Advances in Technologies in Crime Scene Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Selection
2.2. LS Analysis
3. Results
3.1. Case 1
3.2. Case 2
3.3. Case 3
3.4. Case 4
3.5. Case 5
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pomara, C. Forensic and Clinical Forensic Autopsy: An Atlas and Handbook; CRC Press: Boca Raton, FL, USA, 2021; ISBN 9780367330712. [Google Scholar]
- Hanzlick, R.; Combs, D. Medical Examiner and Coroner Systems: History and Trends. JAMA 1998, 279, 870–874. [Google Scholar] [CrossRef]
- Davis, G.J. Spitz and Fisher’s Medicolegal Investigation of Death: Guidelines for the Application of Pathology to Crime Investigation, 5th Ed. Can. Soc. Forensic Sci. J. 2020, 53, 210–211. [Google Scholar] [CrossRef]
- Pomara, C.; Fineschi, V.; Scalzo, G.; Guglielmi, G. Virtopsy versus Digital Autopsy: Virtuous Autopsy. Radiol. Med. 2009, 114, 1367–1382. [Google Scholar] [CrossRef] [PubMed]
- Park, H.K.; Chung, J.W.; Kho, H.S. Use of Hand-Held Laser Scanning in the Assessment of Craniometry. Forensic Sci. Int. 2006, 160, 200–206. [Google Scholar] [CrossRef]
- Tzou, C.H.J.; Artner, N.M.; Pona, I.; Hold, A.; Placheta, E.; Kropatsch, W.G.; Frey, M. Comparison of Three-Dimensional Surface-Imaging Systems. J. Plast. Reconstr. Aesthetic Surg. 2014, 67, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Komar, D.A.; Davy-Jow, S.; Decker, S.J. The Use of a 3-D Laser Scanner to Document Ephemeral Evidence at Crime Scenes and Postmortem Examinations. J. Forensic Sci. 2012, 57, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Topol, A.; Jenkin, M.; Gryz, J.; Wilson, S.; Kwietniewski, M.; Jasiobedzki, P.; Ng, H.K.; Bondy, M. Generating Semantic Information from 3D Scans of Crime Scenes. In Proceedings of the 5th Canadian Conference on Computer and Robot Vision, CRV 2008, Windsor, ON, Canada, 28–30 May 2008. [Google Scholar]
- Kuzminsky, S.C.; Gardiner, M.S. Three-Dimensional Laser Scanning: Potential Uses for Museum Conservation and Scientific Research. J. Archaeol. Sci. 2012, 39, 2744–2751. [Google Scholar] [CrossRef]
- Shamata, A.; Thompson, T. Documentation and Analysis of Traumatic Injuries in Clinical Forensic Medicine Involving Structured Light Three-Dimensional Surface Scanning versus Photography. J. Forensic Leg. Med. 2018, 58, 93–100. [Google Scholar] [CrossRef]
- Buck, U.; Naether, S.; Braun, M.; Bolliger, S.; Friederich, H.; Jackowski, C.; Aghayev, E.; Christe, A.; Vock, P.; Dirnhofer, R.; et al. Application of 3D Documentation and Geometric Reconstruction Methods in Traffic Accident Analysis: With High Resolution Surface Scanning, Radiological MSCT/MRI Scanning and Real Data Based Animation. Forensic Sci. Int. 2007, 170, 20–28. [Google Scholar] [CrossRef]
- Pomara, C.; Gianpaolo, D.P.; Monica, S.; Maglietta, F.; Sessa, F.; Guglielmi, G.; Turillazzi, E. “Lupara Bianca” a Way to Hide Cadavers after Mafia Homicides. A Cemetery of Italian Mafia. A Case Study. Leg. Med. 2015, 17, 192–197. [Google Scholar] [CrossRef]
- Bolliger, M.J.; Buck, U.; Thali, M.J.; Bolliger, S.A. Reconstruction and 3D Visualisation Based on Objective Real 3D Based Documentation. Forensic Sci. Med. Pathol. 2012, 8, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Puentes, K.; Taveira, F.; Madureira, A.J.; Santos, A.; Magalhães, T. Three-Dimensional Reconstitution of Bullet Trajectory in Gunshot Wounds: A Case Report. J. Forensic Leg. Med. 2009, 16, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Pomara, C.; Zappalà, S.A.; Salerno, M.; Sessa, F.; Esposito, M.; Cocimano, G.; Ippolito, S.; Miani, A.; Missoni, E.; Piscitelli, P. Migrants’ Human Rights and Health Protection during the COVID-19 Pandemic in the Mediterranean Sea: What We Have Learnt from Direct Inspections in Two Italian Hotspots. Front. Public. Health 2023, 11, 1129267. [Google Scholar] [CrossRef] [PubMed]
- Fenton, S.; Kerr, R. Accident Scene Diagramming Using New Photogrammetric Technique. SAE Technical Paper 1997. Available online: https://www.sae.org/publications/technical-papers/content/970944/ (accessed on 24 February 1997).
