How to Evaluate Fibrosis in IBD?
Abstract
:1. The Importance of Fibrosis in IBD
1.1. Fibrosis in CD
1.2. Fibrosis in UC
2. Is There Fibrosis without Inflammation?
2.1. Inflammation-Dependent Fibrogenesis
2.2. Inflammation-Independent Fibrogenesis
2.3. Unmet Needs
3. Non-Invasive Techniques to Access Fibrosis
Imaging Techniques
Cross-Sectional Imaging
Magnetic Resonance
Computer Tomography
Positron Emission Tomography
Ultrasonography
4. What Is the Future Holding for Fibrosis?
4.1. Radiomics
4.2. Others
4.3. Anti-Fibrotic Therapy
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Sairenji, T.; Collins, K.L.; Evans, D.V. An Update on Inflammatory Bowel Disease. Prim. Care 2017, 44, 673–692. [Google Scholar] [CrossRef]
- Quaresma, A.B.; Kaplan, G.G.; Kotze, P.G. The Globalization of Inflammatory Bowel Disease. Curr. Opin. Gastroenterol. 2019, 35, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Baumgart, D.C.; Sandborn, W.J. Inflammatory Bowel Disease: Clinical Aspects and Established and Evolving Therapies. Lancet 2007, 369, 1641–1657. [Google Scholar] [CrossRef]
- Cosnes, J.; Gowerrousseau, C.; Seksik, P.; Cortot, A. Epidemiology and Natural History of Inflammatory Bowel Diseases. Gastroenterology 2011, 140, 1785–1794. [Google Scholar] [CrossRef] [PubMed]
- D’Haens, G.; Rieder, F.; Feagan, B.G.; Higgins, P.D.R.; Panés, J.; Maaser, C.; Rogler, G.; Löwenberg, M.; van der Voort, R.; Pinzani, M.; et al. Challenges in the Pathophysiology, Diagnosis, and Management of Intestinal Fibrosis in Inflammatory Bowel Disease. Gastroenterology 2022, 162, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Rieder, F.; Fiocchi, C.; Rogler, G. Mechanisms, Management, and Treatment of Fibrosis in Patients With Inflammatory Bowel Diseases. Gastroenterology 2017, 152, 340–350.e6. [Google Scholar] [CrossRef] [Green Version]
- Latella, G.; di Gregorio, J.; Flati, V.; Rieder, F.; Lawrance, I.C. Mechanisms of Initiation and Progression of Intestinal Fibrosis in IBD. Scand. J. Gastroenterol. 2014, 50, 53–65. [Google Scholar] [CrossRef]
- Wang, J.; Lin, S.; Brown, J.M.; van Wagoner, D.; Fiocchi, C.; Rieder, F. Novel Mechanisms and Clinical Trial Endpoints in Intestinal Fibrosis. Immunol. Rev. 2021, 302, 211–227. [Google Scholar] [CrossRef]
- Bamias, G.; Pizarro, T.T.; Cominelli, F. Immunological Regulation of Intestinal Fibrosis in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2022, 28, 337–349. [Google Scholar] [CrossRef]
- Gordon, I.O.; Agrawal, N.; Willis, E.; Goldblum, J.R.; Lopez, R.; Allende, D.; Liu, X.; Patil, D.Y.; Yerian, L.; El-Khider, F.; et al. Fibrosis in Ulcerative Colitis Is Directly Linked to Severity and Chronicity of Mucosal Inflammation. Aliment. Pharmacol. Ther. 2018, 47, 922–939. [Google Scholar] [CrossRef]
- Yoo, J.H.; Holubar, S.; Rieder, F. Fibrostenotic Strictures in Crohn’s Disease. Intest. Res. 2020, 18, 379–401. [Google Scholar] [CrossRef]
- Sleiman, J.; el Ouali, S.; Qazi, T.; Cohen, B.; Steele, S.R.; Baker, M.E.; Rieder, F. Prevention and Treatment of Stricturing Crohn’s Disease–Perspectives and Challenges. Expert. Rev. Gastroenterol. Hepatol. 2021, 15, 401–411. [Google Scholar] [CrossRef]
- Lin, X.; Wang, Y.; Liu, Z.; Lin, S.; Tan, J.; He, J.; Hu, F.; Wu, X.; Ghosh, S.; Chen, M.; et al. Intestinal Strictures in Crohn’s Disease: A 2021 Update. Ther. Adv. Gastroenterol. 2022, 15, 17562848221104951. [Google Scholar] [CrossRef] [PubMed]
- Gordon, I.O.; Bettenworth, D.; Bokemeyer, A.; Srivastava, A.; Rosty, C.; de Hertogh, G.; Robert, M.E.; Valasek, M.A.; Mao, R.; Li, J.; et al. International Consensus to Standardise Histopathological Scoring for Small Bowel Strictures in Crohn’s Disease. Gut 2022, 71, 479–486. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, X.; Ko, H.M.; Stocker, D.; Ellman, J.; Chen, J.; Hao, Y.; Bhardwaj, S.; Liang, Y.; Cho, J.; et al. Constrictive and Hypertrophic Strictures in Ileal Crohn’s Disease. Clin. Gastroenterol. Hepatol. 2022, 20, e1292–e1304. [Google Scholar] [CrossRef] [PubMed]
- Rieder, F.; Zimmermann, E.M.; Remzi, F.H.; Sandborn, W.J. Crohn’s Disease Complicated by Strictures: A Systematic Review. Gut 2013, 62, 1072–1084. [Google Scholar] [CrossRef] [Green Version]
- de Sousa, H.T.; Gullo, I.; Castelli, C.; Dias, C.C.; Rieder, F.; Carneiro, F.; Magro, F. Ileal Crohn’s Disease Exhibits Similar Transmural Fibrosis Irrespective of Phenotype. Clin. Transl. Gastroenterol. 2021, 12, E00330. [Google Scholar] [CrossRef] [PubMed]
- Gasche, C.; Scholmerich, J.; Brynskov, J.; D’Haens, G.; Hanauer, S.B.; Irvine, J.E.; Jewell, D.P.; Rachmilewitz, D.; Sachar, D.B.; Sandborn, W.J.; et al. A Simple Classification of CrohN’s Disease: Report of the Working Party for the World Congresses of Gastroenterology, Vienna 1998. Inflamm. Bowel Dis. 2000, 6, 8–15. [Google Scholar] [CrossRef]
- Satsangi, J. The Montreal Classification of Inflammatory Bowel Disease: Controversies, Consensus, and Implications. Gut 2006, 55, 749–753. [Google Scholar] [CrossRef] [Green Version]
- Cosnes, J.; Cattan, S.; Blain, A.; Beaugerie, L.; Carbonnel, F.; Parc, R.; Gendre, J.-P. Long-Term Evolution of Disease Behavior of Crohn’s Disease. Inflamm. Bowel Dis. 2002, 8, 244–250. [Google Scholar] [CrossRef]
- Louis, E.; Collard, A.; Oger, A.F.; Degroote, E.; Aboul Nasr El Yafi, F.A.; Belaiche, J. Behaviour of Crohn’s Disease According to the Vienna Classification: Changing Pattern over the Course of the Disease. Gut 2001, 49, 777–782. [Google Scholar] [CrossRef] [Green Version]
- Freeman, H.J. Natural History and Clinical Behavior of Crohn’s Disease Extending beyond Two Decades. J. Clin. Gastroenterol. 2003, 37, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Vernier–Massouille, G.; Balde, M.; Salleron, J.; Turck, D.; Dupas, J.L.; Mouterde, O.; Merle, V.; Salomez, J.L.; Branche, J.; Marti, R.; et al. Natural History of Pediatric Crohn’s Disease: A Population-Based Cohort Study. Gastroenterology 2008, 135, 1106–1113. [Google Scholar] [CrossRef] [PubMed]
- Freeman, H.J. Temporal and Geographic Evolution of Longstanding Crohn’s Disease over More than 50 Years. Can. J. Gastroenterol. 2003, 17, 696–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burisch, J.; Kiudelis, G.; Kupcinskas, L.; Kievit, H.A.L.; Andersen, K.W.; Andersen, V.; Salupere, R.; Pedersen, N.; Kjeldsen, J.; D’Incà, R.; et al. Natural Disease Course of Crohn’s Disease during the First 5 Years after Diagnosis in a European Population-Based Inception Cohort: An Epi-IBD Study. Gut 2019, 68, 423–433. [Google Scholar] [CrossRef]
- Thia, K.T.; Sandborn, W.J.; Harmsen, W.S.; Zinsmeister, A.R.; Loftus, E.V. Risk Factors Associated With Progression to Intestinal Complications of Crohn’s Disease in a Population-Based Cohort. Gastroenterology 2010, 139, 1147–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pariente, B.; Cosnes, J.; Danese, S.; Sandborn, W.J.; Lewin, M.; Fletcher, J.G.; Chowers, Y.; D’Haens, G.; Feagan, B.G.; Hibi, T.; et al. Development of the Crohn’s Disease Digestive Damage Score, the Lémann Score. Inflamm. Bowel Dis. 2011, 17, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Magro, F.; Magalhães, D.; Patita, M.; Arroja, B.; Lago, P.; Rosa, I.; Tavares de Sousa, H.; Ministro, P.; Mocanu, I.; Vieira, A.; et al. Subclinical Persistent Inflammation as Risk Factor for Crohn’s Disease Progression: Findings from a Prospective Real-World Study of 2 Years. Clin. Gastroenterol. Hepatol. 2022, 20, 2059–2073.e7. [Google Scholar] [CrossRef]
- Peyrin-Biroulet, L.; Reinisch, W.; Colombel, J.-F.; Mantzaris, G.J.; Kornbluth, A.; Diamond, R.; Rutgeerts, P.; Tang, L.K.; Cornillie, F.J.; Sandborn, W.J. Clinical Disease Activity, C-Reactive Protein Normalisation and Mucosal Healing in Crohn’s Disease in the SONIC Trial. Gut 2014, 63, 88–95. [Google Scholar] [CrossRef]
