Advancing HIV Drug Resistance Technologies and Strategies: Insights from South Africa’s Experience and Future Directions for Resource-Limited Settings
Abstract
:1. Introduction
2. Current Positioning of HIV Drug Resistance Testing
2.1. HIVDR Testing for Surveillance Purposes
2.1.1. Recommended HIVDR Surveillance Strategies
2.1.2. Impact of HIVDR Surveys on ART Guidelines
Pretreatment Drug Resistance in Adults and Adolescents
Pretreatment Drug Resistance in Infants
Acquired Drug Resistance
2.2. HIV Drug Resistance Testing for Individualized Patient Care
3. Technologies for HIV Drug Resistance Testing
3.1. Sanger Sequencing
3.2. Next-Generation Sequencing
3.3. Point-of-Care Assays
4. The South African Situation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNAIDS. Understanding Fast-Track: Accelerating Action to End the AIDS Epidemic by 2030; UNAIDS: Geneva, Switzerland, 2015. [Google Scholar]
- WHO. HIV Drug Resistance Report 2021; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- US DHHS. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV; United States Department of Health and Human Services: Washington, DC, USA, 2023. [Google Scholar]
- EACS. European AIDS Clinical Society Guidelines Version 11.1; EACS: Warsaw, Poland, 2022. [Google Scholar]
- Waters, L.; Winston, A.; Reeves, I.; Boffito, M.; Churchill, D.; Cromarty, B.; Dunn, D.; Fink, D.; Fidler, S.; Foster, C.; et al. BHIVA guidelines on antiretroviral treatment for adults living with HIV-1 2022. HIV Med. 2022, 23, 3–115. [Google Scholar] [CrossRef] [PubMed]
- WHO. Update of Recommendations on First- and Second-Line Antiretroviral Regimens; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- WHO. HIV Drug Resistance Stategy: 2021 Update; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Bertagnolio, S.; Jordan, M.R.; Giron, A.; Inzaule, S. Epidemiology of HIV drug resistance in low- and middle-income countries and WHO global strategy to monitor its emergence. Curr. Opin. HIV AIDS 2022, 17, 229–239. [Google Scholar] [CrossRef] [PubMed]
- WHO. Surveillance of HIV Drug Resistance in Adults Initiating Antiretroviral Therapy: Pre-Treatment HIV Drug Resistance; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- WHO. Surveillance of HIV Drug Resistance in Children Newly Diagnosed with HIV by Early Infant Diagnosis; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- WHO. Laboratory-Based Survey of Acquired HIV Drug Resistance Using Remnant Viral Load Specimens; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- WHO. Clinic-Based Survey of Acquired HIV Drug Resistance; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- WHO. Sentinel Surveys of Acquired HIV Resistance to Dolutegravir among People Receiving Dolutegravir-Containing Antiretroviral Therapy; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Gupta, R.K.; Jordan, M.R.; Sultan, B.J.; Hill, A.; Davis, D.H.; Gregson, J.; Sawyer, A.W.; Hamers, R.L.; Ndembi, N.; Pillay, D.; et al. Global trends in antiretroviral resistance in treatment-naive individuals with HIV after rollout of antiretroviral treatment in resource-limited settings: A global collaborative study and meta-regression analysis. Lancet 2012, 380, 1250–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. HIV Drug Resistance Report 2012; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- WHO. HIV