Neurologic Outcome Comparison between Fetal Open-, Endoscopic- and Neonatal-Intervention Techniques in Spina Bifida Aperta
Abstract
:1. Introduction
2. Methods
2.1. Patient Data
2.1.1. Patient Inclusion
2.1.2. Delivery, Complications, and Care
2.2. Methods
2.2.1. Clinical Parameters
Determination of the Anatomic Level of the MMC
Shunt Dependency
2.2.2. Primary Outcome Parameters on Segmental Neurologic Function
Muscle Ultrasound Density (MUD)
The Intra-Individual Difference in Muscle Ultrasound Density (dMUD)
Segmental Sensory- and Motor- Assessment
Reflex Activity
Primary and Secondary Outcome Measures
2.2.3. Secondary Outcomes for Ambulation
2.2.4. Tertiary Outcomes for Ambulation
2.2.5. Statistical Analysis
3. Results
3.1. Clinical Data
3.2. Segmental Neurologic Outcome Parameters
3.2.1. Difference in the MUD (dMUD)
3.2.2. Sensory Segmental Function
3.2.3. Motor Segmental Function
3.2.4. Reflex Activity
3.3. Secondary Outcome: Predictions for “Gained” Ambulation
3.4. Tertiary Outcome: Actually Reported Functional Ambulation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SBA | spina bifida aperta; |
MMC | myelomeningocele |
MOMS | Management of Myelomeningocele Study |
OSBAR | open fetal spina bifida repair |
FSBAR | fetal endoscopic spina bifida repair |
NSBAR | neonatal spina bifida repair |
MUD | muscle ultrasound density |
dMUD | the difference in muscle ultrasound density caudal versus cranial to the MMC |
References
- Sival, D.A.; Begeer, J.H.; Staal-Schreinemachers, A.L.; Vos-Niel, J.M.E.; Beekhuis, J.R.; Prechtl, H.F.R. Perinatal motor behaviour and neurological outcome in spina bifida aperta. Early Hum. Dev. 1997, 50, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Sival, D.A.; Verbeek, R.J.; Brouwer, O.F.; Sollie, K.M.; Bos, A.F.; den Dunnen, W.F. Spinal hemorrhages are associated with early neonatal motor function loss in human spina bifida aperta. Early Hum. Dev. 2008, 84, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Meuli-Simmen, C.; Meuli, M.; Hutchins, G.M.; Harrison, M.R.; Buncke, H.J.; Sullivan, K.M.; Adzick, N.S. Fetal reconstructive surgery: Experimental use of the latissimus dorsi flap to correct myelomeningocele in utero. Plast. Reconstr. Surg. 1995, 96, 1007–1011. [Google Scholar] [CrossRef] [PubMed]
- Adzick, N.S.; Thom, E.A.; Spong, C.Y.; Brock, J.W.; Burrows, P.K.; Johnson, M.P.; Howell, L.J.; Farrell, J.A.; Dabrowiak, M.E.; Sutton, L.N.; et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N. Engl. J. Med. 2011, 364, 993–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joyeux, L.; De Bie, F.; Danzer, E.; Russo, F.M.; Javaux, A.; Peralta, C.F.A.; De Salles, A.A.F.; Pastuszka, A.; Olejek, A.; Van Mieghem, T.; et al. Learning curves of open and endoscopic fetal spina bifida closure: A systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2019, 55, 730–739. [Google Scholar] [CrossRef]
- Danzer, E.; Joyeux, L.; Flake, A.W.; Deprest, J. Fetal surgical intervention for myelomeningocele: Lessons learned, outcomes, and future implications. Dev. Med. Child Neurol. 2020, 62, 417–425. [Google Scholar] [CrossRef]
- Committee Opinion no. 720 Summary: Maternal-fetal surgery for myelomeningocele. Obstet. Gynecol. 2017, 130, 672–673. [CrossRef]
- Diehl, D.; Belke, F.; Kohl, T.; Axt-Fliedner, R.; Degenhardt, J.; Khaleeva, A.; Öehmke, F.; Faas, D.; Ehrhardt, H.; Kolodziej, M.; et al. Fully percutaneous fetoscopic repair of myelomeningocele: 30-month follow-up data. Ultrasound Obstet. Gynecol. 2021, 57, 113–118. [Google Scholar] [CrossRef]
- Joyeux, L.; Engels, A.C.; Russo, F.M.; Jimenez, J.; Van Mieghem, T.; De Coppi, P.; Van Calenbergh, F.; Deprest, J. Fetoscopic versus open repair for spina bifida aperta: A systematic review of outcomes. Fetal Diagn. Ther. 2016, 39, 161–171. [Google Scholar] [CrossRef]