- Fernandes, S.R.; Rodrigues, R.V.; Bernardo, S.; Cortez-Pinto, J.; Rosa, I.; da Silva, J.P.; Gonçalves, A.R.; Valente, A.; Baldaia, C.; Santos, P.M.; et al. Transmural Healing Is Associated with Improved Long-Term Outcomes of Patients with Crohn’s Disease. Inflamm. Bowel Dis. 2017, 23, 1403–1409. [Google Scholar] [CrossRef]
- Torres, J.; Mehandru, S.; Colombel, J.-F.; Peyrin-Biroulet, L. Crohn’s Disease. Lancet 2017, 389, 1741–1755. [Google Scholar] [CrossRef]
- Solberg, I.C.; Vatn, M.H.; Høie, O.; Stray, N.; Sauar, J.; Jahnsen, J.; Moum, B.; Lygren, I. Clinical Course in Crohn’s Disease: Results of a Norwegian Population-Based Ten-Year Follow-Up Study. Clin. Gastroenterol. Hepatol. 2007, 5, 1430–1438. [Google Scholar] [CrossRef]
- Ramadas, A.V.; Gunesh, S.; Thomas, G.A.O.; Williams, G.T.; Hawthorne, A.B. Natural History of Crohn’s Disease in a Population-Based Cohort from Cardiff (1986–2003): A Study of Changes in Medical Treatment and Surgical Resection Rates. Gut 2010, 59, 1200–1206. [Google Scholar] [CrossRef]
- Peyrin-Biroulet, L.; Loftus, E.V.; Colombel, J.-F.; Sandborn, W.J. The Natural History of Adult Crohn’s Disease in Population-Based Cohorts. Am. J. Gastroenterol. 2010, 105, 289–297. [Google Scholar] [CrossRef]
- Tavares de Sousa, H.; Carneiro, F. Understanding Progression of Strictures in Ileal Crohn’s Disease—The Importance of Setting Methodological Standards. United Eur. Gastroenterol. J. 2022, 10, 915–916. [Google Scholar] [CrossRef] [PubMed]
- de Bruyn, J.R.; Meijer, S.L.; Wildenberg, M.E.; Bemelman, W.A.; van den Brink, G.R.; D’Haens, G.R. Development of Fibrosis in Acute and Longstanding Ulcerative Colitis. J. Crohns Colitis 2015, 9, 966–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ippolito, C.; Colucci, R.; Segnani, C.; Errede, M.; Girolamo, F.; Virgintino, D.; Dolfi, A.; Tirotta, E.; Buccianti, P.; di Candio, G.; et al. Fibrotic and Vascular Remodelling of Colonic Wall in Patients with Active Ulcerative Colitis. J. Crohns Colitis 2016, 10, 1194–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magro, F.; Sousa, H.T. Editorial: Ulcerative Colitis Submucosal Fibrosis and Inflammation: More than Just Strictures. Aliment. Pharmacol. Ther. 2018, 47, 1033–1034. [Google Scholar] [CrossRef] [Green Version]
- Goulston, S.J.M.; McGovern, V.J. The Nature of Benign Strictures in Ulcerative Colitis. N. Engl. J. Med. 1969, 281, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Achrafie, L.; Kodjamanova, P.; Tencer, T.; Kumar, J. Endoscopic Mucosal Healing and Histologic Remission in Ulcerative Colitis: A Systematic Literature Review of Clinical, Quality-of-Life and Economic Outcomes. Curr. Med. Res. Opin. 2022, 38, 1531–1541. [Google Scholar] [CrossRef]
- da Silva Watanabe, P.; Cavichioli, A.M.; D’Arc de Lima Mendes, J.; Aktar, R.; Peiris, M.; Blackshaw, L.A.; de Almeida Araújo, E.J. Colonic Motility Adjustments in Acute and Chronic DSS-Induced Colitis. Life Sci. 2023, 321, 121642. [Google Scholar] [CrossRef] [PubMed]
- Alfredsson, J.; Wick, M.J. Mechanism of Fibrosis and Stricture Formation in Crohn’s Disease. Scand. J. Immunol. 2020, 92, e12990. [Google Scholar] [CrossRef] [PubMed]
- Lawrance, I.C.; Rogler, G.; Bamias, G.; Breynaert, C.; Florholmen, J.; Pellino, G.; Reif, S.; Speca, S.; Latella, G. Cellular and Molecular Mediators of Intestinal Fibrosis. J. Crohns Colitis 2017, 11, 1491–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rieder, F. Managing Intestinal Fibrosis in Patients with Inflammatory Bowel Disease. Gastroenterol. Hepatol. 2018, 14, 120–122. [Google Scholar]
- Li, J.; Mao, R.; Kurada, S.; Wang, J.; Lin, S.; Chandra, J.; Rieder, F. Pathogenesis of Fibrostenosing Crohn’s Disease. Transl. Res. 2019, 209, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Bettenworth, D.; Rieder, F. Pathogenesis of Intestinal Fibrosis in Inflammatory Bowel Disease and Perspectives for Therapeutic Implication. Dig. Dis. 2017, 35, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Fiocchi, C.; Kay Lund, P. Themes in Fibrosis and Gastrointestinal Inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300, G677–G683. [Google Scholar] [CrossRef]
- Latella, G.; Rogler, G.; Bamias, G.; Breynaert, C.; Florholmen, J.; Pellino, G.; Reif, S.; Speca, S.; Lawrance, I.C. Results of the 4th Scientific Workshop of the ECCO (I): Pathophysiology of Intestinal Fibrosis in IBD. J. Crohns Colitis 2014, 8, 1147–1165. [Google Scholar] [CrossRef] [Green Version]
- Grafe, I.; Alexander, S.; Peterson, J.R.; Snider, T.N.; Levi, B.; Lee, B.; Mishina, Y. TGF-β Family Signaling in Mesenchymal Differentiation. Cold Spring Harb. Perspect. Biol. 2018, 10, a022202. [Google Scholar] [CrossRef]
- di Sabatino, A.; Jackson, C.L.; Pickard, K.M.; Buckley, M.; Rovedatti, L.; Leakey, N.A.B.; Picariello, L.; Cazzola, P.; Monteleone, G.; Tonelli, F.; et al. Transforming Growth Factor β Signalling and Matrix Metalloproteinases in the Mucosa Overlying Crohn’s Disease Strictures. Gut 2009, 58, 777–789. [Google Scholar] [CrossRef]
- Vaughan, M.B.; Howard, E.W.; Tomasek, J.J. Transforming Growth Factor-Β1 Promotes the Morphological and Functional Differentiation of the Myofibroblast. Exp. Cell. Res. 2000, 257, 180–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatamzade Esfahani, N.; Day, A.S. The Role of TGF-β, Activin and Follistatin in Inflammatory Bowel Disease. Gastrointest. Disord. 2023, 5, 167–186. [Google Scholar] [CrossRef]
- Elias, M.; Zhao, S.; Le, H.T.; Wang, J.; Neurath, M.F.; Neufert, C.; Fiocchi, C.; Rieder, F. IL-36 in Chronic Inflammation and Fibrosis—Bridging the Gap? J. Clin. Investig. 2021, 131, e144336. [Google Scholar] [CrossRef]
- Mao, R.; Kurada, S.; Gordon, I.O.; Baker, M.E.; Gandhi, N.; McDonald, C.; Coffey, J.C.; Rieder, F. The Mesenteric Fat and Intestinal Muscle Interface: Creeping Fat Influencing Stricture Formation in Crohn’s Disease. Inflamm. Bowel Dis. 2019, 25, 421–426. [Google Scholar] [CrossRef] [Green Version]
- Burke, J.P.; Cunningham, M.F.; Sweeney, C.; Docherty, N.G.; O’Connell, P.R. N-Cadherin Is Overexpressed in Crohn’s Stricture Fibroblasts and Promotes Intestinal Fibroblast Migration. Inflamm. Bowel Dis. 2011, 17, 1665–1673. [Google Scholar] [CrossRef] [PubMed]
- Rieder, F.; Fiocchi, C. Intestinal Fibrosis in Inflammatory Bowel Disease—Current Knowledge and Future Perspectives. J. Crohns Colitis 2008, 2, 279–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Bruyn, J.R.; van den Brink, G.R.; Steenkamer, J.; Buskens, C.J.; Bemelman, W.A.; Meisner, S.; Muncan, V.; te Velde, A.A.; D’Haens, G.R.; Wildenberg, M.E. Fibrostenotic Phenotype of Myofibroblasts in Crohn’s Disease Is Dependent on Tissue Stiffness and Reversed by LOX Inhibition. J. Crohns Colitis 2018, 12, 849–859. [Google Scholar] [CrossRef]
- Li, C.; Kuemmerle, J.F. The Fate of Myofibroblasts during the Development of Fibrosis in Crohn’s Disease. J. Dig. Dis. 2020, 21, 326–331. [Google Scholar] [CrossRef]
- Ng, E.K.; Panesar, N.; Longo, W.E.; Shapiro, M.J.; Kaminski, D.L.; Tolman, K.C.; Mazuski, J.E. Human Intestinal Epithelial and Smooth Muscle Cells Are Potent Producers of IL-6. Mediat. Inflamm. 2003, 12, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Olaison, G.; Smedh, K.; Sjödahl, R. Natural Course of Crohn’s Disease after Ileocolic Resection: Endoscopically Visualised Ileal Ulcers Preceding Symptoms. Gut 1992, 33, 331–335. [Google Scholar] [CrossRef] [Green Version]
- Burke, J.P.; Mulsow, J.J.; O’Keane, C.; Docherty, N.G.; Watson, R.W.G.; O’Connell, P.R. Fibrogenesis in Crohn’s Disease. Am. J. Gastroenterol. 2007, 102, 439–448. [Google Scholar] [CrossRef]
- Gordon, I.O. Histopathology of Intestinal Fibrosis. In Fibrostenotic Inflammatory Bowel Disease; Springer: Berlin/Heidelberg, Germany, 2018; pp. 159–171. ISBN 9783319905785. [Google Scholar]
