Thyroid Nodule Detection and Region Estimation in Ultrasound Images: A Comparison between Physicians and an Automated Decision Support System Approach
Abstract
:1. Introduction
1.1. ML and Hand-Crafted Feature Extraction for DSS
1.2. DL for DSS
2. Materials and Methods
2.1. Patients and US Data Collection
2.2. Experimental Setup
2.2.1. Analysis by Physicians
2.2.2. Computational Analysis
2.3. Statistical Analysis
3. Results
3.1. Nodule Detection by Physicians and DSS
3.2. Comparison between DSS Region Estimation and Physician Region Estimation
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, L.S. Diagnostic Ultrasound Imaging: Inside Out; Elsevier: New York, NY, USA, 2004; Chapter 1. [Google Scholar]
- Grani, G.; Lamartina, L.; Cantisani, V.; Maranghi, M.; Lucia, P.; Durante, C. Interobserver agreement of various thyroid imaging reporting and data systems. Endocr. Connect. 2018, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.Y.; Han, K.H.; Yoon, J.H.; Moon, H.J.; Son, E.J.; Park, S.H.; Jung, H.K.; Choi, J.S.; Kim, B.M.; Kim, E.-K. Thyroid Imaging Reporting and Data System for US Features of Nodules: A Step in Establishing Better Stratification of Cancer Risk. Radiology 2011, 260, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Ma, O.J.; Gaddis, G.; Steele, M.T.; Cowan, D.; Kaltenbronn, K. Prospective Analysis of the Effect of Physician Experience with the FAST Examination in Reducing the Use of CT Scans. Emerg. Med. Australas. EMA 2005, 17, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Park, C.S.; Kim, S.H.; Jung, S.L.; Kang, B.J.; Kim, J.Y.; Choi, J.J.; Sung, M.S.; Yim, H.W.; Jeong, S.H. Observer Variability in the Sonographic Evaluation of Thyroid Nodules. J. Clin. Ultrasound 2010, 38, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Yoon, D.Y.; Seo, Y.L.; Kim, J.H.; Baek, S.; Lim, K.J.; Cho, Y.K.; Yun, E.J. Intraobserver and Interobserver Variability in Ultrasound Measurements of Thyroid Nodules. J. Ultrasound Med. 2018, 37, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Alfonso, E.; Sanabria, A.; Castillo, M. Surgeons Overestimate the Risk of Malignancy in Thyroid Nodules, Evaluation of Subjective Estimates Using a Bayesian Analysis. Biomedica 2011, 31, 590–598. Available online: http://www.scielo.org.co/pdf/bio/v31n4/v31n4a14.pdf (accessed on 23 September 2022). [CrossRef] [PubMed]
- Seifert, P.; Görges, R.; Zimny, M.; Kreissl, M.C.; Schenke, S. Interobserver Agreement and Efficacy of Consensus Reading in Kwak-, EU-, and ACR-Thyroid Imaging Recording and Data Systems and ATA Guidelines for the Ultrasound Risk Stratification of Thyroid Nodules. Endocrine 2020, 67, 143–154. [Google Scholar] [CrossRef]
- Koundal, D. Computer-Aided Diagnosis of Thyroid Nodule: A Review. Int. J. Comput. Sci. Eng. Surv. 2012, 3, 67–83. [Google Scholar] [CrossRef]
- Savelonas, M.A.; Iakovidis, D.; Dimitropoulos, N.; Maroulis, D. Computational Characterization of Thyroid Tissue in the Radon Domain. In Proceedings of the Twentieth IEEE International Symposium on Computer-Based Medical Systems (CBMS’07), Maribor, Slovenia, 20–22 June 2007; pp. 189–192. [Google Scholar] [CrossRef]
- Keramidas, E.G.; Iakovidis, D.K.; Maroulis, D.; Karkanis, S. Efficient and Effective Ultrasound Image Analysis Scheme for Thyroid Nodule Detection. In Image Analysis and Recognition; Springer: Berlin/Heidelberg, Germany, 2007; Available online: https://link.springer.com/content/pdf/10.1007%2F978-3-540-74260-9.pdf (accessed on 23 September 2022).