Drug Resistance Report 2017; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- WHO. HIV Drug Resistance Report 2019; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Stellbrink, H.J.; Reynes, J.; Lazzarin, A.; Voronin, E.; Pulido, F.; Felizarta, F.; Almond, S.; St Clair, M.; Flack, N.; Min, S.; et al. Dolutegravir in antiretroviral-naive adults with HIV-1: 96-week results from a randomized dose-ranging study. AIDS 2013, 27, 1771–1778. [Google Scholar] [CrossRef]
- Meireles, M.V.; Pascom, A.R.P.; Duarte, E.C.; McFarland, W. Comparative effectiveness of first-line antiretroviral therapy: Results from a large real-world cohort after the implementation of dolutegravir. AIDS 2019, 33, 1663–1668. [Google Scholar] [CrossRef]
- Zash, R.; Makhema, J.; Shapiro, R.L. Neural-Tube Defects with Dolutegravir Treatment from the Time of Conception. N. Engl. J. Med. 2018, 379, 979–981. [Google Scholar] [CrossRef]
- CHAI. 2022 HIV Market Report; CHAI: Boston, MA, USA, 2022. [Google Scholar]
- Violari, A.; Lindsey, J.C.; Hughes, M.D.; Mujuru, H.A.; Barlow-Mosha, L.; Kamthunzi, P.; Chi, B.H.; Cotton, M.F.; Moultrie, H.; Khadse, S.; et al. Nevirapine versus ritonavir-boosted lopinavir for HIV-infected children. N. Engl. J. Med. 2012, 366, 2380–2389. [Google Scholar] [CrossRef] [Green Version]
- Barlow-Mosha, L.; Angelidou, K.; Lindsey, J.; Archary, M.; Cotton, M.; Dittmer, S.; Fairlie, L.; Kabugho, E.; Kamthunzi, P.; Kinikar, A.; et al. Nevirapine-versus Lopinavir/Ritonavir-Based Antiretroviral Therapy in HIV-Infected Infants and Young Children: Long-term Follow-up of the IMPAACT P1060 Randomized Trial. Clin. Infect. Dis. 2016, 63, 1113–1121. [Google Scholar] [CrossRef] [Green Version]
- WHO. Consolidated Guidelines on HIV Prevention, Testing, Treatment, Service Delivery and Monitoring: Recommendations for a Public Health Approach; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Paton, N.I.; Kityo, C.; Hoppe, A.; Reid, A.; Kambugu, A.; Lugemwa, A.; van Oosterhout, J.J.; Kiconco, M.; Siika, A.; Mwebaze, R.; et al. Assessment of second-line antiretroviral regimens for HIV therapy in Africa. N. Engl. J. Med. 2014, 371, 234–247. [Google Scholar] [CrossRef] [Green Version]
- Hakim, J.G.; Thompson, J.; Kityo, C.; Hoppe, A.; Kambugu, A.; van Oosterhout, J.J.; Lugemwa, A.; Siika, A.; Mwebaze, R.; Mweemba, A.; et al. Lopinavir plus nucleoside reverse-transcriptase inhibitors, lopinavir plus raltegravir, or lopinavir monotherapy for second-line treatment of HIV (EARNEST): 144-week follow-up results from a randomised controlled trial. Lancet Infect. Dis. 2018, 18, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Group, S.-L.S.; Boyd, M.A.; Kumarasamy, N.; Moore, C.L.; Nwizu, C.; Losso, M.H.; Mohapi, L.; Martin, A.; Kerr, S.; Sohn, A.H.; et al. Ritonavir-boosted lopinavir plus nucleoside or nucleotide reverse transcriptase inhibitors versus ritonavir-boosted lopinavir plus raltegravir for treatment of HIV-1 infection in adults with virological failure of a standard first-line ART regimen (SECOND-LINE): A randomised, open-label, non-inferiority study. Lancet 2013, 381, 2091–2099. [Google Scholar] [CrossRef]