- Borley, N.R.; Mortensen, N.J.; Jewell, D.P.; Warren, B.F. The Relationship between Inflammatory and Serosal Connective Tissue Changes in Ileal Crohn’s Disease: Evidence for a Possible Causative Link. J. Pathol. 2000, 190, 196–202. [Google Scholar] [CrossRef]
- Mao, R.; Doyon, G.; Gordon, I.O.; Li, J.; Lin, S.; Wang, J.; Le, T.H.N.; Elias, M.; Kurada, S.; Southern, B.; et al. Activated Intestinal Muscle Cells Promote Preadipocyte Migration: A Novel Mechanism for Creeping Fat Formation in Crohn’s Disease. Gut 2022, 71, 55–67. [Google Scholar] [CrossRef]
- Yin, Y.; Xie, Y.; Ge, W.; Li, Y. Creeping Fat Formation and Interaction with Intestinal Disease in Crohn’s Disease. United Eur. Gastroenterol. J. 2022, 10, 1077–1084. [Google Scholar] [CrossRef]
- Geboes, K. Histopathology of Crohn’s Disease and Ulcerative Colitis. In Inflammatory Bowel Disease; Churchill Livingstone: London, UK, 2003; pp. 255–276. [Google Scholar]
- Kredel, L.I.; Batra, A.; Stroh, T.; Kühl, A.A.; Zeitz, M.; Erben, U.; Siegmund, B. Adipokines from Local Fat Cells Shape the Macrophage Compartment of the Creeping Fat in Crohn’s Disease. Gut 2013, 62, 852–862. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Tan, J.; Wang, Y.; He, J.; Hu, F.; Wu, X.; Liu, Z.; Lin, S.; Li, X.; Chen, Z.; et al. Fibrosis in Fat: From Other Diseases to Crohn’s Disease. Front. Immunol. 2022, 13, 935275. [Google Scholar] [CrossRef] [PubMed]
- Rieder, F.; Lawrance, I.C.; Leite, A.; Sans, M. Predictors of Fibrostenotic Crohn’s Disease. Inflamm. Bowel Dis. 2011, 17, 2000–2007. [Google Scholar] [CrossRef]
- Rieder, F. The Gut Microbiome in Intestinal Fibrosis: Environmental Protector or Provocateur? Sci. Transl. Med. 2013, 5, 190ps10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laukens, D. Inflammation-Independent Mechanisms of Intestinal Fibrosis: The Role of the Extracellular Matrix. In Fibrostenotic Inflammatory Bowel Disease; Springer: Cham, Switzerland, 2018; pp. 77–95. [Google Scholar]
- Wells, R.G. The Role of Matrix Stiffness in Regulating Cell Behavior. Hepatology 2008, 47, 1394–1400. [Google Scholar] [CrossRef]
- Johnson, L.A.; Rodansky, E.S.; Sauder, K.L.; Horowitz, J.C.; Mih, J.D.; Tschumperlin, D.J.; Higgins, P.D. Matrix Stiffness Corresponding to Strictured Bowel Induces a Fibrogenic Response in Human Colonic Fibroblasts. Inflamm. Bowel Dis. 2013, 19, 891–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, T.; Sakabe, T.; Sunaga, A.; Sakai, K.; Rivera, A.L.; Keene, D.R.; Sasaki, T.; Stavnezer, E.; Iannotti, J.; Schweitzer, R.; et al. Conversion of Mechanical Force into TGF-β-Mediated Biochemical Signals. Curr. Biol. 2011, 21, 933–941. [Google Scholar] [CrossRef] [Green Version]
- Brenmoehl, J.; Lang, M.; Hausmann, M.; Leeb, S.N.; Falk, W.; Schölmerich, J.; Göke, M.; Rogler, G. Evidence for a Differential Expression of Fibronectin Splice Forms ED-A and ED-B in Crohn’s Disease (CD) Mucosa. Int. J. Colorectal Dis. 2007, 22, 611–623. [Google Scholar] [CrossRef]
- Tomasek, J.J.; Gabbiani, G.; Hinz, B.; Chaponnier, C.; Brown, R.A. Myofibroblasts and Mechano-Regulation of Connective Tissue Remodelling. Nat. Rev. Mol. Cell. Biol. 2002, 3, 349–363. [Google Scholar] [CrossRef]
- Rodríguez-Lago, I.; Gisbert, J.P. The Role of Immunomodulators and Biologics in the Medical Management of Stricturing Crohn’s Disease. J. Crohns Colitis 2020, 14, 557–566. [Google Scholar] [CrossRef]
- Safroneeva, E.; Vavricka, S.R.; Fournier, N.; Pittet, V.; Peyrin-Biroulet, L.; Straumann, A.; Rogler, G.; Schoepfer, A.M. Impact of the Early Use of Immunomodulators or TNF Antagonists on Bowel Damage and Surgery in Crohn’s Disease. Aliment. Pharmacol. Ther. 2015, 42, 977–989. [Google Scholar] [CrossRef]
- Khanna, R.; Bressler, B.; Levesque, B.G.; Zou, G.; Stitt, L.W.; Greenberg, G.R.; Panaccione, R.; Bitton, A.; Paré, P.; Vermeire, S.; et al. Early Combined Immunosuppression for the Management of Crohn’s Disease (REACT): A Cluster Randomised Controlled Trial. Lancet 2015, 386, 1825–1834. [Google Scholar] [CrossRef] [PubMed]
- Mao, E.J.; Hazlewood, G.S.; Kaplan, G.G.; Peyrin-Biroulet, L.; Ananthakrishnan, A.N. Systematic Review with Meta-Analysis: Comparative Efficacy of Immunosuppressants and Biologics for Reducing Hospitalisation and Surgery in Crohn’s Disease and Ulcerative Colitis. Aliment. Pharmacol. Ther. 2017, 45, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Bettenworth, D.; Bokemeyer, A.; Baker, M.; Mao, R.; Parker, C.E.; Nguyen, T.; Ma, C.; Panés, J.; Rimola, J.; Fletcher, J.G.; et al. Assessment of Crohn’s Disease-Associated Small Bowel Strictures and Fibrosis on Cross-Sectional Imaging: A Systematic Review. Gut 2019, 68, 1115–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, I.O.; Bettenworth, D.; Bokemeyer, A.; Srivastava, A.; Rosty, C.; de Hertogh, G.; Robert, M.E.; Valasek, M.A.; Mao, R.; Kurada, S.; et al. Histopathology Scoring Systems of Stenosis Associated With Small Bowel Crohn’s Disease: A Systematic Review. Gastroenterology 2020, 158, 137–150.e1. [Google Scholar] [CrossRef] [PubMed]
- Steiner, C.A.; Berinstein, J.A.; Louissaint, J.; Higgins, P.D.R.; Spence, J.R.; Shannon, C.; Lu, C.; Stidham, R.W.; Fletcher, J.G.; Bruining, D.H.; et al. Biomarkers for the Prediction and Diagnosis of Fibrostenosing Crohn’s Disease: A Systematic Review. Clin. Gastroenterol. Hepatol. 2022, 20, 817–846.e10. [Google Scholar] [CrossRef]
- Rieder, F.; Bettenworth, D.; Ma, C.; Parker, C.E.; Williamson, L.A.; Nelson, S.A.; van Assche, G.; di Sabatino, A.; Bouhnik, Y.; Stidham, R.W.; et al. An Expert Consensus to Standardise Definitions, Diagnosis and Treatment Targets for Anti-Fibrotic Stricture Therapies in Crohn’s Disease. Aliment. Pharmacol. Ther. 2018, 48, 347–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.-N.; Mao, R.; Qian, C.; Bettenworth, D.; Wang, J.; Li, J.; Bruining, D.H.; Jairath, V.; Feagan, B.G.; Chen, M.-H.; et al. Development of Antifibrotic Therapy for Stricturing Crohn’s Disease: Lessons from Randomized Trials in Other Fibrotic Diseases. Physiol. Rev. 2022, 102, 605–652. [Google Scholar] [CrossRef]
- el Ouali, S.; Baker, M.E.; Lyu, R.; Fletcher, J.G.; Bruining, D.H.; Holubar, S.D.; Click, B.; Qazi, T.; Cohen, B.L.; Rieder, F. Validation of Stricture Length, Duration and Obstructive Symptoms as Predictors for Intervention in Ileal Stricturing Crohn’s Disease. United Eur. Gastroenterol. J. 2022, 10, 958–972. [Google Scholar] [CrossRef] [PubMed]
- Rieder, F.; Latella, G.; Magro, F.; Yuksel, E.S.; Higgins, P.D.R.; di Sabatino, A.; de Bruyn, J.R.; Rimola, J.; Brito, J.; Bettenworth, D.; et al. European Crohn’s and Colitis Organisation Topical Review on Prediction, Diagnosis and Management of Fibrostenosing Crohn’s Disease. J. Crohns Colitis 2016, 10, 873–885. [Google Scholar] [CrossRef] [Green Version]
- Van Assche, G.; Geboes, K.; Rutgeerts, P. Medical Therapy for Crohn’s Disease Strictures. Inflamm. Bowel Dis. 2004, 10, 55–60. [Google Scholar] [CrossRef]
- Legnani, P.E.; Kornbluth, A. Therapeutic Options in the Management of Strictures in Crohn’s Disease. Gastrointest. Endosc. Clin. N. Am. 2002, 12, 589–603. [Google Scholar] [CrossRef]
- de Sousa, H.T.; Estevinho, M.M.; Peyrin-Biroulet, L.; Danese, S.; Dias, C.C.; Carneiro, F.; Magro, F. Transmural Histological Scoring Systems in Crohn’s Disease: A Systematic Review with Assessment of Methodological Quality and Operating Properties. J. Crohns Colitis 2020, 14, 743–756. [Google Scholar] [CrossRef]
- de Voogd, F.A.; Mookhoek, A.; Gecse, K.B.; de Hertogh, G.; Bemelman, W.A.; Buskens, C.J.; D’Haens, G.R. Systematic Review: Histological Scoring of Strictures in Crohn’s Disease. J. Crohns Colitis 2020, 14, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Feakins, R.M. Transmural Histology Scores in Stricturing Crohn’s Disease: Seeking to Build Precision on Uncertain Foundations. J. Crohns Colitis 2020, 14, 721–723. [Google Scholar] [CrossRef]
