A New Shapley-Based Feature Selection Method in a Clinical Decision Support System for the Identification of Lung Diseases
Abstract
:1. Introduction
2. Database
3. Extracted Features
4. Decision Tree Classifier
5. Feature Sets and Classification Methods
6. Performance Evaluation
7. Results
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Assefa, Y.; Gilks, C.F.; Reid, S.; van de Pas, R.; Gete, D.G.; Van Damme, W. Analysis of the COVID-19 pandemic: Lessons towards a more effective response to public health emergencies. Glob. Health 2022, 18, 10. [Google Scholar] [CrossRef] [PubMed]
- Akamatsu, M.A.; de Castro, J.T.; Takano, C.Y.; Ho, P.L. Off balance: Interferons in COVID-19 lung infections. EbioMedicine 2021, 73, 103642. [Google Scholar] [CrossRef] [PubMed]
- Sankararaman, S. Untangling the graph based features for lung sound auscultation. Biomed. Signal Process. Control 2022, 71, 103215. [Google Scholar] [CrossRef]
- Naves, R.; Barbosa, B.H.G.; Ferreira, D.D. Classification of lung sounds using higher-order statistics: A divide-and-conquer approach. Comput. Methods Programs Biomed. 2016, 129, 12–20. [Google Scholar] [CrossRef]
- Ntalampiras, S. Collaborative framework for automatic classification of respiratory sounds. IET Signal Process. 2020, 14, 223–228. [Google Scholar] [CrossRef]
- Hafke-Dys, H.; Bręborowicz, A.; Kleka, P.; Kociński, J.; Biniakowski, A. The accuracy of lung auscultation in the practice of physicians and medical students. PLoS ONE 2019, 14, e0220606. [Google Scholar] [CrossRef]
- Pham, L.; McLoughlin, I.; Phan, H.; Tran, M.; Nguyen, T.; Palaniappan, R. Robust Deep Learning Framework for Predicting Respiratory Anomalies and Diseases. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 164–167. [Google Scholar]
- Chen, C.-H.; Huang, W.-T.; Tan, T.-H.; Chang, C.-C.; Chang, Y.-J. Using K-nearest neighbor classification to diagnose abnormal lung sounds. Sensors 2015, 15, 13132–13158. [Google Scholar] [CrossRef]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef]
- Kingsford, C.; Salzberg, S.L. What are decision trees? Nat. Biotechnol. 2008, 26, 1011–1013. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, N.; Sahidullah, M.; Saha, G. Lung sound classification using cepstral-based statistical features. Comput. Biol. Med. 2016, 75, 118–129. [Google Scholar] [CrossRef]
- Bardou, D.; Zhang, K.; Ahmad, S.M. Lung sounds classification using convolutional neural networks. Artif. Intell. Med. 2018, 88, 58–69. [Google Scholar] [CrossRef]
- Grønnesby, M.; Carlos, J.; Solis, A.; Holsbø, E.; Melbye, H.; Bongo, L.A. Feature Extraction for Machine Learning Based Crackle Detection in Lung Sounds from a Health Survey. 2017. Available online: https://uit.no/forskning/forskningsgrupper/sub?sub_id=503778&p_document_id=367276 (accessed on 13 June 2023).