- Verbeek, R.J.; Heep, A.; Maurits, N.; Cremer, R.; Hoving, E.W.; Brouwer, O.F.; Van Der Hoeven, J.H.; Sival, D.A. Fetal endoscopic myelomeningocele closure preserves segmental neurological function. Dev. Med. Child Neurol. 2012, 54, 15–22. [Google Scholar] [CrossRef]
- Danzer, E.; Johnson, M.P.; Adzick, N.S. Fetal surgery for myelomeningocele: Progress and perspectives. Dev. Med. Child Neurol. 2012, 54, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Kahr, M.K.; Winder, F.M.; Vonzun, L.; Mazzone, L.; Moehrlen, U.; Meuli, M.; Hüsler, M.; Krähenmann, F.; Zimmermann, R.; Ochsenbein-Kölble, N. Open intrauterine fetal myelomeningocele repair: Changes in the surgical procedure and perinatal complications during the first 8 years of experience at a single center. Fetal Diagn. Ther. 2019, 47, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Ziemann, M.; Fimmers, R.; Khaleeva, A.; Schurg, R.; Weigand, M.A.; Kohl, T. Partial amniotic carbon dioxide insufflation (PACI) during minimally invasive fetoscopic interventions on fetuses with spina bifida aperta. Surg. Endosc. 2018, 32, 3138–3148. [Google Scholar] [CrossRef] [PubMed]
- Van Calenbergh, F.; Joyeux, L.; Deprest, J. Maternal-fetal surgery for myelomeningocele: Some thoughts on ethical, legal, and psychological issues in a western european situation. Childs Nerv. Syst. 2017, 33, 1247–1252. [Google Scholar] [CrossRef]
- Verbeek, R.J.; Hoving, E.W.; Maurits, N.M.; Brouwer, O.F.; van der Hoeven, J.H.; Sival, D.A. Muscle ultrasound quantifies segmental neuromuscular outcome in pediatric myelomeningocele. Ultrasound Med. Biol. 2014, 40, 71–77. [Google Scholar] [CrossRef]
- Shanmuganathan, M.; Sival, D.A.; Eastwood, K.-A.; Morris, K.; Cartmill, J.; Heep, A.; Bohosiewicz, J.; Pastuszka, A.; Hunter, A.; Ali, A.; et al. Prenatal surgery for spina bifida: A therapeutic dilemma. proceedings of the SHINE conference, belfast. Ir. J. Med. Sci. 2018, 187, 713–718. [Google Scholar] [CrossRef] [Green Version]
- Pastuszka, A.; Bohosiewicz, J.; Olejek, A.; Zamlynski, J.; Horzelska, E.; Koszutski, T. In utero myelomeningocele repair reduces intensification of inflammatory changes in the dura mater and the skin. J. Spinal Cord Med. 2020, 45, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Degenhardt, J.; Schürg, R.; Winarno, A.; Oehmke, F.; Khaleeva, A.; Kawecki, A.; Enzensberger, C.; Tinneberg, H.-R.; Faas, D.; Ehrhardt, H.; et al. Percutaneous minimal-access fetoscopic surgery for spina bifida aperta. part II: Maternal management and outcome. Ultrasound Obstet. Gynecol. 2014, 44, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Kohl, T.; Hartlage, M.G.; Kiehitz, D.; Westphal, M.; Buller, T.; Achenbach, S.; Aryee, S.; Gembruch, U.; Brentrup, A. Percutaneous fetoscopic patch coverage of experimental lumbosacral full-thickness skin lesions in sheep. Surg. Endosc. 2003, 17, 1218–1223. [Google Scholar] [CrossRef]
- Sival, D.A.; van Weerden, T.W.; Vles, J.S.; Timmer, A.; Dunnen, W.F.D.; Staal-Schreinemachers, A.; Hoving, E.W.; Sollie, K.M.; Kranen-Mastenbroek, V.J.; Sauer, P.J.; et al. Neonatal loss of motor function in human spina bifida aperta. Pediatrics 2004, 114, 427–434. [Google Scholar] [CrossRef]
- Verbeek, R.J.; van der Hoeven, J.H.; Maurits, N.M.; Brouwer, O.F.; Hoving, E.W.; Sival, D.A. In spina bifida aperta, muscle ultrasound can quantify the “second hit of damage”. Childs Nerv. Syst. 2013, 29, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Luthy, D.A.; Wardinsky, T.; Shurtleff, D.B.; Hollenbach, K.A.; Hickok, D.E.; Nyberg, D.A.; Benedetti, T.J. Cesarean section before the onset of labor and subsequent motor function in infants with meningomyelocele diagnosed antenatally [see comments]. N. Engl. J. Med. 1991, 324, 662–666. [Google Scholar] [CrossRef] [PubMed]