- Paton, N.I.; Kityo, C.; Thompson, J.; Nankya, I.; Bagenda, L.; Hoppe, A.; Hakim, J.; Kambugu, A.; van Oosterhout, J.J.; Kiconco, M.; et al. Nucleoside reverse-transcriptase inhibitor cross-resistance and outcomes from second-line antiretroviral therapy in the public health approach: An observational analysis within the randomised, open-label, EARNEST trial. Lancet HIV 2017, 4, e341–e348. [Google Scholar] [CrossRef] [Green Version]
- Stockdale, A.J.; Saunders, M.J.; Boyd, M.A.; Bonnett, L.J.; Johnston, V.; Wandeler, G.; Schoffelen, A.F.; Ciaffi, L.; Stafford, K.; Collier, A.C.; et al. Effectiveness of Protease Inhibitor/Nucleos(t)ide Reverse Transcriptase Inhibitor-Based Second-line Antiretroviral Therapy for the Treatment of Human Immunodeficiency Virus Type 1 Infection in Sub-Saharan Africa: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 2018, 66, 1846–1857. [Google Scholar] [CrossRef] [Green Version]
- Jordan, M.R.; Hamunime, N.; Bikinesi, L.; Sawadogo, S.; Agolory, S.; Shiningavamwe, A.N.; Negussie, T.; Fisher-Walker, C.L.; Raizes, E.G.; Mutenda, N.; et al. High levels of HIV drug resistance among adults failing second-line antiretroviral therapy in Namibia. Medicine 2020, 99, e21661. [Google Scholar] [CrossRef] [PubMed]
- Steegen, K.; Bronze, M.; Papathanasopoulos, M.A.; van Zyl, G.; Goedhals, D.; Van Vuuren, C.; Macleod, W.; Sanne, I.; Stevens, W.S.; Carmona, S.C. Prevalence of Antiretroviral Drug Resistance in Patients Who Are Not Responding to Protease Inhibitor-Based Treatment: Results from the First National Survey in South Africa. J. Infect. Dis. 2016, 214, 1826–1830. [Google Scholar] [CrossRef] [PubMed]
- Chimukangara, B.; Lessells, R.J.; Sartorius, B.; Gounder, L.; Manyana, S.; Pillay, M.; Singh, L.; Giandhari, J.; Govender, K.; Samuel, R.; et al. HIV-1 drug resistance in adults and adolescents on protease inhibitor-based antiretroviral therapy in KwaZulu-Natal Province, South Africa. J. Glob. Antimicrob. Resist. 2022, 29, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Cohen, K.; Stewart, A.; Kengne, A.P.; Leisegang, R.; Coetsee, M.; Maharaj, S.; Dunn, L.; Hislop, M.; van Zyl, G.; Meintjes, G.; et al. A Clinical Prediction Rule for Protease Inhibitor Resistance in Patients Failing Second-Line Antiretroviral Therapy. J. Acquir. Immune Defic. Syndr. 2019, 80, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Hermans, L.E.; Steegen, K.; Ter Heine, R.; Schuurman, R.; Tempelman, H.A.; Moraba, R.; van Maarseveen, E.; Nijhuis, M.; Pillay, T.; Legg-E’Silva, D.; et al. Drug level testing as a strategy to determine eligibility for drug resistance testing after failure of ART: A retrospective analysis of South African adult patients on second-line ART. J. Int. AIDS Soc. 2020, 23, e25501. [Google Scholar] [CrossRef] [PubMed]
- NDoH. 2023 ART Clinical Guidelines for the Management of HIV in Adults, Pregnancy and Breastfeeding, Adolescents, Children, Infants and Neonates; South African National Department of Health: Pretoria, South Africa, 2023. [Google Scholar]
- Kanters, S.; Vitoria, M.; Zoratti, M.; Doherty, M.; Penazzato, M.; Rangaraj, A.; Ford, N.; Thorlund, K.; Anis, P.A.H.; Karim, M.E.; et al. Comparative efficacy, tolerability and safety of dolutegravir and efavirenz 400mg among antiretroviral therapies for first-line HIV treatment: A systematic literature review and network meta-analysis. EClinicalMedicine 2020, 28, 100573. [Google Scholar] [CrossRef]