- Waitman, L.R.; Clarkson, K.P.; Barwise, J.A.; King, P.H. Representation and classification of breath sounds recorded in an intensive care setting using neural networks. J. Clin. Monit. Comput. 2000, 16, 95–105. [Google Scholar] [CrossRef]
- Sfayyih, A.H.; Sabry, A.H.; Jameel, S.M.; Sulaiman, N.; Raafat, S.M.; Humaidi, A.J.; Kubaiaisi, Y.M.A. Acoustic-Based Deep Learning Architectures for Lung Disease Diagnosis: A Comprehensive Overview. Diagnostics 2023, 13, 1748. [Google Scholar] [CrossRef]
- Chatterjee, J.; Sharma, G.; Sexena, A.; Mehra, A.; Gupta, V. A robust automatic algorithm for statistical analysis and classification of lung auscultations. In Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks, SPIN 2019, Noida, India, 7–8 March 2019; pp. 313–318. [Google Scholar] [CrossRef]
- Naqvi, S.Z.H.; Choudhry, M.A. An automated system for classification of chronic obstructive pulmonary disease and pneumonia patients using lung sound analysis. Sensors 2020, 20, 6512. [Google Scholar] [CrossRef] [PubMed]
- Ono, H.; Taniguchi, Y.; Shinoda, K.; Sakamoto, T.; Kudoh, S.; Gemma, A. Evaluation of the usefulness of spectral analysis of inspiratory lung sounds recorded with phonopneumography in patients with interstitial pneumonia. J. Nippon. Med. Sch. 2009, 76, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Haider, N.S.; Behera, A.K. Computerized lung sound based classification of asthma and chronic obstructive pulmonary disease (COPD). Biocybern. Biomed. Eng. 2022, 42, 42–59. [Google Scholar] [CrossRef]
- García-Ordás, M.T.; Benítez-Andrades, J.A.; García-Rodríguez, I.; Benavides, C.; Alaiz-Moretón, H. Detecting respiratory pathologies using convolutional neural networks and variational autoencoders for unbalancing data. Sensors 2020, 20, 1214. [Google Scholar] [CrossRef] [PubMed]
- Fraiwan, L.; Hassanin, O.; Fraiwan, M.; Khassawneh, B.; Ibnian, A.M.; Alkhodari, M. Automatic identification of respiratory diseases from stethoscopic lung sound signals using ensemble classifiers. Biocybern. Biomed. Eng. 2021, 41, 1–14. [Google Scholar] [CrossRef]
- Heitmann, J.; Glangetas, A.; Doenz, J.; Dervaux, J.; Shama, D.M.; Garcia, D.H.; Benissa, M.R.; Cantais, A.; Perez, A.; Müller, D.; et al. DeepBreath—Automated detection of respiratory pathology from lung auscultation in 572 pediatric outpatients across 5 countries. npj Digit. Med. 2023, 6, 104. [Google Scholar] [CrossRef]
- Badnjevic, A.; Cifrek, M.; Koruga, D.; Osmankovic, D. Neuro-fuzzy classification of asthma and chronic obstructive pulmonary disease. BMC Med. Inform. Decis. Mak. 2015, 15, S1. [Google Scholar] [CrossRef]
- Kim, Y.; Hyon, Y.; Jung, S.S.; Lee, S.; Yoo, G.; Chung, C.; Ha, T. Respiratory sound classification for crackles, wheezes, and rhonchi in the clinical field using deep learning. Sci. Rep. 2021, 11, 17186. [Google Scholar] [CrossRef]
- Moran-Mendoza, O.; Ritchie, T.; Aldhaheri, S. Fine crackles on chest auscultation in the early diagnosis of idiopathic pulmonary fibrosis: A prospective cohort study. BMJ Open Respir. Res. 2021, 8, e000815. [Google Scholar] [CrossRef] [PubMed]
- Jaber, M.M.; Abd, S.K.; Shakeel, P.M.; Burhanuddin, M.A.; Mohammed, M.A.; Yussof, S. A telemedicine tool framework for lung sounds classification using ensemble classifier algorithms. Meas. J. Int. Meas. Confed. 2020, 162, 107883. [Google Scholar] [CrossRef]
- Shuvo, S.B.; Ali, S.N.; Swapnil, S.I.; Hasan, T.; Bhuiyan, M.I.H. A lightweight CNN model for detecting respiratory diseases from lung auscultation sounds using EMD-CWT-based hybrid scalogram. IEEE J. Biomed. Health Inform. 2021, 25, 2595–2603. [Google Scholar] [CrossRef]