- Sakala, E.P.; Andree, I. Optimal route of delivery for meningomyelocele. Obstet. Gynecol. Surv. 1990, 45, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, D.D.; Irwin, B.; Chambers, K. Clinical outcomes that fetal surgery for myelomeningocele needs to achieve. Eur. J. Pediatr. Surg. 2001, 11 (Suppl 1), S18–S20. [Google Scholar] [CrossRef]
- Merrill, D.C.; Goodwin, P.; Burson, J.M.; Sato, Y.; Williamson, R.; Weiner, C.P. The optimal route of delivery for fetal meningomyelocele. Am. J. Obstet. Gynecol. 1998, 179, 235–240. [Google Scholar] [CrossRef]
- Lewis, D.; Tolosa, J.E.; Kaufmann, M.; Goodman, M.; Farrell, C.; Berghella, V. Elective cesarean delivery and long-term motor function or ambulation status in infants with meningomyelocele. Obstet. Gynecol. 2004, 103, 469–473. [Google Scholar] [CrossRef]
- Greene, S.; Lee, P.S.; Deibert, C.P.; Tempel, Z.J.; Zwagerman, N.T.; Florio, K.; Bonfield, C.M.; Emery, S.P. The impact of mode of delivery on infant neurologic outcomes in myelomeningocele. Am. J. Obstet. Gynecol. 2016, 215, 495.e1–495.e11. [Google Scholar] [CrossRef]
- Bensen, J.T.; Dillard, R.G.; Burton, B.K. Open spina bifida: Does cesarean section delivery improve prognosis? Obstet. Gynecol. 1988, 71, 532–534. [Google Scholar]
- Hadi, H.A.; Loy, R.A.; Long, E.M.J.; Martin, S.A.; Devoe, L.D. Outcome of fetal meningomyelocele after vaginal delivery. J. Reprod. Med. 1987, 32, 597–600. [Google Scholar]
- Zamłyński, J.; Horzelska, E.; Zamłyński, M.; Olszak-Wąsik, K.; Nowak, L.; Bodzek, P.; Horzelski, T.; Bablok, R.; Olejek, A. Current views on fetal surgical treatment of myelomeningocele—The management of myelomeningocele study (MOMS) trial and polish clinical experience. Ginekol. Pol. 2017, 88, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Horzelska, E.I.; Zamlynski, M.; Horzelski, T.; Zamlynski, J.; Pastuszka, A.; Bablok, R.; Herman-Sucharska, I.; Koszutski, T.; Olejek, A. Open fetal surgery for myelomeningocele—Is there the learning curve at reduction mother and fetal morbidity? Ginekol. Pol. 2020, 91, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, G.M.; Poulton, A. Open spina bifida: A complete cohort reviewed 25 years after closure [see comments]. Dev. Med. Child Neurol. 1995, 37, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Sherrod, B.A.; Ho, W.S.; Hedlund, A.; Kennedy, A.; Ostrander, B.; Bollo, R.J. A comparison of the accuracy of fetal MRI and prenatal ultrasonography at predicting lesion level and perinatal motor outcome in patients with myelomeningocele. Neurosurg. Focus 2019, 47, E4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iborra, J.; Pages, E.; Cuxart, A. Neurological abnormalities, major orthopaedic deformities and ambulation analysis in a myelomeningocele population in catalonia (spain). Spinal Cord 1999, 37, 351–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, E.N.; Broughton, N.S.; Menelaus, M.B. Age-related walking in children with spina bifida. Dev. Med. Child Neurol. 1999, 41, 446–449. [Google Scholar] [CrossRef]
- Fraser, R.K.; Hoffman, E.B.; Sparks, L.T.; Buccimazza, S.S. The unstable hip and mid-lumbar myelomeningocele. J. Bone Jt. Surg. Br. 1992, 74, 143–146. [Google Scholar] [CrossRef] [Green Version]
- Swank, M.; Dias, L. Myelomeningocele: A review of the orthopaedic aspects of 206 patients treated from birth with no selection criteria. Dev. Med. Child Neurol. 1992, 34, 1047–1052. [Google Scholar] [CrossRef]
- Ivanyi-Roelfsema, B. Updated 20132021. Available online: https://richtlijnendatabase.nl/richtlijn/loopvaardigheid_spina_bifida/loopvaardigheid_spina_bifida_-_startpagina.html (accessed on 8 September 2022).