- Gabbiadini, R.; Zacharopoulou, E.; Furfaro, F.; Craviotto, V.; Zilli, A.; Gilardi, D.; Roda, G.; Loy, L.; Fiorino, G.; Peyrin-Biroulet, L.; et al. Application of Ultrasound Elastography for Assessing Intestinal Fibrosis in Inflammatory Bowel Disease: Fiction or Reality? Curr. Drug. Targets 2021, 22, 347–355. [Google Scholar] [CrossRef]
- Allocca, M.; Dal Buono, A.; D’Alessio, S.; Spaggiari, P.; Garlatti, V.; Spinelli, A.; Faita, F.; Danese, S. Relationships Between Intestinal Ultrasound Parameters and Histopathologic Findings in a Prospective Cohort of Patients With Crohn’s Disease Undergoing Surgery. J. Ultrasound Med. 2023, in press. [Google Scholar] [CrossRef] [PubMed]
- Dal Buono, A.; Faita, F.; Peyrin-Biroulet, L.; Danese, S.; Allocca, M. Ultrasound Elastography in Inflammatory Bowel Diseases: A Systematic Review of Accuracy Compared with Histopathological Assessment. J. Crohns Colitis 2022, 16, 1637–1646. [Google Scholar] [CrossRef] [PubMed]
- Caruso, A.; Angriman, I.; Scarpa, M.; D’Incà, R.; Mescoli, C.; Rudatis, M.; Sturniolo, G.C.; Schifano, G.; Lacognata, C. Diffusion-Weighted Magnetic Resonance for Assessing Fibrosis in Crohn’s Disease. Abdom. Radiol. 2020, 45, 2327–2335. [Google Scholar] [CrossRef]
- Li, X.H.; Sun, C.H.; Mao, R.; Huang, S.Y.; Zhang, Z.W.; Yang, X.F.; Huang, L.; Lin, J.J.; Zhang, J.; Ben-Horin, S.; et al. Diffusion-Weighted MRI Enables to Accurately Grade Inflammatory Activity in Patients of Ileocolonic Crohn’s Disease: Results from an Observational Study. Inflamm. Bowel Dis. 2017, 23, 244–253. [Google Scholar] [CrossRef]
- Tielbeek, J.A.W.; Ziech, M.L.W.; Li, Z.; Lavini, C.; Bipat, S.; Bemelman, W.A.; Roelofs, J.J.T.H.; Ponsioen, C.Y.; Vos, F.M.; Stoker, J. Evaluation of Conventional, Dynamic Contrast Enhanced and Diffusion Weighted MRI for Quantitative Crohn’s Disease Assessment with Histopathology of Surgical Specimens. Eur. Radiol. 2014, 24, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Foti, P.V.; Travali, M.; Farina, R.; Palmucci, S.; Coronella, M.; Spatola, C.; Puzzo, L.; Garro, R.; Inserra, G.; Riguccio, G.; et al. Can Conventional and Diffusion-Weighted Mr Enterography Biomarkers Differentiate Inflammatory from Fibrotic Strictures in Crohn’s Disease? Medicina 2021, 57, 265. [Google Scholar] [CrossRef]
- Mainenti, P.P.; Castiglione, F.; Rispo, A.; Laccetti, E.; Guarino, S.; Romeo, V.; Testa, A.; Pace, L.; Maurea, S. MR-Enterography in Crohn’s Disease: What MRE Mural Parameters Are Associated to One-Year Therapeutic Management Outcome? Br. J. Radiol. 2021, 94, 20200844. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Mao, R.; Huang, S.Y.; Fang, Z.N.; Lu, B.L.; Lin, J.J.; Xiong, S.S.; Chen, M.H.; Li, Z.P.; Sun, C.H.; et al. Ability of DWI to Characterize Bowel Fibrosis Depends on the Degree of Bowel Inflammation. Eur. Radiol. 2019, 29, 2465–2473. [Google Scholar] [CrossRef]
- Du, J.F.; Lu, B.L.; Huang, S.Y.; Mao, R.; Zhang, Z.W.; Cao, Q.H.; Chen, Z.H.; Li, S.Y.; Qin, Q.L.; Sun, C.H.; et al. A Novel Identification System Combining Diffusion Kurtosis Imaging with Conventional Magnetic Resonance Imaging to Assess Intestinal Strictures in Patients with Crohn’s Disease. Abdom. Radiol. 2021, 46, 936–947. [Google Scholar] [CrossRef]
- Harold, K.M.; MacCuaig, W.M.; Holter-Charkabarty, J.; Williams, K.; Hill, K.; Arreola, A.X.; Sekhri, M.; Carter, S.; Gomez-Gutierrez, J.; Salem, G.; et al. Advances in Imaging of Inflammation, Fibrosis, and Cancer in the Gastrointestinal Tract. Int. J. Mol. Sci. 2022, 23, 16109. [Google Scholar] [CrossRef]
- Pazahr, S.; Blume, I.; Frei, P.; Chuck, N.; Nanz, D.; Rogler, G.; Patak, M.; Boss, A. Magnetization Transfer for the Assessment of Bowel Fibrosis in Patients with Crohn’s Disease: Initial Experience. Magn. Reson. Mater. Phys. Biol. Med. 2013, 26, 291–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillman, J.R.; Swanson, S.D.; Johnson, L.A.; Moons, D.S.; Adler, J.; Stidham, R.W.; Higgins, P.D.R. Comparison of Noncontrast MRI Magnetization Transfer and T2-Weighted Signal Intensity Ratios for Detection of Bowel Wall Fibrosis in a Crohn’s Disease Animal Model. J. Magn. Reson. Imaging 2015, 42, 801–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Sousa, H.T.; Brito, J.; Magro, F. New Cross-Sectional Imaging in IBD. Curr. Opin. Gastroenterol. 2018, 34, 194–207. [Google Scholar] [CrossRef]
- Li, X.H.; Mao, R.; Huang, S.Y.; Sun, C.H.; Cao, Q.H.; Fang, Z.N.; Zhang, Z.W.; Huang, L.; Lin, J.J.; Chen, Y.J.; et al. Characterization of Degree of Intestinal Fibrosis in Patients with Crohn Disease by Using Magnetization Transfer MR Imaging. Radiology 2018, 287, 494–503. [Google Scholar] [CrossRef] [Green Version]
- Adler, J.; Swanson, S.D.; Schmiedlin-Ren, P.; Higgins, P.D.R.; Golembeski, C.P.; Polydorides, A.D.; McKenna, B.J.; Hussain, H.K.; Verrot, T.M.; Ellen Zimmermann, B.M. Magnetization Transfer Helps Detect Intestinal Fibrosis in an Animal Model of Crohn Disease. Radiology 2011, 259, 127–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, B.; Lin, J.; Du, J.; He, S.; Cao, Q.; Huang, L.; Mao, R.; Sun, C.; Li, Z.; Feng, S.; et al. Native T1 Mapping and Magnetization Transfer Imaging in Grading Bowel Fibrosis in Crohn’s Disease: A Comparative Animal Study. Biosensors 2021, 11, 302. [Google Scholar] [CrossRef]
- Caron, B.; Laurent, V.; Odille, F.; Danese, S.; Hossu, G.; Peyrin-Biroulet, L. New Magnetic Resonance Imaging Sequences for Fibrosis Assessment in Crohn’s Disease: A Pilot Study. Scand. J. Gastroenterol. 2022, 57, 1450–1453. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.C.; Li, X.H.; Huang, S.Y.; Mao, R.; Fang, Z.N.; Cao, Q.H.; Zhang, Z.W.; Yan, X.; Chen, M.H.; Li, Z.P.; et al. IVIM with Fractional Perfusion as a Novel Biomarker for Detecting and Grading Intestinal Fibrosis in Crohn’s Disease. Eur. Radiol. 2019, 29, 3069–3078. [Google Scholar] [CrossRef]
- Xu, C.; Jiang, W.; Wang, L.; Mao, X.; Ye, Z.; Zhang, H. Intestinal Ultrasound for Differentiating Fibrotic or Inflammatory Stenosis in Crohn’s Disease: A Systematic Review and Meta-Analysis. J. Crohns Colitis 2022, 16, 1493–1504. [Google Scholar] [CrossRef]
- Allocca, M.; Fiorino, G.; Bonifacio, C.; Peyrin-Biroulet, L.; Danese, S. Noninvasive Multimodal Methods to Differentiate Inflamed vs Fibrotic Strictures in Patients With Crohn’s Disease. Clin. Gastroenterol. Hepatol. 2019, 17, 2397–2415. [Google Scholar] [CrossRef]
- Lin, S.; Lin, X.; Li, X.; Chen, M.; Mao, R. Making Qualitative Intestinal Stricture Quantitative: Embracing Radiomics in IBD. Inflamm. Bowel Dis. 2020, 26, 743–745. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Luo, Z.; Chen, Z.; Zhou, J.; Chen, Z.; Lu, B.; Zhang, M.; Wang, Y.; Yuan, C.; Shen, X.; et al. Intestinal Fibrosis Classification in Patients with Crohn’s Disease Using CT Enterography–Based Deep Learning: Comparisons with Radiomics and Radiologists. Eur. Radiol. 2022, 32, 8692–8705. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liang, D.; Meng, J.; Zhou, J.; Chen, Z.; Huang, S.; Lu, B.; Qiu, Y.; Baker, M.E.; Ye, Z.; et al. Development and Validation of a Novel Computed-Tomography Enterography Radiomic Approach for Characterization of Intestinal Fibrosis in Crohn’s Disease. Gastroenterology 2021, 160, 2303–2316.e11. [Google Scholar] [CrossRef]