- Keene, C.M.; Cassidy, T.; Zhao, Y.; Griesel, R.; Jackson, A.; Sayed, K.; Omar, Z.; Hill, A.; Ngwenya, O.; Van Zyl, G.; et al. Recycling Tenofovir in Second-line Antiretroviral Treatment with Dolutegravir: Outcomes and Viral Load Trajectories to 72 weeks. J. Acquir. Immune Defic. Syndr. 2023, 92, 422–429. [Google Scholar] [CrossRef]
- Keene, C.M.; Griesel, R.; Zhao, Y.; Gcwabe, Z.; Sayed, K.; Hill, A.; Cassidy, T.; Ngwenya, O.; Jackson, A.; van Zyl, G.; et al. Virologic efficacy of tenofovir, lamivudine and dolutegravir as second-line antiretroviral therapy in adults failing a tenofovir-based first-line regimen. AIDS 2021, 35, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Paton, N.I.; Musaazi, J.; Kityo, C.; Walimbwa, S.; Hoppe, A.; Balyegisawa, A.; Asienzo, J.; Kaimal, A.; Mirembe, G.; Lugemwa, A.; et al. Efficacy and safety of dolutegravir or darunavir in combination with lamivudine plus either zidovudine or tenofovir for second-line treatment of HIV infection (NADIA): Week 96 results from a prospective, multicentre, open-label, factorial, randomised, non-inferiority trial. Lancet HIV 2022, 9, e381–e393. [Google Scholar] [CrossRef] [PubMed]
- Schramm, B.; Temfack, E.; Descamps, D.; Nicholas, S.; Peytavin, G.; Bitilinyu-Bangoh, J.E.; Storto, A.; Le, M.P.; Abdi, B.; Ousley, J.; et al. Viral suppression and HIV-1 drug resistance 1 year after pragmatic transitioning to dolutegravir first-line therapy in Malawi: A prospective cohort study. Lancet HIV 2022, 9, e544–e553. [Google Scholar] [CrossRef] [PubMed]
- Paton, N.I.; Musaazi, J.; Kityo, C.; Walimbwa, S.; Hoppe, A.; Balyegisawa, A.; Kaimal, A.; Mirembe, G.; Tukamushabe, P.; Ategeka, G.; et al. Dolutegravir or Darunavir in Combination with Zidovudine or Tenofovir to Treat HIV. N. Engl. J. Med. 2021, 385, 330–341. [Google Scholar] [CrossRef]
- Mulenga, L.F.S.; Mweemba, A.; Fwoloshi, S.; Mweemba, A.; Siwingwa, M.; Sivile, S.; Kampamba, D.; Engamba, D.C.; Mbewe, N.; Phiri, H.; et al. Dolutegravir with Recycled NRTIs is Non-Inferior to PI-Based ART: VISEND Trial. In Proceedings of the 29th Conference on Retroviruses and Opportunistic Infections, Virtual, 12–16 February 2022. [Google Scholar]
- Van Oosterhout, J.J.; Chipungu, C.; Nkhoma, L.; Kanise, H.; Hosseinipour, M.C.; Sagno, J.B.; Simon, K.; Cox, C.; Hoffman, R.; Steegen, K.; et al. Dolutegravir Resistance in Malawi’s National HIV Treatment Program. Open Forum Infect. Dis. 2022, 9, ofac148. [Google Scholar] [CrossRef] [PubMed]
- Vavro, C.; Ruel, T.; Wiznia, A.; Montanez, N.; Nangle, K.; Horton, J.; Buchanan, A.M.; Stewart, E.L.; Palumbo, P. Emergence of Resistance in HIV-1 Integrase with Dolutegravir Treatment in a Pediatric Population from the IMPAACT P1093 Study. Antimicrob. Agents Chemother. 2022, 66, e0164521. [Google Scholar] [CrossRef]
- Turkova, A.; White, E.; Mujuru, H.A.; Kekitiinwa, A.R.; Kityo, C.M.; Violari, A.; Lugemwa, A.; Cressey, T.R.; Musoke, P.; Variava, E.; et al. Dolutegravir as First- or Second-Line Treatment for HIV-1 Infection in Children. N. Engl. J. Med. 2021, 385, 2531–2543. [Google Scholar] [CrossRef]
- Ji, H.; Enns, E.; Brumme, C.J.; Parkin, N.; Howison, M.; Lee, E.R.; Capina, R.; Marinier, E.; Avila-Rios, S.; Sandstrom, P.; et al. Bioinformatic data processing pipelines in support of next-generation sequencing-based HIV drug resistance testing: The Winnipeg Consensus. J. Int. AIDS Soc. 2018, 21, e25193. [Google Scholar] [CrossRef] [Green Version]
