cutaneous (Version 1.2023). 2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/cutaneous_melanoma.pdf (accessed on 19 February 2023).
- Surveillance, Epidemiology, and End Results (SEER) 17 Registries. Cancer Statistics Factsheets: Melanoma of the Skin: National Cancer Institute. 2022. Available online: seer.cancer.gov/statfacts/html/melan.html (accessed on 18 February 2023).
- Olszanski, A.J. Current and future roles of targeted therapy and immunotherapy in advanced melanoma. J. Manag. Care Spec. Pharm. 2014, 20, 346–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Liu, W.; Gotlieb, V. The rapidly evolving therapies for advanced melanoma—Towards immunotherapy, molecular targeted therapy, and beyond. Crit. Rev. Oncol. Hematol. 2016, 99, 91–99. [Google Scholar] [CrossRef]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [Green Version]
- Ribas, A.; Hamid, O.; Daud, A.; Hodi, F.S.; Wolchok, J.D.; Kefford, R.; Joshua, A.M.; Patnaik, A.; Hwu, W.-J.; Weber, J.S.; et al. Association of Pembrolizumab With Tumor Response and Survival Among Patients With Advanced Melanoma. JAMA 2016, 315, 1600–1609. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2015, 372, 2521–2532. [Google Scholar] [CrossRef]
- Ayers, M.; Lunceford, J.; Nebozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; Albright, A.; Cheng, J.D.; Kang, P.; Shankaran, V.; et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Investig. 2017, 127, 2930–2940. [Google Scholar] [CrossRef]
- Xu-Monette, Z.Y.; Zhang, M.; Li, J.; Young, K.H. PD-1/PD-L1 Blockade: Have We Found the Key to Unleash the Antitumor Immune Response? Front. Immunol. 2017, 8, 1597. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.P.; Kurzrock, R. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol. Cancer Ther. 2015, 14, 847–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodman, A.; Patel, S.P.; Kurzrock, R. PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat. Rev. Clin. Oncol. 2017, 14, 203–220. [Google Scholar] [CrossRef] [PubMed]
- Grigg, C.; Rizvi, N.A. PD-L1 biomarker testing for non-small cell lung cancer: Truth or fiction? J. Immunother. Cancer 2016, 4, 48. [Google Scholar] [CrossRef] [Green Version]
- Da Costa, L.M.M.; Crovador, C.S.; de Carvalho, C.E.B.; Vazquez, V.L. Characteristics of Brazilian melanomas: Real-world results before and after the introduction of new therapies. BMC Res. Notes 2019, 12, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campanella, N.C.; Silva, E.C.; Dix, G.; de Lima Vazquez, F.; Escremim de Paula, F.; Berardinelli, G.N.; Balancin, M.; Chammas, R.; Lopez, R.V.M.; Silveira, H.C.S.; et al. Mutational Profiling of Driver Tumor Suppressor and Oncogenic Genes in Brazilian Malignant Pleural Mesotheliomas. Pathobiology 2020, 87, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, C.M.; Correa, F.M.; Migowski, A. Short-term effects of the COVID-19 pandemic on cancer screening, diagnosis and treatment procedures in Brazil: A descriptive study, 2019–2020. Epidemiol. Serv. Saude. 2022, 31, e2021405. [Google Scholar] [CrossRef]
- Ling, D.C.; Bakkenist, C.J.; Ferris, R.L.; Clump, D.A. Role of Immunotherapy in Head and Neck Cancer. Semin. Radiat. Oncol. 2018, 28, 12–16. [Google Scholar] [CrossRef]
- Schreiber, R.D.; Old, L.J.; Smyth, M.J. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science 2011, 331, 1565–1570. [Google Scholar] [CrossRef] [Green Version]