- Thali, M.J.; Braun, M.; Buck, U.; Aghayev, E.; Jackowski, C.; Vock, P.; Sonnenschein, M.; Dirnhofer, R. VIRTOPSY—Scientific Documentation, Reconstruction and Animation in Forensic: Individual and Real 3D Data Based Geo-Metric Approach Including Optical Body/Object Surface and Radiological CT/MRI Scanning. J. Forensic Sci. 2005, 50, 1–15. [Google Scholar] [CrossRef]
- Pomara, C.; Salerno, M.; Sessa, F.; Esposito, M.; Barchitta, M.; Ledda, C.; Grassi, P.; Liberto, A.; Mattaliano, A.R.; Rapisarda, V.; et al. Safe Management Strategies in Clinical Forensic Autopsies of Confirmed COVID-19 Cases. Diagnostics 2021, 11, 457. [Google Scholar] [CrossRef]
- World Health Organization (WHO). WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19 (accessed on 11 March 2020).
- Esposito, M.; Salerno, M.; Scoto, E.; Di Nunno, N.; Sessa, F. The Impact of the COVID-19 Pandemic on the Practice of Forensic Medicine: An Overview. Healthcare 2022, 10, 319. [Google Scholar] [CrossRef]
- Barazzetti, L.; Sala, R.; Scaioni, M.; Cattaneo, C.; Gibelli, D.; Giussani, A.; Poppa, P.; Roncoroni, F.; Vandone, A. 3D Scanning and Imaging for Quick Documentation of Crime and Accident Scenes. In Proceedings of the Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense XI, Baltimore, ML, USA, 23–27 April 2012; Volume 8359. [Google Scholar]
- Turillazzi, E.; Greco, P.; Neri, M.; Pomara, C.; Riezzo, I.; Fineschi, V. Anaphylactic Latex Reaction during Anaesthesia: The Silent Culprit in a Fatal Case. Forensic Sci. Int. 2008, 179, e5–e8. [Google Scholar] [CrossRef]
- Orban, G.; Bombardi, C.; Marino Gammazza, A.; Colangeli, R.; Pierucci, M.; Pomara, C.; Pessia, M.; Bucchieri, F.; Arcangelo, B.; Smolders, I.; et al. Role(s) of the 5-HT2C Receptor in the Development of Maximal Dentate Activation in the Hippocampus of Anesthetized Rats. CNS Neurosci. Ther. 2014, 20, 651–661. [Google Scholar] [CrossRef]
- Schiavone, S.; Neri, M.; Mhillaj, E.; Morgese, M.G.; Cantatore, S.; Bove, M.; Riezzo, I.; Tucci, P.; Pomara, C.; Turillazzi, E.; et al. The NADPH Oxidase NOX2 as a Novel Biomarker for Suicidality: Evidence from Human Post Mortem Brain Samples. Transl. Psychiatry 2016, 6, e813. [Google Scholar] [CrossRef]
- Olsen, M.J.; Kayen, R. Post-Earthquake and Tsunami 3D Laser Scanning Forensic Investigations. In Proceedings of the Forensic Engineering 2012: Gateway to a Better Tomorrow—Proceedings of the 6th Congress on Forensic Engineering, San Francisco, CA, USA, 31 October–3 November 2012; Available online: https://ascelibrary.org/doi/abs/10.1061/9780784412640.051 (accessed on 1 November 2012).