- Rocha, B.M.; Pessoa, D.; Marques, A.; Carvalho, P.; Paiva, R.P. Automatic classification of adventitious respiratory sounds: A (un)solved problem? Sensors 2021, 21, 57. [Google Scholar] [CrossRef]
- Saldanha, J.; Chakraborty, S.; Patil, S.; Kotecha, K.; Kumar, S.; Nayyar, A. Data augmentation using Variational Autoencoders for improvement of respiratory disease classification. PLoS ONE 2022, 17, e0266467. [Google Scholar] [CrossRef]
- Srivastava, A.; Jain, S.; Miranda, R.; Patil, S.; Pandya, S.; Kotecha, K. Deep learning based respiratory sound analysis for detection of chronic obstructive pulmonary disease. PeerJ Comput. Sci. 2021, 7, e369. [Google Scholar] [CrossRef]
- Mukherjee, H.; Sreerama, P.; Dhar, A.; Obaidullah, S.M.; Roy, K.; Mahmud, M.; Santosh, K. Automatic Lung Health Screening Using Respiratory Sounds. J. Med. Syst. 2021, 45, 19. [Google Scholar] [CrossRef]
- Riella, R.J.; Nohama, P.; Maia, J.M. Method for automatic detection of wheezing in lung sounds. Braz. J. Med. Biol. Res. 2009, 42, 674–684. [Google Scholar] [CrossRef] [PubMed]
- Rocha, B.M.; Filos, D.; Mendes, L.; Vogiatzis, I.; Perantoni, E.; Kaimakamis, E.; Natsiavas, P.; Oliveira, A.; Jácome, C.; Marques, A.; et al. A respiratory sound database for the development of automated classification. In Proceedings of the IFMBE Proceedings, 66, Singapore, 17 November 2017. [Google Scholar]
- Perna, D.; Tagarelli, A. Deep auscultation: Predicting respiratory anomalies and diseases via recurrent neural networks. In Proceedings of the Proceedings—IEEE Symposium on Computer-Based Medical Systems, Cordoba, Spain, 5–7 June 2019. [Google Scholar] [CrossRef]
- Tabatabaei, S.A.H.; Fischer, P.; Schneider, H.; Koehler, U.; Gross, V.; Sohrabi, K. Methods for adventitious respiratory sound analyzing applications based on smartphones: A survey. IEEE Rev. Biomed. Eng. 2021, 14, 98–115. [Google Scholar] [CrossRef] [PubMed]
- Engin, M.A.; Aras, S.; Gangal, A. Extraction of low-dimensional features for single-channel common lung sound classification. Med. Biol. Eng. Comput. 2022, 60, 1555–1568. [Google Scholar] [CrossRef]
- Palaniappan, R.; Sundaraj, K.; Sundaraj, S. A comparative study of the svm and k-nn machine learning algorithms for the diagnosis of respiratory pathologies using pulmonary acoustic signals. BMC Bioinform. 2014, 15, 223. [Google Scholar] [CrossRef] [PubMed]
- Bahoura, M.; Pelletier, C. Respiratory sounds classification using cepstral analysis and gaussian mixture models. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology—Proceedings, San Francisco, CA, USA, 1–5 September 2004; Volume 26. [Google Scholar] [CrossRef]
- Palaniappan, R.; Sundaraj, K. Respiratory sound classification using cepstral features and support vector machine. In Proceedings of the 2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS), Trivandrum, India, 19–21 December 2013; pp. 132–136. [Google Scholar] [CrossRef]
- Aykanat, M.; Kılıç, Ö.; Kurt, B.; Saryal, S. Classification of lung sounds using convolutional neural networks. Eurasip J. Image Video Process. 2017, 2017, 65. [Google Scholar] [CrossRef]
- Nilanon, T.; Yao, J.; Hao, J.; Purushotham, S.; Liu, Y. Normal/abnormal heart sound recordings classification using convolutional neural network. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; Volume 43, pp. 585–588. [Google Scholar] [CrossRef]
- Manir, S.B.; Karim, M.; Kiber, M.A. Assessment of lung diseases from features extraction of breath sounds using digital signal processing methods. In Proceedings of the 2020 Emerging Technology in Computing, Communication and Electronics (ETCCE), Dhaka, Bangladesh, 21–22 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, W.; Li, S.; Yang, J.; Liu, Z.; Zhou, W. Feature extraction of underwater target in auditory sensation area based on MFCC. In Proceedings of the 2016 IEEE/OES China Ocean Acoustics (COA), Harbin, China, 9–11 January 2016; pp. 1–6. [Google Scholar]