- Keramidas, E.G.; Iakovidis, D.K.; Maroulis, D.; Dimitropoulos, N. Thyroid Texture Representation via Noise Resistant Image Features. In Proceedings of the 2008 21st IEEE International Symposium on Computer-Based Medical Systems, Jyväskylä, Finland, 17–19 June 2008; pp. 560–565. [Google Scholar] [CrossRef]
- Gireesha, H.M.; Nanda, S. Thyroid Nodule Segmentation and Classification in Ultrasound Images. Int. J. Eng. Res. Technol. 2014, 3, 2252–2256. Available online: https://www.researchgate.net/profile/Gireesha-H-M-2/publication/327836538_Thyroid_Nodule_Segmentation_and_Classification_in_Ultrasound_Images/links/5baa021145851574f7e434d2/Thyroid-Nodule-Segmentation-and-Classification-in-Ultrasound-Images.pdf (accessed on 23 September 2022).
- Keramidas, E.G.; Maroulis, D.; Iakovidis, D.K. ΤND: A Thyroid Nodule Detection System for Analysis of Ultrasound Images and Videos. J. Med. Syst. 2012, 36, 1271–1281. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Huang, H.-C.; Chen, S.-J. Thyroid Nodule Segmentation and Component Analysis in Ultrasound Images. Biomed. Eng. Appl. Basis Commun. 2010, 22, 81–89. [Google Scholar] [CrossRef]
- Esmaeili, N.; Boese, A.; Davaris, N.; Arens, C.; Navab, N.; Friebe, M.; Illanes, A. Cyclist Effort Features: A Novel Technique for Image Texture Characterization Applied to Larynx Cancer Classification in Contact Endoscopy—Narrow Band Imaging. Diagnostics 2021, 11, 432. [Google Scholar] [CrossRef] [PubMed]
- Chi, J.; Walia, E.; Babyn, P.; Wang, J.; Groot, G.; Eramian, M. Thyroid Nodule Classification in Ultrasound Images by Fine-Tuning Deep Convolutional Neural Network. J. Digit. Imaging 2017, 30, 477–486. [Google Scholar] [CrossRef]
- Bai, Z.; Chang, L.; Yu, R.; Li, X.; Wei, X.; Yu, M.; Liu, Z.; Gao, J.; Zhu, J.; Zhang, Y.; et al. Thyroid Nodules Risk Stratification through Deep Learning Based on Ultrasound Images. Med. Phys. 2020, 47, 6355–6365. [Google Scholar] [CrossRef]
- Peng, S.; Liu, Y.; Lv, W.; Liu, L.; Zhou, Q.; Yang, H.; Ren, J.; Liu, G.; Wang, X.; Zhang, X.; et al. Deep Learning-Based Artificial Intelligence Model to Assist Thyroid Nodule Diagnosis and Management: A Multicentre Diagnostic Study. Lancet Digit. Health 2021, 3, e250–e259. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wu, F.; Jiang, T.; Zhao, Q.; Kong, D. Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 1895–1910. [Google Scholar] [CrossRef]
- Ying, X.; Yu, Z.; Yu, R.; Li, X.; Yu, M.; Zhao, M.; Liu, K. Thyroid Nodule Segmentation in Ultrasound Images Based on Cascaded Convolutional Neural Network. In Neural Information Processing; Springer: Berlin/Heidelberg, Germany, 2018; pp. 373–384. [Google Scholar]