- Ji, H.; Sandstrom, P.; Paredes, R.; Harrigan, P.R.; Brumme, C.J.; Avila Rios, S.; Noguera-Julian, M.; Parkin, N.; Kantor, R. Are We Ready for NGS HIV Drug Resistance Testing? The Second “Winnipeg Consensus” Symposium. Viruses 2020, 12, 586. [Google Scholar] [CrossRef]
- Chua, R.J.; Capina, R.; Ji, H. Point-of-Care Tests for HIV Drug Resistance Monitoring: Advances and Potentials. Pathogens 2022, 11, 724. [Google Scholar] [CrossRef]
- Panpradist, N.; Beck, I.A.; Chung, M.H.; Kiarie, J.N.; Frenkel, L.M.; Lutz, B.R. Simplified Paper Format for Detecting HIV Drug Resistance in Clinical Specimens by Oligonucleotide Ligation. PLoS ONE 2016, 11, e0145962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panpradist, N.; Beck, I.A.; Vrana, J.; Higa, N.; McIntyre, D.; Ruth, P.S.; So, I.; Kline, E.C.; Kanthula, R.; Wong-On-Wing, A.; et al. OLA-Simple: A software-guided HIV-1 drug resistance test for low-resource laboratories. EBioMedicine 2019, 50, 34–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panpradist, N.; Beck, I.A.; Ruth, P.S.; Avila-Rios, S.; Garcia-Morales, C.; Soto-Nava, M.; Tapia-Trejo, D.; Matias-Florentino, M.; Paz-Juarez, H.E.; Del Arenal-Sanchez, S.; et al. Near point-of-care, point-mutation test to detect drug resistance in HIV-1: A validation study in a Mexican cohort. AIDS 2020, 34, 1331–1338. [Google Scholar] [CrossRef]
- Duarte, H.A.; Beck, I.A.; Levine, M.; Kiptinness, C.; Kingoo, J.M.; Chohan, B.; Sakr, S.R.; Chung, M.H.; Frenkel, L.M. Implementation of a point mutation assay for HIV drug resistance testing in Kenya. AIDS 2018, 32, 2301–2308. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, I.J.; Rowley, C.F.; Essex, M. PANDAA intentionally violates conventional qPCR design to enable durable, mismatch-agnostic detection of highly polymorphic pathogens. Commun. Biol. 2021, 4, 227. [Google Scholar] [CrossRef] [PubMed]
- Maruapula, D.; MacLeod, I.J.; Moyo, S.; Musonda, R.; Seatla, K.; Molebatsi, K.; Leteane, M.; Essex, M.; Gaseitsiwe, S.; Rowley, C.F. Use of a mutation-specific genotyping method to assess for HIV-1 drug resistance in antiretroviral-naive HIV-1 Subtype C-infected patients in Botswana. AAS Open Res. 2020, 3, 50. [Google Scholar] [CrossRef] [PubMed]
- Kouamou, V.; Manasa, J.; Katzenstein, D.; McGregor, A.M.; Ndhlovu, C.E.; Makadzange, T. Diagnostic Accuracy of Pan-Degenerate Amplification and Adaptation Assay for HIV-1 Drug Resistance Mutation Analysis in Low- and Middle-Income Countries. J. Clin. Microbiol. 2020, 58, e01045-20. [Google Scholar] [CrossRef]
- NDoH. 2019 ART Clinical Guidelines for the Management of HIV in Adults, Pregnancy, Adolescents, Children, Infants and Neonates; South African National Department of Health: Pretoria, South Africa, 2019. [Google Scholar]
- NDoH. National Consolidated Guidelines: Mother to Child Transmission of HIV (PMTCT) and the Management of HIV in Children, Adolescents and Adults; South African National Department of Health: Pretoria, South Africa, 2015. [Google Scholar]
- NDoH. South African Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents; South African National Department of Health: Pretoria, South Africa, 2013. [Google Scholar]
