Human–Machine Collaboration in Diagnostics: Exploring the Synergy in Clinical Imaging with Artificial Intelligence
- ((pathology[Title/Abstract]) AND ((image[Title/Abstract]) OR (imaging[Title/Abstract]))) AND (Artificial Intelligence[Title/Abstract])
- ((dermatology[Title/Abstract]) AND ((image[Title/Abstract]) OR (imaging[Title/Abstract]))) AND (Artificial Intelligence[Title/Abstract])
- ((radiology[Title/Abstract]) AND ((image[Title/Abstract]) OR (imaging[Title/Abstract]))) AND (Artificial Intelligence[Title/Abstract])
- ((magnetic resonance[Title/Abstract]) AND ((image[Title/Abstract]) OR (imaging[Title/Abstract]))) AND (Artificial Intelligence[Title/Abstract])
Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alhasan, M.; Hasaneen, M. Digital imaging, technologies and artificial intelligence applications during COVID-19 pandemic. Comput. Med. Imaging Graph. 2021, 91, 101933. [Google Scholar] [CrossRef] [PubMed]
- Barragán-Montero, A.; Javaid, U.; Valdés, G.; Nguyen, D.; Desbordes, P.; Macq, B.; Willems, S.; Vandewinckele, L.; Holmström, M.; Löfman, F.; et al. Artificial intelligence and machine learning for medical imaging: A technology review. Phys. Medica 2021, 83, 242–256. [Google Scholar] [CrossRef] [PubMed]
- Giger, M.L. Machine Learning in Medical Imaging. J. Am. Coll. Radiol. 2018, 15 Pt B, 512–520. [Google Scholar] [CrossRef]
- Jaudet, C.; Weyts, K.; Lechervy, A.; Batalla, A.; Bardet, S.; Corroyer-Dulmont, A. The Impact of Artificial Intelligence CNN Based Denoising on FDG PET Radiomics. Front. Oncol. 2021, 11, 3136. [Google Scholar] [CrossRef] [PubMed]
- Grenier, P.A.; Brun, A.L.; Mellot, F. The Potential Role of Artificial Intelligence in Lung Cancer Screening Using Low-Dose Computed Tomography. Diagnostics 2022, 12, 2435. [Google Scholar] [CrossRef] [PubMed]
- Houri, O.; Gil, Y.; Gemer, O.; Helpman, L.; Vaknin, Z.; Lavie, O.; Ben Arie, A.; Amit, A.; Levy, T.; Namazov, A.; et al. Prediction of endometrial cancer recurrence by using a novel machine learning algorithm: An Israeli gynecologic oncology group study. J. Gynecol. Obstet. Hum. Reprod. 2022, 51, 102466. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Zhao, L.; Luo, C.; Luo, Y.; Wu, Y.; Li, S.; Bu, D.; Zhao, Y. Multi-modality artificial intelligence in digital pathology. Briefings Bioinform. 2022, 23, bbac367. [Google Scholar] [CrossRef] [PubMed]
- Du-Harpur, X.; Watt, F.; Luscombe, N.; Lynch, M. What is AI? Applications of artificial intelligence to dermatology. Br. J. Dermatol. 2020, 183, 423–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, A.; Muddana, P.S.; Halabi, S. A Review of Core Concepts of Imaging Informatics. Cureus 2022, 14, e32828. [Google Scholar] [CrossRef] [PubMed]
- Boeken, T.; Feydy, J.; Lecler, A.; Soyer, P.; Feydy, A.; Barat, M.; Duron, L. Artificial intelligence in diagnostic and interventional radiology: Where are we now? Diagn. Interv. Imaging 2023, 104, 1–5. [Google Scholar] [CrossRef] [PubMed]
- DICOM, Digital Imaging and COmmunications in Medicine. Available online: https://www.dicomstandard.org/ (accessed on 16 June 2023).
- DICOM Whole Slide Imaging (WSI). NEMA. Available online: http://dicom.nema.org/Dicom/DICOMWSI/ (accessed on 6 July 2021).