- Vilborn, P.; Bernitz, H. A Systematic Review of 3D Scanners and Computer Assisted Analyzes of Bite Marks: Searching for Improved Analysis Methods during the Covid-19 Pandemic. Int. J. Legal Med. 2022, 136, 209–217. [Google Scholar] [CrossRef]
- Buck, U.; Naether, S.; Räss, B.; Jackowski, C.; Thali, M.J. Accident or Homicide—Virtual Crime Scene Reconstruction Using 3D Methods. Forensic Sci. Int. 2013, 225, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Tredinnick, R.; Smith, S.; Ponto, K. A Cost-Benefit Analysis of 3D Scanning Technology for Crime Scene Investigation. Forensic Sci. Int. Rep. 2019, 1, 100025. [Google Scholar] [CrossRef]
- Johnson, A.; Pandey, A. Three-Dimensional Scanning-A Futuristic Technology in Forensic Anthropology. J. Indian Acad. Forensic Med. 2019, 41, 128–131. [Google Scholar] [CrossRef]
- Liu, S. Three-Dimension Point Cloud Technology and Intelligent Extraction of Trace Evidence at the Scene of Crime. J. Physics: Conf. Ser. 2019, 1237, 5–8. [Google Scholar] [CrossRef]
- Cunha, R.R.; Arrabal, C.T.; Dantas, M.M.; Bassaneli, H.R. Laser Scanner and Drone Photogrammetry: A Statistical Comparison between 3-Dimensional Models and Its Impacts on Outdoor Crime Scene Registration. Forensic Sci. Int. 2022, 330, 111100. [Google Scholar] [CrossRef] [PubMed]
- Baier, W.; Norman, D.G.; Donnelly, M.J.; Williams, M.A. Forensic 3D Printing from Micro-CT for Court Use-Process Validation. Forensic Sci. Int. 2021, 318, 110560. [Google Scholar] [CrossRef]
- Sieberth, T.; Dobay, A.; Affolter, R.; Ebert, L.C. Applying Virtual Reality in Forensics—A Virtual Scene Walkthrough. Forensic Sci. Med. Pathol. 2019, 15, 41–47. [Google Scholar] [CrossRef]
- Reesu, G.V.; Woodsend, B.; Mânica, S.; Revie, G.F.; Brown, N.L.; Mossey, P.A. Automated Identification from Dental Data (AutoIDD): A New Development in Digital Forensics. Forensic Sci. Int. 2020, 309, 110218. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Zheng, H.; Lallie, H. Virtual Reality and 3D Animation in Forensic Visualization. J. Forensic Sci. 2010, 55, 1227–1231. [Google Scholar] [CrossRef]
- Carew, R.M.; Errickson, D. An Overview of 3D Printing in Forensic Science: The Tangible Third-Dimension. J. Forensic Sci. 2020, 65, 1752–1760. [Google Scholar] [CrossRef]
- Wake, R.M.; Morgan, M.; Choi, J.; Winn, S. Reducing Nosocomial Transmission of COVID-19: Implementation of a COVID-19 Triage System. Clin. Med. J. R. Coll. Physicians Lond. 2020, 20, e141–e145. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, T.; Przyłucki, R.; Lisok, J.; Smagór, A. Analysis of the Accuracy of Crime Scene Mapping Using 3D Laser Scanners. In Lecture Notes in Electrical Engineering; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; Volume 548. [Google Scholar]
- Galanakis, G.; Zabulis, X.; Evdaimon, T.; Fikenscher, S.-E.; Allertseder, S.; Tsikrika, T.; Vrochidis, S. A Study of 3D Digitisation Modalities for Crime Scene Investigation. Forensic Sci. 2021, 1, 56–85. [Google Scholar] [CrossRef]
- Wang, J.; Li, Z.; Hu, W.; Shao, Y.; Wang, L.; Wu, R.; Ma, K.; Zou, D.; Chen, Y. Virtual Reality and Integrated Crime Scene Scanning for Immersive and Heterogeneous Crime Scene Reconstruction. Forensic Sci. Int. 2019, 303, 109943. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, M.; Sessa, F.; Cocimano, G.; Zuccarello, P.; Roccuzzo, S.; Salerno, M. Advances in Technologies in Crime Scene Investigation. Diagnostics 2023, 13, 3169. https://doi.org/10.3390/diagnostics13203169
Esposito M, Sessa F, Cocimano G, Zuccarello P, Roccuzzo S, Salerno M. Advances in Technologies in Crime Scene Investigation. Diagnostics. 2023; 13(20):3169. https://doi.org/10.3390/diagnostics13203169
Chicago/Turabian StyleEsposito, Massimiliano, Francesco Sessa, Giuseppe Cocimano, Pietro Zuccarello, Salvatore Roccuzzo, and Monica Salerno. 2023. "Advances in Technologies in Crime Scene Investigation" Diagnostics 13, no. 20: 3169. https://doi.org/10.3390/diagnostics13203169
APA StyleEsposito, M., Sessa, F., Cocimano, G., Zuccarello, P., Roccuzzo, S., & Salerno, M. (2023). Advances in Technologies in Crime Scene Investigation. Diagnostics, 13(20), 3169. https://doi.org/10.3390/diagnostics13203169