- Stidham, R.W.; Enchakalody, B.; Waljee, A.K.; Higgins, P.D.R.; Wang, S.C.; Su, G.L.; Wasnik, A.P.; Al-Hawary, M. Assessing Small Bowel Stricturing and Morphology in Crohn’s Disease Using Semi-Automated Image Analysis. Inflamm. Bowel Dis. 2020, 26, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, P.; Pinzani, M.; Corazza, G.R.; Di Sabatino, A. Biomarkers of Intestinal Fibrosis—One Step towards Clinical Trials for Stricturing Inflammatory Bowel Disease. United Eur. Gastroenterol. J. 2016, 4, 523–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rieder, F.; de Bruyn, J.R.; Pham, B.T.; Katsanos, K.; Annese, V.; Higgins, P.D.R.; Magro, F.; Dotan, I. Results of the 4th Scientific Workshop of the ECCO (Group II): Markers of Intestinal Fibrosis in Inflammatory Bowel Disease. J. Crohns Colitis 2014, 8, 1166–1178. [Google Scholar] [CrossRef] [Green Version]
- Higgins, P.D.R. Measurement of Fibrosis in Crohn’s Disease Strictures with Imaging and Blood Biomarkers to Inform Clinical Decisions. Dig. Dis. 2017, 35, 32–37. [Google Scholar] [CrossRef]
- Wang, Y.D.; Zhang, R.N.; Mao, R.; Li, X.H. Inflammatory Bowel Disease Cross-Sectional Imaging: What’s New? United Eur. Gastroenterol. J. 2022, 10, 1179–1193. [Google Scholar] [CrossRef]
- Zhong, Y.K.; Lu, B.L.; Huang, S.Y.; Chen, Y.J.; Li, Z.P.; Rimola, J.; Li, X.H. Cross-Sectional Imaging for Assessing Intestinal Fibrosis in Crohn’s Disease. J. Dig. Dis. 2020, 21, 342–350. [Google Scholar] [CrossRef]
- Rimola, J.; Torres, J.; Kumar, S.; Taylor, S.A.; Kucharzik, T. Recent Advances in Clinical Practice: Advances in Cross-Sectional Imaging in Inflammatory Bowel Disease. Gut 2022, 71, 2587–2597. [Google Scholar] [CrossRef]
- Sleiman, J.; Chirra, P.; Gandhi, N.S.; Baker, M.E.; Lu, C.; Gordon, I.O.; Viswanath, S.E.; Rieder, F. Crohn’s Disease Related Strictures in Cross-Sectional Imaging: More than Meets the Eye? United Eur. Gastroenterol. J. 2022, 10, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Magro, F.; Gionchetti, P.; Eliakim, R.; Ardizzone, S.; Armuzzi, A.; Barreiro-de Acosta, M.; Burisch, J.; Gecse, K.B.; Hart, A.L.; Hindryckx, P.; et al. Third European Evidence-Based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 1: Definitions, Diagnosis, Extra-Intestinal Manifestations, Pregnancy, Cancer Surveillance, Surgery, and Ileo-Anal Pouch Disorders. J. Crohns Colitis 2017, 11, 649–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomollón, F.; Dignass, A.; Annese, V.; Tilg, H.; Van Assche, G.; Lindsay, J.O.; Peyrin-Biroulet, L.; Cullen, G.J.; Daperno, M.; Kucharzik, T.; et al. 3rd European Evidence-Based Consensus on the Diagnosis and Management of Crohn’s Disease 2016: Part 1: Diagnosis and Medical Management. J. Crohns Colitis 2017, 11, 3–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panes, J.; Bouhnik, Y.; Reinisch, W.; Stoker, J.; Taylor, S.A.; Baumgart, D.C.; Danese, S.; Halligan, S.; Marincek, B.; Matos, C.; et al. Imaging Techniques for Assessment of Inflammatory Bowel Disease: Joint ECCO and ESGAR Evidence-Based Consensus Guidelines. J. Crohns Colitis 2013, 7, 556–585. [Google Scholar] [CrossRef] [Green Version]
- Coimbra, A.; Rimola, J.; Cuatrecasas, M.; De Hertogh, G.; Van Assche, G.; Vanslembrouck, R.; Glerup, H.; Nielsen, A.H.; Hagemann-Madsen, R.; Bouhnik, Y.; et al. Magnetic Resonance Enterography and Histology in Patients With Fibrostenotic Crohn’s Disease: A Multicenter Study. Clin. Transl. Gastroenterol. 2022, 13, e00505. [Google Scholar] [CrossRef]
- Varyani, F.; Samuel, S. “Can Magnetic Resonance Enterography (MRE) Replace Ileo-Colonoscopy for Evaluating Disease Activity in Crohn’s Disease?”. Best Pract. Res. Clin. Gastroenterol. 2019, 38–39, 101621. [Google Scholar] [CrossRef]
- Sinha, R.; Murphy, P.; Sanders, S.; Ramachandran, I.; Hawker, P.; Rawat, S.; Roberts, S. Diagnostic Accuracy of High-Resolution MR Enterography in Crohn’s Disease: Comparison with Surgical and Pathological Specimen. Clin. Radiol. 2013, 68, 917–927. [Google Scholar] [CrossRef]
- Taylor, S.A.; Mallett, S.; Bhatnagar, G.; Baldwin-Cleland, R.; Bloom, S.; Gupta, A.; Hamlin, P.J.; Hart, A.L.; Higginson, A.; Jacobs, I.; et al. Diagnostic Accuracy of Magnetic Resonance Enterography and Small Bowel Ultrasound for the Extent and Activity of Newly Diagnosed and Relapsed Crohn’s Disease (METRIC): A Multicentre Trial. Lancet Gastroenterol. Hepatol. 2018, 3, 548–558. [Google Scholar] [CrossRef]
- Pallotta, N.; Vincoli, G.; Montesani, C.; Chirletti, P.; Pronio, A.; Caronna, R.; Ciccantelli, B.; Romeo, E.; Marcheggiano, A.; Corazziari, E. Small Intestine Contrast Ultrasonography (SICUS) for the Detection of Small Bowel Complications in Crohn’s Disease: A Prospective Comparative Study versus Intraoperative Findings. Inflamm. Bowel Dis. 2012, 18, 74–84. [Google Scholar] [CrossRef]
- Rimola, J.; Planell, N.; Rodríguez, S.; Delgado, S.; Ordás, I.; Ramírez-Morros, A.; Ayuso, C.; Aceituno, M.; Ricart, E.; Jauregui-Amezaga, A.; et al. Characterization of Inflammation and Fibrosis in Crohn’s Disease Lesions by Magnetic Resonance Imaging. Am. J. Gastroenterol. 2015, 110, 432–440. [Google Scholar] [CrossRef]
- Wagner, M.; Ko, H.M.; Chatterji, M.; Besa, C.; Torres, J.; Zhang, X.; Panchal, H.; Hectors, S.; Cho, J.; Colombel, J.-F.; et al. Magnetic Resonance Imaging Predicts Histopathologic Composition of Ileal Crohn’s Disease. J. Crohns Colitis 2018, 12, 718–729. [Google Scholar] [CrossRef] [Green Version]
- Dohan, A.; Taylor, S.; Hoeffel, C.; Barret, M.; Allez, M.; Dautry, R.; Zappa, M.; Savoye-Collet, C.; Dray, X.; Boudiaf, M.; et al. Diffusion-Weighted MRI in Crohn’s Disease: Current Status and Recommendations. J. Magn. Reson. Imaging 2016, 44, 1381–1396. [Google Scholar] [CrossRef] [Green Version]
- Catalano, O.A.; Gee, M.S.; Nicolai, E.; Selvaggi, F.; Pellino, G.; Cuocolo, A.; Luongo, A.; Catalano, M.; Rosen, B.R.; Gervais, D.; et al. Evaluation of Quantitative PET/MR Enterography Biomarkers for Discrimination of Inflammatory Strictures from Fibrotic Strictures in Crohn Disease. Radiology 2016, 278, 792–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hordonneau, C.; Buisson, A.; Scanzi, J.; Goutorbe, F.; Pereira, B.; Borderon, C.; Da Ines, D.; Montoriol, P.F.; Garcier, J.M.; Boyer, L.; et al. Diffusion-Weighted Magnetic Resonance Imaging in Ileocolonic Crohn’s Disease: Validation of Quantitative Index of Activity. Am. J. Gastroenterol. 2014, 109, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Sun, C.H.; Mao, R.; Zhang, Z.W.; Jiang, X.S.; Pui, M.H.; Chen, M.H.; Li, Z.P. Assessment of Activity of Crohn Disease by Diffusion-Weighted Magnetic Resonance Imaging. Medicine 2015, 94, e1819. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Li, X.H.; Huang, S.Y.; Zhang, Z.W.; Yang, X.F.; Lin, J.J.; Jiang, M.J.; Feng, S.T.; Sun, C.H.; Li, Z.P. Diffusion Kurtosis MRI versus Conventional Diffusion-Weighted Imaging for Evaluating Inflammatory Activity in Crohn’s Disease. J. Magn. Reson. Imaging 2018, 47, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Rosenkrantz, A.B.; Padhani, A.R.; Chenevert, T.L.; Koh, D.M.; De Keyzer, F.; Taouli, B.; Le Bihan, D. Body Diffusion Kurtosis Imaging: Basic Principles, Applications, and Considerations for Clinical Practice. J. Magn. Reson. Imaging 2015, 42, 1190–1202. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, D.; Chen, T.; Xie, F.; Li, R.; Zhang, X.; Jing, Z.; Yang, J.; Ou, J.; Cao, J. Magnetic Resonance Diffusion Kurtosis Imaging for Evaluating Stage of Liver Fibrosis in a Rabbit Model. Acad. Radiol. 2019, 26, e90–e97. [Google Scholar] [CrossRef] [PubMed]
- Avila, F.; Caron, B.; Hossu, G.; Ambarki, K.; Kannengiesser, S.; Odille, F.; Felblinger, J.; Danese, S.; Choukour, M.; Laurent, V.; et al. Magnetic Resonance Elastography for Assessing Fibrosis in Patients with Crohn’s Disease: A Pilot Study. Dig. Dis. Sci. 2022, 67, 4518–4524. [Google Scholar] [CrossRef] [PubMed]