- Erol, S.A.; Tanacan, A.; Oguz, E.F.; Anuk, A.T.; Ayhan, S.G.; Neselioglu, S.; Sahin, D. A comparison of the maternal levels of serum proprotein convertase subtilisin/kexin type 9 in pregnant women with the complication of fetal open neural tube defects. Congenit. Anom. 2021, 61, 169–176. [Google Scholar] [CrossRef]
- Schoenmakers, M.A.; Gulmans, V.A.; Gooskens, R.H.; Helders, P.J. Spina bifida at the sacral level: More than minor gait disturbances. Clin. Rehabil. 2004, 18, 178–185. [Google Scholar] [CrossRef]
- McDonald, C.M.; Jaffe, K.M.; Mosca, V.S.; Shurtleff, D.B. Ambulatory outcome of children with myelomeningocele: Effect of lower-extremity muscle strength. Dev. Med. Child Neurol. 1991, 33, 482–490. [Google Scholar] [CrossRef]
- Houtrow, A.J.; MacPherson, C.; Jackson-Coty, J.; Rivera, M.; Flynn, L.; Burrows, P.K.; Adzick, N.S.; Fletcher, J.; Gupta, N.; Howell, L.J.; et al. Prenatal repair and physical functioning among children with myelomeningocele: A secondary analysis of a randomized clinical trial. JAMA Pediatr. 2021, 175, e205674. [Google Scholar] [CrossRef] [PubMed]
- Copp, A.J.; Brook, F.A. Does lumbosacral spina bifida arise by failure of neural folding or by defective canalisation? J. Med. Genet. 1989, 26, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Muller, F.; O’Rahilly, R. The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12. Anat. Embryol. (Berl) 1987, 176, 413–430. [Google Scholar] [CrossRef] [PubMed]
- Herrera, S.R.; Leme, R.J.; Valente, P.R.; Caldini, E.G.; Saldiva, P.H.; Pedreira, D.A. Comparison between two surgical techniques for prenatal correction of meningomyelocele in sheep. Einstein 2012, 10, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Peralta, C.F.A.; Botelho, R.D.; Romano, E.R.; Imada, V.; Lamis, F.; Júnior, R.R.; Nani, F.; Stoeber, G.H.; de Salles, A.A.F. Fetal open spinal dysraphism repair through a mini-hysterotomy: Influence of gestational age at surgery on the perinatal outcomes and postnatal shunt rates. Prenat. Diagn. 2020, 40, 689–697. [Google Scholar] [CrossRef]
- Girardelli, S.; Cavoretto, P.I.; Origoni, M.; Gaeta, G.; Albano, L.; Acerno, S.; Mortini, P.; Lamis, F.; Peralta, C.F.A.; Candiani, M. Surgical approaches to in-utero spina bifida repair: A systematic review. Ital. J. Gynaecol. Obstet. 2022, 34, 282–292. [Google Scholar] [CrossRef]
- Paslaru, F.; Panaitescu, A.; Iancu, G.; Veduta, A.; Gica, N.; Paslaru, A.; Gheorghiu, A.; Peltecu, G.; Gorgan, R. Myelomeningocele surgery over the 10 years following the MOMS trial: A systematic review of outcomes in prenatal versus postnatal surgical repair. Medicina 2021, 57, 707. [Google Scholar] [CrossRef] [PubMed]