- Robert, C.; Long, G.V.; Brady, B.; Dutriaux, C.; Maio, M.; Mortier, L.; Hassel, J.C.; Rutkowski, P.; McNeil, C.; Kalinka-Warzocha, E.; et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 2015, 372, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef]
- Motzer, R.J.; Rini, B.I.; McDermott, D.F.; Redman, B.G.; Kuzel, T.M.; Harrison, M.R.; Vaishampayan, U.N.; Drabkin, H.A.; George, S.; Logan, T.F.; et al. Nivolumab for Metastatic Renal Cell Carcinoma: Results of a Randomized Phase II Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 1430–1437. [Google Scholar] [CrossRef] [PubMed]
- Bauml, J.; Seiwert, T.Y.; Pfister, D.G.; Worden, F.; Liu, S.V.; Gilbert, J.; Saba, N.F.; Weiss, J.; Wirth, L.; Sukari, A.; et al. Pembrolizumab for Platinum- and Cetuximab-Refractory Head and Neck Cancer: Results From a Single-Arm, Phase II Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 1542–1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Allen, E.M.; Miao, D.; Schilling, B.; Shukla, S.A.; Blank, C.; Zimmer, L.; Sucker, A.; Hillen, U.; Foppen, M.H.G.; Goldinger, S.M.; et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 2015, 350, 207–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodman, A.M.; Kato, S.; Bazhenova, L.; Patel, S.P.; Frampton, G.M.; Miller, V.; Stephens, P.J.; Daniels, G.A.; Kurzrock, R. Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. Mol. Cancer Ther. 2017, 16, 2598–2608. [Google Scholar] [CrossRef] [Green Version]
- McQuade, J.L.; Daniel, C.R.; Hess, K.R.; Mak, C.; Wang, D.Y.; Rai, R.R.; Park, J.J.; Haydu, L.E.; Spencer, C.; Wongchenko, M.; et al. Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: A retrospective, multicohort analysis. Lancet Oncol. 2018, 19, 310–322. [Google Scholar] [CrossRef] [Green Version]
- Cortellini, A.; Bersanelli, M.; Buti, S.; Cannita, K.; Santini, D.; Perrone, F.; Giusti, R.; Tiseo, M.; Michiara, M.; Di Marino, P.; et al. A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: When overweight becomes favorable. J. Immunother. Cancer 2019, 7, 57. [Google Scholar] [CrossRef]
- Richtig, G.; Hoeller, C.; Wolf, M.; Wolf, I.; Rainer, B.M.; Schulter, G.; Richtig, M.; Grübler, M.R.; Gappmayer, A.; Haidn, T.; et al. Body mass index may predict the response to ipilimumab in metastatic melanoma: An observational multi-centre study. PLoS ONE 2018, 13, e0204729. [Google Scholar] [CrossRef] [Green Version]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2017, 377, 1345–1356. [Google Scholar] [CrossRef]
- Grossman, J.E.; Vasudevan, D.; Joyce, C.E.; Hildago, M. Is PD-L1 a consistent biomarker for anti-PD-1 therapy? The model of balstilimab in a virally-driven tumor. Oncogene 2021, 40, 1393–1395. [Google Scholar] [CrossRef]
- Zhao, X.; Bao, Y.; Meng, B.; Xu, Z.; Li, S.; Wang, X.; Hao, R.; Ma, W.; Liu, D.; Zheng, J.; et al. From rough to precise: PD-L1 evaluation for predicting the efficacy of PD-1/PD-L1 blockades. Front. Immunol. 2022, 13, 920021. [Google Scholar] [CrossRef]
- Boothman, A.M.; Scott, M.; Ratcliffe, M.; Whiteley, J.; Dennis, P.A.; Wadsworth, C.; Sharpe, A.; Rizvi, N.A.; Garassino, M.C.; Walker, J. Impact of Patient Characteristics, Prior Therapy, and Sample Type on Tumor Cell Programmed Cell Death Ligand 1 Expression in Patients with Advanced NSCLC Screened for the ATLANTIC Study. J. Thorac. Oncol. 2019, 14, 1390–1399. [Google Scholar] [CrossRef]