- De Kock, I.; Bos, S.; Delrue, L.; Van Welden, S.; Bunyard, P.; Hindryckx, P.; De Vos, M.; Villeirs, G.; Laukens, D. MRI Texture Analysis of T2-Weighted Images Is Preferred over Magnetization Transfer Imaging for Readily Longitudinal Quantification of Gut Fibrosis. Eur. Radiol. 2023, in press. [Google Scholar] [CrossRef]
- Eliakim, R.; Magro, F. Imaging Techniques in IBD and Their Role in Follow-up and Surveillance. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 722–736. [Google Scholar] [CrossRef] [PubMed]
- Vogel, J.; Da Luz Moreira, A.; Baker, M.; Hammel, J.; Einstein, D.; Stocchi, L.; Fazio, V. CT Enterography for Crohn’s Disease: Accurate Preoperative Diagnostic Imaging. Dis. Colon. Rectum 2007, 50, 1761–1769. [Google Scholar] [CrossRef] [PubMed]
- Chiorean, M.V.; Sandrasegaran, K.; Saxena, R.; Maglinte, D.D.; Nakeeb, A.; Johnson, C.S. Correlation of CT Enteroclysis with Surgical Pathology in Crohn’s Disease. Am. J. Gastroenterol. 2007, 102, 2541–2550. [Google Scholar] [CrossRef]
- Adler, J.; Punglia, D.R.; Dillman, J.R.; Polydorides, A.D.; Dave, M.; Al-Hawary, M.M.; Platt, J.F.; McKenna, B.J.; Zimmermann, E.M. Computed Tomography Enterography Findings Correlate with Tissue Inflammation, Not Fibrosis in Resected Small Bowel Crohn’s Disease. Inflamm. Bowel Dis. 2012, 18, 849–856. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Mao, Y.; Zhou, J.; Chen, Z.; Huang, S.; Wang, Y.; Huang, L.; Zhang, R.; Shen, X.; Lv, W.; et al. Mesenteric Abnormalities Play an Important Role in Grading Intestinal Fibrosis in Patients with Crohn’s Disease: A Computed Tomography and Clinical Marker-Based Nomogram. Therap Adv. Gastroenterol. 2022, 15, 175628482211225. [Google Scholar] [CrossRef] [PubMed]
- Hardie, A.D.; Horst, N.D.; Mayes, N. Preliminary Evaluation of Ultra-High Pitch Computed Tomography Enterography. Acta Radiol. 2012, 53, 1088–1091. [Google Scholar] [CrossRef]
- Kambadakone, A.R.; Chaudhary, N.A.; Desai, G.S.; Nguyen, D.D.; Kulkarni, N.M.; Sahani, D.V. Low-Dose MDCT and CT Enterography of Patients With Crohn Disease: Feasibility of Adaptive Statistical Iterative Reconstruction. Am. J. Roentgenol. 2011, 196, W743–W752. [Google Scholar] [CrossRef]
- Prakash, P.; Kalra, M.K.; Kambadakone, A.K.; Pien, H.; Hsieh, J.; Blake, M.A.; Sahani, D.V. Reducing Abdominal CT Radiation Dose With Adaptive Statistical Iterative Reconstruction Technique. Investig. Radiol. 2010, 45, 202–210. [Google Scholar] [CrossRef]
- Hara, A.K.; Paden, R.G.; Silva, A.C.; Kujak, J.L.; Lawder, H.J.; Pavlicek, W. Iterative Reconstruction Technique for Reducing Body Radiation Dose at CT: Feasibility Study. Am. J. Roentgenol. 2009, 193, 764–771. [Google Scholar] [CrossRef]
- Lovinfosse, P.; Hustinx, R. The Role of PET Imaging in Inflammatory Bowel Diseases: State-of-the-Art Review. Q. J. Nucl. Med. Mol. Imaging 2022, 66, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Pellino, G.; Nicolai, E.; Catalano, O.A.; Campione, S.; D’Armiento, F.P.; Salvatore, M.; Cuocolo, A.; Selvaggi, F. PET/MR versus PET/CT Imaging: Impact on the Clinical Management of Small-Bowel Crohn’s Disease. J. Crohns Colitis 2016, 10, 277–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenze, F.; Wessling, J.; Bremer, J.; Ullerich, H.; Spieker, T.; Weckesser, M.; Gonschorrek, S.; Kannengieer, K.; Rijcken, E.; Heidemann, J.; et al. Detection and Differentiation of Inflammatory versus Fibromatous Crohn’s Disease Strictures: Prospective Comparison of 18F-FDG-PET/CT, MR-Enteroclysis, and Transabdominal Ultrasound versus Endoscopic/Histologic Evaluation. Inflamm. Bowel Dis. 2012, 18, 2252–2260. [Google Scholar] [CrossRef] [PubMed]
- Stidham, R.W.; Xu, J.; Johnson, L.A.; Kim, K.; Moons, D.S.; McKenna, B.J.; Rubin, J.M.; Higgins, P.D.R. Ultrasound Elasticity Imaging for Detecting Intestinal Fibrosis and Inflammation in Rats and Humans with Crohn’s Disease. Gastroenterology 2011, 141, 819–826.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgart, D.C.; Müller, H.P.; Grittner, U.; Metzke, D.; Fischer, A.; Guckelberger, O.; Pascher, A.; Sack, I.; Vieth, M.; Rudolph, B. US-Based Real-Time Elastography for the Detection of Fibrotic Gut Tissue in Patients with Stricturing Crohn Disease. Radiology 2015, 275, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Fraquelli, M.; Branchi, F.; Cribiù, F.M.; Orlando, S.; Casazza, G.; Magarotto, A.; Massironi, S.; Botti, F.; Contessini-Avesani, E.; Conte, D.; et al. The Role of Ultrasound Elasticity Imaging in Predicting Ileal Fibrosis in Crohn’s Disease Patients. Inflamm. Bowel Dis. 2015, 21, 2605–2612. [Google Scholar] [CrossRef] [Green Version]
- Sconfienza, L.M.; Cavallaro, F.; Colombi, V.; Pastorelli, L.; Tontini, G.; Pescatori, L.; Esseridou, A.; Savarino, E.; Messina, C.; Casale, R.; et al. In-Vivo Axial-Strain Sonoelastography Helps Distinguish Acutely-Inflamed from Fibrotic Terminal Ileum Strictures in Patients with Crohn’s Disease: Preliminary Results. Ultrasound Med. Biol. 2016, 42, 855–863. [Google Scholar] [CrossRef]
- Quaia, E.; Gennari, A.G.; Cova, M.A.; van Beek, E.J.R. Differentiation of Inflammatory From Fibrotic Ileal Strictures among Patients with Crohn’s Disease Based on Visual Analysis: Feasibility Study Combining Conventional B-Mode Ultrasound, Contrast-Enhanced Ultrasound and Strain Elastography. Ultrasound Med. Biol. 2018, 44, 762–770. [Google Scholar] [CrossRef]
- Giannetti, A.; Biscontri, M.; Matergi, M.; Stumpo, M.; Minacci, C. Feasibility of CEUS and Strain Elastography in One Case of Ileum Crohn Stricture and Literature Review. J. Ultrasound 2016, 19, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.J.; Mao, R.; Li, X.H.; Cao, Q.H.; Chen, Z.H.; Liu, B.X.; Chen, S.L.; Chen, B.L.; He, Y.; Zeng, Z.R.; et al. Real-Time Shear Wave Ultrasound Elastography Differentiates Fibrotic from Inflammatory Strictures in Patients with Crohn’s Disease. Inflamm. Bowel Dis. 2018, 24, 2183–2190. [Google Scholar] [CrossRef] [Green Version]
- Dillman, J.R.; Stidham, R.W.; Higgins, P.D.R.; Moons, D.S.; Johnson, L.A.; Keshavarzi, N.R.; Rubin, J.M. Ultrasound Shear Wave Elastography Helps Discriminate Low-Grade From High-Grade Bowel Wall Fibrosis in Ex Vivo Human Intestinal Specimens. J. Ultrasound Med. 2014, 33, 2115–2123. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Gui, X.; Chen, W.; Fung, T.; Novak, K.; Wilson, S.R. Ultrasound Shear Wave Elastography and Contrast Enhancement: Effective Biomarkers in Crohn’s Disease Strictures. Inflamm. Bowel Dis. 2017, 23, 421–430. [Google Scholar] [CrossRef]
- Ripollés, T.; Rausell, N.; Paredes, J.M.; Grau, E.; Martínez, M.J.; Vizuete, J. Effectiveness of Contrast-Enhanced Ultrasound for Characterisation of Intestinal Inflammation in Crohn’s Disease: A Comparison with Surgical Histopathology Analysis. J. Crohns Colitis 2013, 7, 120–128. [Google Scholar] [CrossRef]
- Wilkens, R.; Hagemann-Madsen, R.H.; Peters, D.A.; Nielsen, A.H.; Nørager, C.B.; Glerup, H.; Krogh, K. Validity of Contrast-Enhanced Ultrasonography and Dynamic Contrast-Enhanced MR Enterography in the Assessment of Transmural Activity and Fibrosis in Crohn’s Disease. J. Crohns Colitis 2018, 12, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Sigrist, R.M.S.; Liau, J.; El Kaffas, A.; Chammas, M.C.; Willmann, J.K. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef] [PubMed]
- Dillman, J.R.; Stidham, R.W.; Higgins, P.D.R.; Moons, D.S.; Johnson, L.A.; Rubin, J.M. US Elastography-Derived Shear Wave Velocity Helps Distinguish Acutely Inflamed from Fibrotic Bowel in a Crohn Disease Animal Model. Radiology 2013, 267, 757–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, S.S.; Fang, Y.; Wan, J.; Zhao, C.K.; Xiang, L.H.; Liu, H.; Pu, H.; Xu, G.; Zhang, K.; Xu, X.R.; et al. Usefulness of Strain Elastography, ARFI Imaging, and Point Shear Wave Elastography for the Assessment of Crohn Disease Strictures. J. Ultrasound Med. 2019, 38, 2861–2870. [Google Scholar] [CrossRef] [PubMed]