- Kababulut, F.Y.; Gürkan Kuntalp, D.; Kuntalp, M. Healthy-unhealthy classification using respiratory sounds and shapley values of features. In Proceedings of the Second International Artificial Intelligence in Health Congress, Izmir, Turkey, 16–18 April 2021; pp. 263–274. [Google Scholar]
- Rao, A.; Huynh, E.; Royston, T.J.; Kornblith, A.; Roy, S. Acoustic methods for pulmonary diagnosis. IEEE Rev. Biomed. Eng. 2019, 12, 221–239. [Google Scholar] [CrossRef] [PubMed]
- Guntupalli, K.K.; Alapat, P.M.; Bandi, V.D.; Kushnir, I. Validation of automatic wheeze detection in patients with obstructed airways and in healthy subjects. J. Asthma 2008, 45, 903–907. [Google Scholar] [CrossRef]
- Kahya, Y.P.; Yeginer, M.; Bilgic, B. Classifying Respiratory Sounds with Different Feature Sets. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 2856–2859. [Google Scholar]
- Altaf, M.; Akram, T.; Khan, M.A.; Iqbal, M.; Ch, M.M.I.; Hsu, C.-H. A new statistical features based approach for bearing fault diagnosis using vibration signals. Sensors 2022, 22, 2012. [Google Scholar] [CrossRef]
- Altın, C.; Er, O. Comparison of different time and frequency domain feature extraction methods on elbow gesture’s EMG. Eur. J. Interdiscip. Stud. 2016, 5, 35. [Google Scholar] [CrossRef]
- Tahir, M.M.; Badshah, S.; Hussain, A.; Khattak, M.A. Extracting accurate time domain features from vibration signals for reliable classification of bearing faults. Int. J. Adv. Appl. Sci. 2018, 5, 156–163. [Google Scholar] [CrossRef]
- Xiang, S.H.; Jiwuand, Y.R. Time-Scale Invariant Audio Watermarking Based on the Statistical Features in Time Domain; Information Hiding: Berlin/Heidelberg, Germany, 2007; pp. 93–108. [Google Scholar]
- Priftis, K.N.; Hadjileontiadis, L.J.; Everard, M.L. Breath Sounds from Basic Science to Clinical Practice; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Gavriely, N.; Cugell, D.W. Breath Sounds Methodology; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Amaral, J.L.M.; Lopes, A.J.; Jansen, J.M.; Faria, A.C.D.; Melo, P.L. Machine learning algorithms and forced oscillation measurements applied to the automatic identification of chronic obstructive pulmonary disease. Comput. Methods Programs Biomed. 2012, 105, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Veeramachaneni, K. Synthesizing tabular data using generative adversarial networks. arXiv 2018, arXiv:1811.11264. [Google Scholar]
- Cavallaro, M.; Moiz, H.; Keeling, M.J.; McCarthy, N.D. Contrasting factors associated with COVID-19-related ICU admission and death outcomes in hospitalized patients by means of shapley values. PLoS Comput. Biol. 2021, 17, e1009121. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, J.; Xu, P.-D.; Gao, T.; Gao, D.W. Explainable AI in deep reinforcement learning models for power system emergency control. IEEE Trans. Comput. Soc. Syst. 2022, 9, 419–427. [Google Scholar] [CrossRef]
- Sim, T.; Choi, S.; Kim, Y.; Youn, S.H.; Jang, D.-J.; Lee, S.; Chun, C.-J. Explainable AI (XAI)-based input variable selection methodology for forecasting energy consumption. Electronics 2022, 11, 2947. [Google Scholar] [CrossRef]
- Lipton, Z.C.; Elkan, C.; Narayanaswamy, B. Thresholding classifiers to maximize F1 score. arXiv 2014, arXiv:1402.1892. [Google Scholar]
- Chicco, D.; Tötsch, N.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BioData Min. 2021, 14, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Slaney, M. Auditory Toolbox: A Matlab Toolbox for Auditory Modeling Work. 1998. Available online: https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf (accessed on 13 June 2023).