- Riaz, N.; Havel, J.J.; Makarov, V.; Desrichard, A.; Urba, W.J.; Sims, J.S.; Hodi, F.S.; Martín-Algarra, S.; Mandal, R.; Sharfman, W.H.; et al. Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab. Cell 2017, 171, 934–949.e16. [Google Scholar] [CrossRef] [Green Version]
- Tarhini, A.; Kudchadkar, R.R. Predictive and on-treatment monitoring biomarkers in advanced melanoma: Moving toward personalized medicine. Cancer Treat. Rev. 2018, 71, 8–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asher, N.; Ben-Betzalel, G.; Lev-Ari, S.; Shapira-Frommer, R.; Steinberg-Silman, Y.; Gochman, N.; Schachter, J.; Meirson, T.; Markel, G. Real World Outcomes of Ipilimumab and Nivolumab in Patients with Metastatic Melanoma. Cancers 2020, 12, 2329. [Google Scholar] [CrossRef] [PubMed]
- Atkins, M.B.; Lee, S.J.; Chmielowski, B.; Ribas, A.; Tarhini, A.A.; Truong, T.-G.; Davar, D.; O’Rourke, M.A.; Curti, B.D.; Brell, J.M.; et al. DREAMseq (Doublet, Randomized Evaluation in Advanced Melanoma Sequencing): A phase III trial—ECOG-ACRIN EA6134. J. Clin. Oncol. 2021, 39, 356154. [Google Scholar] [CrossRef]
- Tawbi, H.A.; Schadendorf, D.; Lipson, E.J.; Ascierto, P.A.; Matamala, L.; Castillo Gutierrez, E.; Rutkowski, P.; Gogas, H.J.; Lao, C.D.; De Menezes, J.J.; et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N. Engl. J. Med. 2022, 386, 24–34. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Category | All Patients n = 210 (%) | Responders n = 83 (%) | Non-Responders n = 127 (%) | p-Value |
---|---|---|---|---|---|
Sex | Male | 123 (58.6) | 47 (56.6) | 76 (59.8) | 0.669 |
Female | 87 (41.4) | 36 (43.4) | 51 (40.2) | ||
Race | Caucasian | 181 (86.2) | 71 (85.5) | 110 (86.6) | 0.827 |
Non-Caucasian | 24 (11.4) | 10 (12.0) | 14 (11.0) | ||
Missing | 5 (2.4) | 2 (2.4) | 3 (2.4) | ||
Primary tumor site | Lower limbs | 66 (31.4) | 20 (24.1) | 46 (36.2) | 0.245 |
Trunk | 45 (21.4) | 23 (27.7) | 22 (17.3) | ||
Head and neck | 39 (18.6) | 15 (18.1) | 24 (18.9) | ||
Upper limbs | 22 (10.5) | 10 (12.0) | 12 (9.4) | ||
Other | 9 (4.3) | 2 (2.4) | 7 (5.5) | ||
Primary unknown | 29 (13.8) | 13 (15.7) | 16 (12.6) | ||
Histological subtype | Nodular | 38 (18.1) | 15 (18.1) | 23 (18.1) | 0.020 |
Acral lentiginous | 37 (17.6) | 11 (13.3) | 26 (20.5) | ||
Superficial spreading | 31 (14.8) | 20 (24.1) | 11 (8.7) | ||
Other | 22 (10.5) | 7 (8.4) | 15 (11.8) | ||
Missing | 82 (39.0) | 30 (36.1) | 52 (40.9) | ||
Pathological staging | III | 9 (4.3) | 2 (2.4) | 7 (5.5) | 0.249 |
IVa | 32 (15.2) | 10 (12.0) | 22 (17.3) | ||
IVb | 52 (24.8) | 26 (31.3) | 26 (20.4) | ||
IVc | 58 (27.6) | 20 (24.1) | 38 (29.9) | ||
IVd | 36 (17.1) | 12 (14.5) | 24 (18.9) | ||
Missing | 23 (11.0) | 13 (15.7) | 10 (7.9) | ||
BRAF status | V600 mutated | 77 (36.7) | 38 (45.8) | 39 (30.7) | 0.132 |
Wild Type (WT) | 106 (50.5) | 40 (48.2) | 66 (52.0) | ||
Missing | 27 (12.9) | 5 (6.0) | 22 (17.3) | ||
NRAS status | Mutated | 10 (4.8) | 2 (2.4) | 8 (6.3) | 0.094 |
WT | 67 (31.9) | 34 (41.0) | 33 (26.0) | ||
Missing | 134 (63.3) | 47 (56.6) | 86 (67.7) | ||
Treatment agent | Nivolumab (anti-PD-1) | 116 (55.2) | 49 (59.0) | 67 (52.8) | 0.021 |
Pembrolizumab (anti-PD-1) | 56 (26.7) | 24 (28.9) | 32 (25.2) | ||