- Kumar, V.; Webb, J.; Gregory, A.; Meixner, D.D.; Knudsen, J.M.; Callstrom, M.; Fatemi, M.; Alizad, A. Automated Segmentation of Thyroid Nodule, Gland, and Cystic Components From Ultrasound Images Using Deep Learning. IEEE Access 2020, 8, 63482–63496. [Google Scholar] [CrossRef]
- Buda, M.; Wildman-Tobriner, B.; Hoang, J.K.; Thayer, D.; Tessler, F.N.; Middleton, W.D.; Mazurowski, M.A. Management of Thyroid Nodules Seen on US Images: Deep Learning May Match Performance of Radiologists. Radiology 2019, 292, 695–701. [Google Scholar] [CrossRef]
- Ataide, E.J.G.; Agrawal, S.; Jauhari, A.; Boese, A.; Illanes, A.; Schenke, S.; Kreissl, M.C.; Friebe, M. Comparison of Deep Learning Algorithms for Semantic Segmentation of Ultrasound Thyroid Nodules. Curr. Dir. Biomed. Eng. 2021, 7, 879–882. [Google Scholar] [CrossRef]
- Illanes, A.; Esmaeili, N.; Poudel, P.; Balakrishnan, S.; Friebe, M. Parametrical Modelling for Texture Characterization—A Novel Approach Applied to Ultrasound Thyroid Segmentation. PLoS ONE 2019, 14, e0211215. [Google Scholar] [CrossRef]
- Ataide, E.J.G.; Jabaraj, M.S.; Illanes, A.; Schenke, S.; Boese, A.; Kreissl, M.C.; Friebe, M. Thyroid Nodule Region Estimation using Auto-Regressive Modelling and Machine Learning. Curr. Dir. Biomed. Eng. 2022, 8, 588–591. [Google Scholar] [CrossRef]
- Ataide, E.J.G.; Ponugoti, N.; Illanes, A.; Schenke, S.; Kreissl, M.; Friebe, M. Thyroid Nodule Classification for Physician Decision Support Using Machine Learning-Evaluated Geometric and Morphological Features. Sensors 2020, 20, 6110. [Google Scholar] [CrossRef] [PubMed]
- Tessler, F.N.; Middleton, W.D.; Grant, E.G.; Hoang, J.K.; Berland, L.L.; Teefey, S.A.; Cronan, J.J.; Beland, M.D.; Desser, T.S.; Frates, M.C.; et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 2017, 14, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Ha, E.J.; Park, J.H. Computer-Aided Diagnostic System for Thyroid Nodules on Ultrasonography: Diagnostic Performance Based on the Thyroid Imaging Reporting and Data System Classification and Dichotomous Outcomes. AJNR. Am. J. Neuroradiol. 2021, 42, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.-L.; Ma, S.-Y.; Zhou, L.; Yu, C.; Xu, H.-S.; Xu, L.-L.; Li, S.-Y. Diagnostic performance of artificial intelligence-based computer-aided diagnosis system in longitudinal and transverse ultrasonic views for differentiating thyroid nodules. Front. Endocrinol. 2023, 14, 1137700. [Google Scholar] [CrossRef]
Instance | Classification Match Percentage (%) |
---|---|
All physicians vs. DSS | 19.2 |
Physician 1 vs. DSS | 57.6 |
Physician 2 vs. DSS | 42.3 |
Physician 3 vs. DSS | 46.1 |
Nodule Number | Physician 1 Cystic (%) | Physician 2 Cystic (%) | Physician 3 Cystic (%) | DSS Cystic (%) |
---|---|---|---|---|
1 | 10 | 10 | 5 | 8 |
2 | 15 | 25 | 5 | 16 |
3 | 15 | 5 | 5 | 14 |
4 | 50 | 50 | 20 | 27 |