- Abu-Ata, N.; Dillman, J.R.; Rubin, J.M.; Collins, M.H.; Johnson, L.A.; Imbus, R.S.; Bonkowski, E.L.; Denson, L.A.; Higgins, P.D.R. Ultrasound Shear Wave Elastography in Pediatric Stricturing Small Bowel Crohn Disease: Correlation with Histology and Second Harmonic Imaging Microscopy. Pediatr. Radiol. 2023, 53, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Thimm, M.A.; Cuffari, C.; Garcia, A.; Sidhu, S.; Hwang, M. Contrast-Enhanced Ultrasound and Shear Wave Elastography Evaluation of Crohn’s Disease Activity in Three Adolescent Patients. Pediatr. Gastroenterol. Hepatol. Nutr. 2019, 22, 282–290. [Google Scholar] [CrossRef]
- Nylund, K.; Jirik, R.; Mezl, M.; Leh, S.; Hausken, T.; Pfeffer, F.; Ødegaard, S.; Taxt, T.; Gilja, O.H. Quantitative Contrast-Enhanced Ultrasound Comparison Between Inflammatory and Fibrotic Lesions in Patients with Crohn’s Disease. Ultrasound Med. Biol. 2013, 39, 1197–1206. [Google Scholar] [CrossRef]
- Sasaki, T.; Kunisaki, R.; Kinoshita, H.; Kimura, H.; Kodera, T.; Nozawa, A.; Hanzawa, A.; Shibata, N.; Yonezawa, H.; Miyajima, E.; et al. Doppler Ultrasound Findings Correlate with Tissue Vascularity and Inflammation in Surgical Pathology Specimens from Patients with Small Intestinal Crohn’s Disease. BMC Res. Notes 2014, 7, 363. [Google Scholar] [CrossRef] [Green Version]
- Fiorino, G.; Lytras, T.; Younge, L.; Fidalgo, C.; Coenen, S.; Chaparro, M.; Allocca, M.; Arnott, I.; Bossuyt, P.; Burisch, J.; et al. Quality of Care Standards in Inflammatory Bowel Diseases: A European Crohn’s and Colitis Organisation (ECCO) Position Paper. J. Crohns Colitis 2020, 14, 1037–1048. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, S. The Potential of Radiomics in the Assessment of Intestinal Fibrosis in Crohn’s Disease. Gastroenterology 2021, 161, 2065–2066. [Google Scholar] [CrossRef]
- Sleiman, J.; Chirra, P.; Gandhi, N.; Gordon, I.; Viswanath, S.; Rieder, F. Evaluation of clinical variables, radiological visual analog scoring, and radiomics features on ct enterography for characterizing severe inflammation and fibrosis in stricturing crohn’s disease. Gastroenterology 2023, 164, S16–S17. [Google Scholar] [CrossRef]
- Sleiman, J.; Chirra, P.; Gandhi, N.; Gordon, I.O.; Viswanath, S.; Rieder, F. DOP12 Validation of Radiomics Features on MR Enterography Characterizing Inflammation and Fibrosis in Stricturing Crohn’s Disease. J. Crohns Colitis 2023, 17, i73. [Google Scholar] [CrossRef]
- Chen, Y.; Ge, W.; Xu, L.; Qu, C.; Zhu, M.; Zhang, W.; Xiao, Y. MiR-200b Is Involved in Intestinal Fibrosis of Crohn’s Disease. Int. J. Mol. Med. 2012, 29, 601–606. [Google Scholar] [CrossRef] [Green Version]
- Chapman, C.G.; Pekow, J. The Emerging Role of MiRNAs in Inflammatory Bowel Disease: A Review. Therap Adv. Gastroenterol. 2015, 8, 4–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Xiao, Y.; Ge, W.; Zhou, K.; Wen, J.; Yan, W.; Wang, Y.; Wang, B.; Qu, C.; Wu, J.; et al. MiR-200b Inhibits TGF-Β1-Induced Epithelial-Mesenchymal Transition and Promotes Growth of Intestinal Epithelial Cells. Cell Death Dis. 2013, 4, e541. [Google Scholar] [CrossRef] [Green Version]
- Nijhuis, A.; Biancheri, P.; Lewis, A.; Bishop, C.L.; Giuffrida, P.; Chan, C.; Feakins, R.; Poulsom, R.; Di Sabatino, A.; Corazza, G.R.; et al. In Crohn’s Disease Fibrosis-Reduced Expression of the MiR-29 Family Enhances Collagen Expression in Intestinal Fibroblasts. Clin. Sci. 2014, 127, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Lewis, A.; Nijhuis, A.; Mehta, S.; Kumagai, T.; Feakins, R.; Lindsay, J.O.; Silver, A. Intestinal Fibrosis in Crohn’s Disease: Role of MicroRNAs as Fibrogenic Modulators, Serum Biomarkers, and Therapeutic Targets. Inflamm. Bowel Dis. 2015, 21, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Innocenti, T.; Bigagli, E.; Lynch, E.N.; Galli, A.; Dragoni, G. MiRNA-Based Therapies for the Treatment of Inflammatory Bowel Disease: What Are We Still Missing? Inflamm. Bowel Dis. 2022, 29, 308–323. [Google Scholar] [CrossRef]
- Ballengee, C.R.; Stidham, R.W.; Liu, C.; Kim, M.O.; Prince, J.; Mondal, K.; Baldassano, R.; Dubinsky, M.; Markowitz, J.; Leleiko, N.; et al. Association Between Plasma Level of Collagen Type III Alpha 1 Chain and Development of Strictures in Pediatric Patients With Crohn’s Disease. Clin. Gastroenterol. Hepatol. 2019, 17, 1799–1806. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Lubman, D.M.; Kugathasan, S.; Denson, L.A.; Hyams, J.S.; Dubinsky, M.C.; Griffiths, A.M.; Baldassano, R.N.; Noe, J.D.; Rabizadeh, S.; et al. Serum Protein Biomarkers of Fibrosis Aid in Risk Stratification of Future Stricturing Complications in Pediatric Crohn’s Disease. Am. J. Gastroenterol. 2019, 114, 777–785. [Google Scholar] [CrossRef] [PubMed]
- Levitte, S.; Peale, F.V.; Jhun, I.; McBride, J.; Neighbors, M. Local Pentraxin-2 Deficit Is a Feature of Intestinal Fibrosis in Crohn’s Disease. Dig. Dis. Sci. 2023, in press. [Google Scholar] [CrossRef] [PubMed]
- Stidham, R.W.; Wu, J.; Shi, J.; Lubman, D.M.; Higgins, P.D.R. Serum Glycoproteome Profiles for Distinguishing Intestinal Fibrosis from Inflammation in Crohn’s Disease. PLoS ONE 2017, 12, e0170506. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, S.; Gilmer, J.F.; Medina, C. Matrix Metalloproteinases in Inflammatory Bowel Disease: An Update. Mediat. Inflamm. 2015, 2015, 964131. [Google Scholar] [CrossRef]
- Schoepfer, A.M.; Schaffer, T.; Mueller, S.; Flogerzi, B.; Vassella, E.; Seibold-Schmid, B.; Seibold, F. Phenotypic Associations of Crohn’s Disease with Antibodies to Flagellins A4-Fla2 and Fla-X, ASCA, p-ANCA, PAB, and NOD2 Mutations in a Swiss Cohort. Inflamm. Bowel Dis. 2009, 15, 1358–1367. [Google Scholar] [CrossRef]
- Mow, W.S.; Vasiliauskas, E.A.; Lin, Y.-C.; Fleshner, P.R.; Papadakis, K.A.; Taylor, K.D.; Landers, C.J.; Abreu-Martin, M.T.; Rotter, J.I.; Yang, H.; et al. Association of Antibody Responses to Microbial Antigens and Complications of Small Bowel Crohn’s Disease. Gastroenterology 2004, 126, 414–424. [Google Scholar] [CrossRef]
- Vind, I.; Johansen, J.S.; Price, P.A.; Munkholm, P. Serum YKL-40, a Potential New Marker of Disease Activity in Patients with Inflammatory Bowel Disease. Scand. J. Gastroenterol. 2003, 38, 599–605. [Google Scholar] [CrossRef]
- Pieczarkowski, S.; Kowalska-Duplaga, K.; Kwinta, P.; Wędrychowicz, A.; Tomasik, P.; Stochel-Gaudyn, A.; Fyderek, K. Serum Concentrations of Fibrosis Markers in Children with Inflammatory Bowel Disease. Folia Med. Cracov 2020, LX, 61–74. [Google Scholar] [CrossRef]
- Adler, J.; Rangwalla, S.C.; Dwamena, B.A.; Higgins, P.D.R. The Prognostic Power of the Nod2 Genotype for Complicated Crohn’s Disease: A Meta-Analysis. Am. J. Gastroenterol. 2011, 106, 699–712. [Google Scholar] [CrossRef]
- Torres, J.; Bonovas, S.; Doherty, G.; Kucharzik, T.; Gisbert, J.P.; Raine, T.; Adamina, M.; Armuzzi, A.; Bachmann, O.; Bager, P.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical Treatment. J. Crohns Colitis 2020, 14, 4–22. [Google Scholar] [CrossRef] [Green Version]
- Loras, C.; Andújar, X.; Gornals, J.B.; Sanchiz, V.; Brullet, E.; Sicilia, B.; Martín-Arranz, M.D.; Naranjo, A.; Barrio, J.; Dueñas, C.; et al. Self-Expandable Metal Stents versus Endoscopic Balloon Dilation for the Treatment of Strictures in Crohn’s Disease (ProtDilat Study): An Open-Label, Multicentre, Randomised Trial. Lancet Gastroenterol. Hepatol. 2022, 7, 332–341. [Google Scholar] [CrossRef]
- Antar, S.A.; ElMahdy, M.; Khodir, A.E. A Novel Role of Pirfenidone in Attenuation Acetic Acid Induced Ulcerative Colitis by Modulation of TGF-Β1 / JNK1 Pathway. Int. Immunopharmacol. 2021, 101, 108289. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, M.; Leng, C.; Blokzijl, T.; Jansen, B.H.; Dijkstra, G.; Faber, K.N. Pirfenidone Inhibits Cell Proliferation and Collagen I Production of Primary Human Intestinal Fibroblasts. Cells 2020, 9, 775. [Google Scholar] [CrossRef] [Green Version]