Ipilimumab (anti-CTLA-4) | 28 (13.3) | 4 (4.8) | 24 (18.9) | ||
Nivolumab + NKTR-214 (IL-2 agonist) | 8 (3.8) | 4 (4.8) | 4 (3.1) | ||
Nivolumab + ipilimumab | 2 (1.0) | 2 (2.4) | 0 (0.0) | ||
Treatment agent grouped | Anti-PD1 | 172 (81.9) | 73 (88.0) | 135 (81.8) | 0.009 |
Anti-CTLA-4 | 28 (13.3) | 4 (4.8) | 24 (18.9) | ||
Anti-PD-1 + IL-2 agonist | 8 (3.8) | 4 (4.8) | 4 (3.1) | ||
Anti-PD-1 + anti-CTLA-4 | 2 (1.0) | 2 (2.4) | 0 (0.0) | ||
ICB treatment line | First | 113 (53.8) | 56 (67.5) | 57 (44.9) | 0.001 |
Second | 67 (31.9) | 23 (27.7) | 44 (34.6) | ||
Greater than or equal to third | 30 (14.3) | 4 (4.8) | 26 (20.5) | ||
Treatment response | Disease progression (DP) | 127 (60.5) | 0 (0.0) | 127 (100.0) | <0.001 |
Stable disease (SD) | 34 (16.2) | 34 (41.0) | 0 (0.0) | ||
Partial response (PR) | 36 (17.1) | 36 (43.4) | 0 (0.0) | ||
Complete response (CR) | 13 (6.2) | 13 (15.7) | 0 (0.0) |
Source of FFPE Sample | n (%) |
---|---|
Primary tumor | 113 (53.8) |
Subcutaneous metastasis | 59 (28.1) |
Lymph nodal metastasis | 21 (10.0) |
Metastasis in other organs | 17 (8.1) |
Characteristic | Category | Univariate Analysis p-Value | Regression Coefficient (95% CI) | Multivariate Analysis p-Value |
---|---|---|---|---|
BRAF status | V600 mutated | 0.132 | Reference | |
Wild Type (WT) | 1.297 (0.689–2.444) | 0.420 | ||
Missing = 27 | ||||
Treatment agent grouped | Anti-PD1 | 0.009 | Reference | |
Anti-CTLA-4 | 0.712 (0.179–2.824) | 0.629 | ||
Anti-PD-1 + Anti-CTLA-4 | 0.0 (0.0–0.0) | 0.999 | ||
Anti-PD-1 + IL-2 agonist | 0.999 (0.227–4.402) | 0.999 | ||
ICB treatment line | First | 0.001 | Reference | |
Second | 1.651 (0.871–3.132) | 0.125 | ||
Greater than or equal to third | 6.087 (1.970–18.812) | 0.002 | ||
PD-L1 expression | Negative (≤1%) | 0.005 | Reference | |
Positive (>1%) | 0.394 (0.193–0.803) | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorroche, B.P.; Teixeira, R.d.J.; Pereira, C.A.D.; Santana, I.V.V.; Vujanovic, L.; Vazquez, V.d.L.; Arantes, L.M.R.B. PD-L1 Tumor Expression as a Predictive Biomarker of Immune Checkpoint Inhibitors’ Response and Survival in Advanced Melanoma Patients in Brazil. Diagnostics 2023, 13, 1041. https://doi.org/10.3390/diagnostics13061041
Sorroche BP, Teixeira RdJ, Pereira CAD, Santana IVV, Vujanovic L, Vazquez VdL, Arantes LMRB. PD-L1 Tumor Expression as a Predictive Biomarker of Immune Checkpoint Inhibitors’ Response and Survival in Advanced Melanoma Patients in Brazil. Diagnostics. 2023; 13(6):1041. https://doi.org/10.3390/diagnostics13061041
Chicago/Turabian StyleSorroche, Bruna Pereira, Renan de Jesus Teixeira, Caio Augusto Dantas Pereira, Iara Viana Vidigal Santana, Lazar Vujanovic, Vinicius de Lima Vazquez, and Lidia Maria Rebolho Batista Arantes. 2023. "PD-L1 Tumor Expression as a Predictive Biomarker of Immune Checkpoint Inhibitors’ Response and Survival in Advanced Melanoma Patients in Brazil" Diagnostics 13, no. 6: 1041. https://doi.org/10.3390/diagnostics13061041
APA StyleSorroche, B. P., Teixeira, R. d. J., Pereira, C. A. D., Santana, I. V. V., Vujanovic, L., Vazquez, V. d. L., & Arantes, L. M. R. B. (2023). PD-L1 Tumor Expression as a Predictive Biomarker of Immune Checkpoint Inhibitors’ Response and Survival in Advanced Melanoma Patients in Brazil. Diagnostics, 13(6), 1041. https://doi.org/10.3390/diagnostics13061041