Healthy | Asthma | URTI | COPD | LRTI | Bronchiectasis | Pneumonia | Bronchiolitis |
---|---|---|---|---|---|---|---|
35 | 1 | 23 | 793 | 2 | 16 | 37 | 13 |
(3.80%) | (0.11%) | (2.50%) | (86.20%) | (0.22%) | (1.74%) | (4.02%) | (1.41%) |
Dataset 1 | |||
Healthy | Others | ||
Train | Test | Train | Test |
177 | 72 | 903 | 440 |
(11.12%) | (4.52%) | (56.72%) | (27.64%) |
Dataset 2 | |||
URTI | Others | ||
Train | Test | Train | Test |
86 | 97 | 994 | 415 |
(5.40%) | (6.09%) | (62.44%) | (26.07%) |
Dataset 3 | |||
COPD | Others | ||
Train | Test | Train | Test |
509 | 222 | 571 | 290 |
(31.97%) | (13.94%) | (35.87%) | (18.22%) |
Dataset 4 | |||
Pneumonia | Others | ||
Train | Test | Train | Test |
204 | 81 | 876 | 431 |
(12.81%) | (5.09%) | (55.03%) | (27.07%) |
Dataset 5 | |||
Bronchiolitis | Others | ||
Train | Test | Train | Test |
104 | 40 | 976 | 472 |
(6.53%) | (2.51%) | (61.31%) | (29.65%) |
Classifier/Criterion | 1st Binary Classifier (H/O) | 2nd Binary Classifier (U/O) | 3rd Binary Classifier (C/O) | 4th Binary Classifier (P/O) | 5th Binary Classifier (B/O) |
---|---|---|---|---|---|
Total Accuracy | 0.8234 | 0.8040 | 0.9768 | 0.8285 | 0.8028 |
MCC | 0.3623 | 0.1541 | 0.9540 | 0.4616 | 0.3189 |
F1 | 0.6702 | 0.5526 | 0.9767 | 0.7125 | 0.6221 |
Classifier/Criterion | 1st Binary Classifier (H/O) | 2nd Binary Classifier (U/O) | 3rd Binary Classifier (C/O) | 4th Binary Classifier (P/O) | 5th Binary Classifier (B/O) |
---|---|---|---|---|---|
Total Accuracy | 0.8203 | 0.8178 | 0.9931 | 0.8260 | 0.8643 |
MCC | 0.3832 | 0.2342 | 0.9862 | 0.4696 | 0.2524 |
F1 | 0.6770 | 0.5999 | 0.9931 | 0.7139 | 0.6041 |
Classifier/Criterion | 1st Binary Classifier (H/O) | 2nd Binary Classifier (U/O) | 3rd Binary Classifier (C/O) | 4th Binary Classifier (P/O) | 5th Binary Classifier (B/O) |
---|---|---|---|---|---|
Total Accuracy | 0.8442 | 0.8241 | 0.9843 | 0.8524 | 0.8851 |
MCC | 0.4487 | 0.2497 | 0.9686 | 0.5557 | 0.3199 |
F1 | 0.7128 | 0.6057 | 0.9842 | 0.7568 | 0.6417 |
Method | Total Accuracy |
---|---|
1 | 0.6641 |
2 | 0.6934 |
3 | 0.6634 |
4 | 0.6967 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kababulut, F.Y.; Gürkan Kuntalp, D.; Düzyel, O.; Özcan, N.; Kuntalp, M. A New Shapley-Based Feature Selection Method in a Clinical Decision Support System for the Identification of Lung Diseases. Diagnostics 2023, 13, 3558. https://doi.org/10.3390/diagnostics13233558
Kababulut FY, Gürkan Kuntalp D, Düzyel O, Özcan N, Kuntalp M. A New Shapley-Based Feature Selection Method in a Clinical Decision Support System for the Identification of Lung Diseases. Diagnostics. 2023; 13(23):3558. https://doi.org/10.3390/diagnostics13233558
Chicago/Turabian StyleKababulut, Fevzi Yasin, Damla Gürkan Kuntalp, Okan Düzyel, Nermin Özcan, and Mehmet Kuntalp. 2023. "A New Shapley-Based Feature Selection Method in a Clinical Decision Support System for the Identification of Lung Diseases" Diagnostics 13, no. 23: 3558. https://doi.org/10.3390/diagnostics13233558
APA StyleKababulut, F. Y., Gürkan Kuntalp, D., Düzyel, O., Özcan, N., & Kuntalp, M. (2023). A New Shapley-Based Feature Selection Method in a Clinical Decision Support System for the Identification of Lung Diseases. Diagnostics, 13(23), 3558. https://doi.org/10.3390/diagnostics13233558