5 | 90 | 95 | 0 | 84 |
6 | 0 | 20 | 70 | 22 |
7 | 75 | 70 | 70 | 20 |
8 | 10 | 10 | 10 | 9 |
9 | 45 | 50 | 20 | 1 |
10 | 5 | 5 | 0 | 0 |
11 | 95 | 80 | 80 | 28 |
12 | 50 | 30 | 20 | 16 |
13 | 30 | 30 | 20 | 3 |
14 | 0 | 0 | 0 | 0 |
15 | 95 | 30 | 90 | 27 |
16 | 15 | 20 | 15 | 5 |
17 | 10 | 50 | 5 | 0 |
18 | 5 | 15 | 0 | 0 |
19 | 1 | 5 | 0 | 0 |
20 | 5 | 20 | 5 | 7 |
21 | 0 | 5 | 0 | 0 |
22 | 10 | 10 | 5 | 3 |
23 | 2 | 15 | 5 | 0 |
24 | 70 | 75 | 50 | 66 |
25 | 70 | 10 | 60 | 8 |
26 | 1 | 5 | 0 | 0 |
Nodule Number | VP Physician 1 and DSS (Cystic %) | VP Physician 2 and DSS (Cystic %) | VP Physician 3 and DSS (Cystic %) |
---|---|---|---|
1 | 20 | 20 | −60 |
2 | −6.6 | 36 | −220 |
3 | 6.6 | −180 | −180 |
4 | 46 | 46 | −35 |
5 | 6.6 | 11.5 | NA |
6 | NA | −10 | 68.57 |
7 | 73.3 | 71.4 | 71.42 |
8 | 10 | 10 | 10 |
9 | 97.7 | 98 | 95 |
10 | 100 | 100 | NA |
11 | 70.5 | 65 | 65 |
12 | 68 | 46.6 | 20 |
13 | 90 | 90 | 85 |
14 | 0 | 0 | 0 |
15 | 71.5 | 10 | 70 |
16 | 66.6 | 75 | 66.6 |
17 | 100 | 100 | 100 |
18 | 100 | 100 | NA |
19 | 100 | 100 | 0 |
20 | −40 | 65 | −40 |
21 | 0 | 100 | 0 |
22 | 70 | 70 | 40 |
23 | 100 | 100 | 100 |
24 | 5.7 | 12 | −32 |
25 | 88.5 | 20 | 86.6 |
26 | 100 | 100 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes Ataide, E.J.; Jabaraj, M.S.; Schenke, S.; Petersen, M.; Haghghi, S.; Wuestemann, J.; Illanes, A.; Friebe, M.; Kreissl, M.C. Thyroid Nodule Detection and Region Estimation in Ultrasound Images: A Comparison between Physicians and an Automated Decision Support System Approach. Diagnostics 2023, 13, 2873. https://doi.org/10.3390/diagnostics13182873
Gomes Ataide EJ, Jabaraj MS, Schenke S, Petersen M, Haghghi S, Wuestemann J, Illanes A, Friebe M, Kreissl MC. Thyroid Nodule Detection and Region Estimation in Ultrasound Images: A Comparison between Physicians and an Automated Decision Support System Approach. Diagnostics. 2023; 13(18):2873. https://doi.org/10.3390/diagnostics13182873
Chicago/Turabian StyleGomes Ataide, Elmer Jeto, Mathews S. Jabaraj, Simone Schenke, Manuela Petersen, Sarvar Haghghi, Jan Wuestemann, Alfredo Illanes, Michael Friebe, and Michael C. Kreissl. 2023. "Thyroid Nodule Detection and Region Estimation in Ultrasound Images: A Comparison between Physicians and an Automated Decision Support System Approach" Diagnostics 13, no. 18: 2873. https://doi.org/10.3390/diagnostics13182873
APA StyleGomes Ataide, E. J., Jabaraj, M. S., Schenke, S., Petersen, M., Haghghi, S., Wuestemann, J., Illanes, A., Friebe, M., & Kreissl, M. C. (2023). Thyroid Nodule Detection and Region Estimation in Ultrasound Images: A Comparison between Physicians and an Automated Decision Support System Approach. Diagnostics, 13(18), 2873. https://doi.org/10.3390/diagnostics13182873