- Moyo, S.; Hunt, G.; Zuma, K.; Zungu, M.; Marinda, E.; Mabaso, M.; Kana, V.; Kalimashe, M.; Ledwaba, J.; Naidoo, I.; et al. HIV drug resistance profile in South Africa: Findings and implications from the 2017 national HIV household survey. PLoS ONE 2020, 15, e0241071. [Google Scholar] [CrossRef]
- Hunt, G.; Steegen, K.; Hans, L.; Cassim, N.; Diallo, K.; Briggs-Hagen, M.; Ayalew, K.; Raizes, E.; Macleod, W.; Carmona, S. High levels of HIV drug resistance in adult patients with unsuppressed viral load, measured through routine viral load programme monitoring in South Africa, 2019. In Proceedings of the 23rd International AIDS Conference, Virtual, 29 July–2 August 2020. [Google Scholar]
- Steegen, K.; Hunt, G.; MacLeod, W.; Hans, L.; Kana, V.; Kalimashe, M.N.; Zwane, H.; van der Walt, C.; Cutler, E.; Cassim, N.; et al. HIV Drug Resistance Surveillance Leveraging on Routine ART Programme Monitoring in South Africa. In Proceedings of the INTEREST, Maputo, Mozambique, 9–12 May 2023. [Google Scholar]
Assay | Gene Coverage | Sequencing Platform | Regulatory Status |
---|---|---|---|
HIV-1 Genotyping Kit with Integrase (ThermoFisher Scientific, Waltham, MA, USA) | PR, RT, IN | Sanger | CE-IVD |
DeepChek-HIV (Advanced Biological Laboratories, Luxembourg) | PR, RT, IN, gp120 | Sanger & NGS | CE-IVD |
Sentosa SQ HIV Genotyping (VELA Diagnostics, Singapore) | PR, RT, IN | NGS | CE-IVD |
HIV-1 Solution (Arrow Diagnostics, Genova, Italy) | PR, RT, IN, gp120 | NGS | CE-IVD |
DEEPGEN HIV (Case Western Reserve University, Cleveland, OH, USA) | PR, RT, IN | NGS | Core service |
GenoSure PRIme (Monogram Biosciences, South San Francisco, CA, USA) | PR, RT, IN | NGS | Core service |
Laboratory developed methods | Various | Sanger & NGS | RUO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steegen, K.; van Zyl, G.U.; Claassen, M.; Khan, A.; Pillay, M.; Govender, S.; Bester, P.A.; van Straaten, J.M.; Kana, V.; Cutler, E.; et al. Advancing HIV Drug Resistance Technologies and Strategies: Insights from South Africa’s Experience and Future Directions for Resource-Limited Settings. Diagnostics 2023, 13, 2209. https://doi.org/10.3390/diagnostics13132209
Steegen K, van Zyl GU, Claassen M, Khan A, Pillay M, Govender S, Bester PA, van Straaten JM, Kana V, Cutler E, et al. Advancing HIV Drug Resistance Technologies and Strategies: Insights from South Africa’s Experience and Future Directions for Resource-Limited Settings. Diagnostics. 2023; 13(13):2209. https://doi.org/10.3390/diagnostics13132209
Chicago/Turabian StyleSteegen, Kim, Gert U. van Zyl, Mathilda Claassen, Aabida Khan, Melendhran Pillay, Subitha Govender, Phillip A. Bester, Johanna M. van Straaten, Vibha Kana, Ewaldé Cutler, and et al. 2023. "Advancing HIV Drug Resistance Technologies and Strategies: Insights from South Africa’s Experience and Future Directions for Resource-Limited Settings" Diagnostics 13, no. 13: 2209. https://doi.org/10.3390/diagnostics13132209
APA StyleSteegen, K., van Zyl, G. U., Claassen, M., Khan, A., Pillay, M., Govender, S., Bester, P. A., van Straaten, J. M., Kana, V., Cutler, E., Kalimashe, M. N., Lebelo, R. L., Moloi, M. B. H., & Hans, L. (2023). Advancing HIV Drug Resistance Technologies and Strategies: Insights from South Africa’s Experience and Future Directions for Resource-Limited Settings. Diagnostics, 13(13), 2209. https://doi.org/10.3390/diagnostics13132209