- Iswandana, R.; Pham, B.T.; Suriguga, S.; Luangmonkong, T.; Van Wijk, L.A.; Jansen, Y.J.M.; Oosterhuis, D.; Maria Mutsaers, H.A.; Olinga, P. Murine Precision-Cut Intestinal Slices as a Potential Screening Tool for Antifibrotic Drugs. Inflamm. Bowel Dis. 2020, 26, 678–686. [Google Scholar] [CrossRef]
- Li, G.; Ren, J.; Hu, Q.; Deng, Y.; Chen, G.; Guo, K.; Li, R.; Li, Y.; Wu, L.; Wang, G.; et al. Oral Pirfenidone Protects against Fibrosis by Inhibiting Fibroblast Proliferation and TGF-β Signaling in a Murine Colitis Model. Biochem. Pharmacol. 2016, 117, 57–67. [Google Scholar] [CrossRef]
- Kadir, S.-I.; Wenzel Kragstrup, T.; Dige, A.; Kok Jensen, S.; Dahlerup, J.F.; Kelsen, J. Pirfenidone Inhibits the Proliferation of Fibroblasts from Patients with Active Crohn’s Disease. Scand. J. Gastroenterol. 2016, 51, 1321–1325. [Google Scholar] [CrossRef]
- Meier, R.; Lutz, C.; Cosín-Roger, J.; Fagagnini, S.; Bollmann, G.; Hünerwadel, A.; Mamie, C.; Lang, S.; Tchouboukov, A.; Weber, F.E.; et al. Decreased Fibrogenesis After Treatment with Pirfenidone in a Newly Developed Mouse Model of Intestinal Fibrosis. Inflamm. Bowel Dis. 2016, 22, 569–582. [Google Scholar] [CrossRef] [Green Version]
- Kojo, Y.; Suzuki, H.; Kato, K.; Kaneko, Y.; Yuminoki, K.; Hashimoto, N.; Sato, H.; Seto, Y.; Onoue, S. Enhanced Biopharmaceutical Effects of Tranilast on Experimental Colitis Model with Use of Self-Micellizing Solid Dispersion Technology. Int. J. Pharm. 2018, 545, 19–26. [Google Scholar] [CrossRef]
- Sun, X.; Suzuki, K.; Nagata, M.; Kawauchi, Y.; Yano, M.; Ohkoshi, S.; Matsuda, Y.; Kawachi, H.; Watanabe, K.; Asakura, H.; et al. Rectal Administration of Tranilast Ameliorated Acute Colitis in Mice through Increased Expression of Heme Oxygenase-1. Pathol. Int. 2010, 60, 93–101. [Google Scholar] [CrossRef]
- Binabaj, M.M.; Asgharzadeh, F.; Avan, A.; Rahmani, F.; Soleimani, A.; Parizadeh, M.R.; Ferns, G.A.; Ryzhikov, M.; Khazaei, M.; Hassanian, S.M. EW-7197 Prevents Ulcerative Colitis-associated Fibrosis and Inflammation. J. Cell Physiol. 2019, 234, 11654–11661. [Google Scholar] [CrossRef] [PubMed]
- Danese, S.; Klopocka, M.; Scherl, E.J.; Romatowski, J.; Allegretti, J.R.; Peeva, E.; Vincent, M.S.; Schoenbeck, U.; Ye, Z.; Hassan-Zahraee, M.; et al. Anti-TL1A Antibody PF-06480605 Safety and Efficacy for Ulcerative Colitis: A Phase 2a Single-Arm Study. Clin. Gastroenterol. Hepatol. 2021, 19, 2324–2332.e6. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, M.; Irving, P.M.; Selinger, C.P.; D’Haens, G.; Kuehbacher, T.; Seidler, U.; Gropper, S.; Haeufel, T.; Forgia, S.; Danese, S.; et al. Safety and Tolerability of Spesolimab in Patients with Ulcerative Colitis. Expert. Opin. Drug. Saf. 2023, 22, 141–152. [Google Scholar] [CrossRef]
- Holvoet, T.; Devriese, S.; Castermans, K.; Boland, S.; Leysen, D.; Vandewynckel, Y.-P.; Devisscher, L.; Van den Bossche, L.; Van Welden, S.; Dullaers, M.; et al. Treatment of Intestinal Fibrosis in Experimental Inflammatory Bowel Disease by the Pleiotropic Actions of a Local Rho Kinase Inhibitor. Gastroenterology 2017, 153, 1054–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speca, S.; Rousseaux, C.; Dubuquoy, C.; Rieder, F.; Vetuschi, A.; Sferra, R.; Giusti, I.; Bertin, B.; Dubuquoy, L.; Gaudio, E.; et al. Novel PPARγ Modulator GED-0507-34 Levo Ameliorates Inflammation-Driven Intestinal Fibrosis. Inflamm. Bowel Dis. 2016, 22, 279–292. [Google Scholar] [CrossRef] [Green Version]
- Burke, J.P.; Watson, R.W.G.; Murphy, M.; Docherty, N.G.; Coffey, J.C.; O’Connell, P.R. Simvastatin Impairs Smad-3 Phosphorylation and Modulates Transforming Growth Factor Β1-Mediated Activation of Intestinal Fibroblasts. Br. J. Surg. 2009, 96, 541–551. [Google Scholar] [CrossRef]
- Santacroce, G.; Lenti, M.V.; Di Sabatino, A. Therapeutic Targeting of Intestinal Fibrosis in Crohn’s Disease. Cells 2022, 11, 429. [Google Scholar] [CrossRef]
Cross Sectional Imaging | Features | Limitations | Future Perspectives |
---|---|---|---|
MRE | No radiation High contrast resolution Possibility of performing fluoro-magnetic resonance Can be combined with perianal imaging High accuracy for severe fibrosis identification | Time consuming Intravenous and oral contrast agents Longer scanning time than CTE Less robust than CTE Lower patient compliance than CTE Availability | Validation in more robust clinical trials Combination with radiomics |
DWI-MR | Short-time Possible with standard MR scanners No intravenous contrast Qualitative and quantitative analysis High accuracy for inflammation and penetrating complications in IBD High accuracy for severe fibrosis identification | Lack of anatomic details Low reproducibility of ADC Availability | Promising results to be confirmed in more robust clinical trials |
DKI-MR | More physiologic imaging No intravenous contrast High accuracy for inflammation Correlation with different fibrosis grades | Few data | Promising results to be confirmed in more robust clinical trials |
MT-MR | No intravenous contrast agent Correlation with different fibrosis grades Higher accuracy for fibrosis than MRE with or without DWI | Few data | Promising results to be confirmed in more robust clinical trials |
CTE | Accessible Fast Robust Better spatial resolution than MRE | Radiation | Combination with radiomics Reduction in the radiation dose with high-standard dual-source or ultra-high-pitch CT scanners and iterative reconstruction systems |
PET/CTE PET/MRE | In combination with CTE or MRE adds functional data | Radiation (labeled marker; CTE) High cost Limited availability Lack of anatomic details | The disadvantages and lack of advantages when compared to CTE and MRE may hinder further developments |
USE US-SWI | Real-time visualization of tissue stiffness | Operator dependent Not easy to interpret More difficult to compare current examination with previous studies Heterogeneous data | Promising results to be confirmed in more robust clinical trials |
CEUS | Severe fibrosis identification when associated to elastography techniques | Operator dependent Not easy to interpret More difficult to compare current examination with previous studies Heterogeneous data | Promising results to be confirmed in more robust clinical trials |
Agent | Pathway | Model | Research Status | Reference |
---|---|---|---|---|
Pirfenidone | TGFβ | Human cells | Pre-clinical | [196,197,198,199,200,201] |
Murine models | ||||
Mice | ||||
Tranilast | TGFβ | Rats | Pre-clinical | [202,203] |
Rat models | ||||
Patients with CD | ||||
EW-7197 | TGFβ | Murine model | Pre-clinical | [204] |
PF-06480605 | TNF | Patients with UC | Phase 2 | [205] |
Spesolimab | IL-36 | Patients with UC | Phase 2 | [206] |
AMA0825 | Rho-kinase inhibitor | Mice models | Pre-clinical | [207] |
Cells | ||||
CD biopsies | ||||
GED-0507-34 | PPARγa agonist | Mice | Pre-clinical | [208] |
Statins | HMG-CoA reductase inhibitors | Human intestinal fibroblasts | Pre-clinical | [209] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavares de Sousa, H.; Magro, F. How to Evaluate Fibrosis in IBD? Diagnostics 2023, 13, 2188. https://doi.org/10.3390/diagnostics13132188
Tavares de Sousa H, Magro F. How to Evaluate Fibrosis in IBD? Diagnostics. 2023; 13(13):2188. https://doi.org/10.3390/diagnostics13132188
Chicago/Turabian StyleTavares de Sousa, Helena, and Fernando Magro. 2023. "How to Evaluate Fibrosis in IBD?" Diagnostics 13, no. 13: 2188. https://doi.org/10.3390/diagnostics13132188
APA StyleTavares de Sousa, H., & Magro, F. (2023). How to Evaluate Fibrosis in IBD? Diagnostics, 13(13), 2188. https://doi.org/10.3390/diagnostics13132188