Pair | Matched upper Level MMC | Age at Assesssment | |
---|---|---|---|
1 | a | Th12 | 7 m |
b | 1 y | ||
2 | a | L1 | 6 m |
b | 0 m | ||
3 | a | L2 | 1 y |
b | 1 y | ||
4 | a | L3 | 6 m |
b | 7 m | ||
5 | a | L3 | 4 m |
b | 4 m | ||
6 | a | L4 | 1.5 y |
b | 4 y | ||
7 | a | L4 | 2 y |
b | 1.5 y | ||
8 | a | L4 | 8 y |
b | 5 y | ||
9 | a | L4 | 11 y |
b | 10 y | ||
10 | a | L4 | 6 y |
b | 5 y | ||
11 | a | L4 | 2 y |
b | 3 y | ||
12 | a | L4 | 11 m |
b | 5 m | ||
13 | a | L4 | 10 m |
b | 8 m | ||
14 | a | S1 | 2 y |
b | 1.5 y | ||
15 | a | S1 | 1 y |
b | 1 y | ||
16 | a | S1 | 5 y |
b | 4 y | ||
17 | a | S1 | 2 y |
b | 1 y |
Matched Pairs | FSBAR vs. NSBAR | OSBAR vs. NSBAR |
---|---|---|
Number Total | 13 per group 2 × 13 | 17 per group 2 × 17 |
MMC level Median | Th12-L5 L3 | Th12-S1 L4 |
Age Median | 0–5 year 1 year | 0–11 year 2 years |
Significant Maternal Morbidity | Fetal or Neonatal Demise | Mean GA at Delivery in wks | Oligo- Hydramnios | Neonatal Infection | Respiratory Problems | Other | |
---|---|---|---|---|---|---|---|
FSBAR * group N = 17 2003-09 | N = 4 (24%) | N = 6 (35%) | 29.0 | N = 13 (77%) | N = 6 (35%) | N = 16 (92%) | Asphyxia N = 2 Endocr N = 2 |
OSBAR Group N = 13 2011-18 | N = 0 | N = 0 | 34.0 | N = 1 (8%) | N = 4 (30%) | N = 3 (23%) | Femur # N = 1 |
NSBAR Group N = 25 2003-18 | n.a. | N = 1 (4%) | 38.0 | N = 1 (4%) | N = 1 (4%) | N = 1 (4%) | Endocr N = 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sival, D.A.; Patuszka, A.; Koszutski, T.; Heep, A.; Verbeek, R.J. Neurologic Outcome Comparison between Fetal Open-, Endoscopic- and Neonatal-Intervention Techniques in Spina Bifida Aperta. Diagnostics 2023, 13, 251. https://doi.org/10.3390/diagnostics13020251
Sival DA, Patuszka A, Koszutski T, Heep A, Verbeek RJ. Neurologic Outcome Comparison between Fetal Open-, Endoscopic- and Neonatal-Intervention Techniques in Spina Bifida Aperta. Diagnostics. 2023; 13(2):251. https://doi.org/10.3390/diagnostics13020251
Chicago/Turabian StyleSival, Deborah A., Agnieszka Patuszka, Tomasz Koszutski, Axel Heep, and Renate J. Verbeek. 2023. "Neurologic Outcome Comparison between Fetal Open-, Endoscopic- and Neonatal-Intervention Techniques in Spina Bifida Aperta" Diagnostics 13, no. 2: 251. https://doi.org/10.3390/diagnostics13020251
APA StyleSival, D. A., Patuszka, A., Koszutski, T., Heep, A., & Verbeek, R. J. (2023). Neurologic Outcome Comparison between Fetal Open-, Endoscopic- and Neonatal-Intervention Techniques in Spina Bifida Aperta. Diagnostics, 13(2), 251. https://doi.org/10.3390/diagnostics13020251