- Hadeler, E.; Hong, J.; Mosca, M.; Hakimi, M.; Brownstone, N.; Bhutani, T.; Liao, W. Perspectives on the Future Development of Mobile Applications for Dermatology Clinical Research. Dermatol. Ther. 2021, 11, 1451–1456. [Google Scholar] [CrossRef] [PubMed]
- Chin, Y.P.H.; Huang, I.H.; Hou, Z.Y.; Chen, P.Y.; Bassir, F.; Wang, H.H.; Lin, Y.T.; Li, Y.C.J. User satisfaction with a smartphone-compatible, artificial intelligence-based cutaneous pigmented lesion evaluator. Comput. Methods Programs Biomed. 2020, 195, 105649. [Google Scholar] [CrossRef] [PubMed]
- Giansanti, D.; Di Basilio, F. The Artificial Intelligence in Digital Radiology: Part 1: The Challenges, Acceptance and Consensus. Healthcare 2022, 10, 509. [Google Scholar] [CrossRef] [PubMed]
- Giovagnoli, M.R.; Giansanti, D. Artificial Intelligence in Digital Pathology: What Is the Future? Part 1: From the Digital Slide Onwards. Healthcare 2021, 9, 858. [Google Scholar] [CrossRef] [PubMed]
- Young, A.T.; Xiong, M.; Pfau, J.; Keiser, M.J.; Wei, M.L. Artificial Intelligence in Dermatology: A Primer. J. Investig. Dermatol. 2020, 140, 1504–1512. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, P.; Sonthalia, S.; Moreno-Ramirez, D.; Sharma, P.; Agrawal, M.; Gupta, S.; Kumar, D.; Arora, D. Teledermatology and its current perspective. Indian Dermatol. Online J. 2020, 11, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Giansanti, D. The Artificial Intelligence in Teledermatology: A Narrative Review on Opportunities, Perspectives, and Bottlenecks. Int. J. Environ. Res. Public Health 2023, 20, 5810. [Google Scholar] [CrossRef] [PubMed]
- Pirrera, A.; Giansanti, D.; Renzoni, A. Can the Use of Digital Technologies Enhance the Safety of Tattoing Practice? Available online: https://wctp2023.org/fileadmin/user_upload/WCTP/WCTP2023/WCTP_2023_ALL_Poster_abstracts_NEW.pdf (accessed on 16 June 2023).
- Giulbudagian, M.; Schreiver, I.; Singh, A.V.; Laux, P.; Luch, A. Safety of tattoos and permanent make-up: A regulatory view. Arch. Toxicol. 2020, 94, 357–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Special Issue “Artificial Intelligence in Clinical Medical Imaging”. Available online: https://www.mdpi.com/journal/diagnostics/special_issues/3FXN9682V0 (accessed on 16 June 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pirrera, A.; Giansanti, D. Human–Machine Collaboration in Diagnostics: Exploring the Synergy in Clinical Imaging with Artificial Intelligence. Diagnostics 2023, 13, 2162. https://doi.org/10.3390/diagnostics13132162
Pirrera A, Giansanti D. Human–Machine Collaboration in Diagnostics: Exploring the Synergy in Clinical Imaging with Artificial Intelligence. Diagnostics. 2023; 13(13):2162. https://doi.org/10.3390/diagnostics13132162
Chicago/Turabian StylePirrera, Antonia, and Daniele Giansanti. 2023. "Human–Machine Collaboration in Diagnostics: Exploring the Synergy in Clinical Imaging with Artificial Intelligence" Diagnostics 13, no. 13: 2162. https://doi.org/10.3390/diagnostics13132162
APA StylePirrera, A., & Giansanti, D. (2023). Human–Machine Collaboration in Diagnostics: Exploring the Synergy in Clinical Imaging with Artificial Intelligence. Diagnostics, 13(13), 2162. https://doi.org/10.3390/diagnostics13132162