Current Status of 68Ga-Pentixafor in Solid Tumours
Abstract
:1. Introduction
1.1. The Tumour Microenvironment
1.2. The Role of CXCR-4 in Cancer
2. CXCR4 in Solid Malignancies
2.1. Head and Neck Squamous Cell Carcinoma
2.2. Glioblastoma
2.3. Oesophageal Cancer
2.4. Neuroendocrine Tumours
2.5. Lung Cancer
2.6. Osteosarcoma
2.7. Gynaecological Malignancies
2.7.1. Vulva Cancer
2.7.2. Cervical Cancer
2.7.3. Ovarian Cancer
2.8. Breast Cancer
2.9. Prostate Cancer
2.10. Vestibular Schwannoma
2.11. Adrenocortical Carcinoma
2.12. Colorectal Cancer
2.13. Neuroblastoma
2.14. Hepatocellular Carcinoma
2.15. Melanoma
2.16. Cholangiocarcinoma
2.17. Pancreatic Ductal Adenocarcinoma
2.18. Renal Cell Carcinoma
2.19. Gastric Cancer
3. Future Direction
3.1. Therapies Targeting CXCR4
3.2. CXCR4-Targeted Radionuclide Therapy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ACC | Adrenocortical carcinoma |
BBB | Blood–brain barrier |
CAFs | Cancer-associated fibroblasts |
CXCR4 | Chemokine receptor 4 |
DOTATOC | DOTA-D-Phe-Tyr3-octreotide |
FDG | Fluorodeoxyglucose |
GBM | Glioblastoma |
HCC | Hepatocellular carcinoma |
HNSCC | Head and neck squamous cell carcinoma |
IHC | Immunohistochemistry |
MIF | Macrophage inhibitory factor |
NEC | Neuroendocrine carcinomas |
NETs | Neuroendocrine tumours |
NF 2 | Neurofibromatosis type 2 |
PDAC | Pancreatic ductal adenocarcinoma |
PET | Positron Emission Tomography |
PSMA | Prostate specific membrane antigen |
OC | Oesophageal cancer |
RCC | Renal cell carcinoma |
RT | Radiation therapy |
SCLC | Small cell lung cancer |
SDF-1 | Stromal cell-derived factor-1 |
SSTR | Somatostatin receptor |
TAMs | Tumour-associated macrophages |
TBR | Tumour to background ratio |
TKIs | Tyrosine kinase inhibitors |
TME | Tumour microenvironment |
TNF | Tumour necrosis factor |
VEGF | Vascular endothelial growth factor |
VSCC | Vulvar squamous cell carcinoma |
VS | Vestibular schwannomas |
References
- Li, J.; Jiang, K.; Qiu, X.; Li, M.; Hao, Q.; Wei, L.; Zhang, W.; Chen, B.; Xin, X. Overexpression of CXCR4 is significantly associated with cisplatin-based chemotherapy resistance and can be a prognostic factor in epithelial ovarian cancer. BMB Rep. 2014, 47, 33. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, L.; Chen, S.-W. Pan-cancer analysis of CXCR4 carcinogenesis in human tumors. Transl. Cancer Res. 2021, 10, 4180–4195. [Google Scholar] [CrossRef] [PubMed]
- Derlin, T.; Grunwald, V.; Steinbach, J.; Wester, H.J.; Ross, T.L. Molecular Imaging in Oncology Using Positron Emission Tomography. Dtsch. Arztebl. Int. 2018, 115, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Knopf, A.; Fritsche, M.K.; Li, Y. CXCR4: A New Player in an Old Scene? ORL J. Otorhinolaryngol. Relat. Spec. 2017, 79, 34–42. [Google Scholar] [CrossRef]
- Spreckelmeyer, S.; Schulze, O.; Brenner, W. Fully-automated production of [(68)Ga]Ga-PentixaFor on the module Modular Lab-PharmTracer. EJNMMI Radiopharm. Chem. 2020, 5, 8. [Google Scholar] [CrossRef]
- Peltanova, B.; Raudenska, M.; Masarik, M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: A systematic review. Mol. Cancer 2019, 18, 63. [Google Scholar] [CrossRef]
- Santagata, S.; Ieranò, C.; Trotta, A.M.; Capiluongo, A.; Auletta, F.; Guardascione, G.; Scala, S. CXCR4 and CXCR7 Signaling Pathways: A Focus on the Cross-Talk Between Cancer Cells and Tumor Microenvironment. Front. Oncol. 2021, 11, 591386. [Google Scholar] [CrossRef]
- Kratochwil, C.; Flechsig, P.; Lindner, T.; Abderrahim, L.; Altmann, A.; Mier, W.; Adeberg, S.; Rathke, H.; Röhrich, M.; Winter, H. 68Ga-FAPI PET/CT: Tracer uptake in 28 different kinds of cancer. J. Nucl. Med. 2019, 60, 801–805. [Google Scholar] [CrossRef]
- Porvasnik, S.; Sakamoto, N.; Kusmartsev, S.; Eruslanov, E.; Kim, W.J.; Cao, W.; Urbanek, C.; Wong, D.; Goodison, S.; Rosser, C.J. Effects of CXCR4 antagonist CTCE-9908 on prostate tumor growth. Prostate 2009, 69, 1460–1469. [Google Scholar] [CrossRef]
- Caspa Gokulan, R.; Devaraj, H. Stem Cell Markers CXCR-4 and CD133 Predict Aggressive Phenotype and Their Double Positivity Indicates Poor Prognosis of Oral Squamous Cell Carcinoma. Cancers 2021, 13, 5895. [Google Scholar] [CrossRef]
- Sung, B.; Jhurani, S.; Ahn, K.S.; Mastuo, Y.; Yi, T.; Guha, S.; Liu, M.; Aggarwal, B.B. Zerumbone down-regulates chemokine receptor CXCR4 expression leading to inhibition of CXCL12-induced invasion of breast and pancreatic tumor cells. Cancer Res. 2008, 68, 8938–8944. [Google Scholar] [CrossRef] [PubMed]
- Busillo, J.M.; Benovic, J.L. Regulation of CXCR4 signaling. Biochim. Biophys. Acta 2007, 1768, 952–963. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-H.; Zhang, S.-F.; Wu, H.-Y.; Gao, J.; Wang, X.-H.; Gao, T.-H. SOX17 inhibits proliferation and invasion of neuroblastoma through CXCL12/CXCR4 signaling axis. Cell. Signal. 2021, 87, 110093. [Google Scholar] [CrossRef] [PubMed]
- Teicher, B.A.; Fricker, S.P. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin. Cancer Res. 2010, 16, 2927–2931. [Google Scholar] [CrossRef]
- Martin, M.; Mayer, I.A.; Walenkamp, A.M.; Lapa, C.; Andreeff, M.; Bobirca, A. At the bedside: Profiling and treating patients with CXCR4-expressing cancers. J. Leukoc. Biol. 2021, 109, 953–967. [Google Scholar] [CrossRef]
- Brickute, D.; Braga, M.; Kaliszczak, M.A.; Barnes, C.; Lau, D.; Carroll, L.; Stevens, E.; Trousil, S.; Alam, I.S.; Nguyen, Q.D.; et al. Development and Evaluation of an (18)F-Radiolabeled Monocyclam Derivative for Imaging CXCR4 Expression. Mol. Pharm. 2019, 16, 2106–2117. [Google Scholar] [CrossRef]
- Bao, Y.; Wang, Z.; Liu, B.; Lu, X.; Xiong, Y.; Shi, J.; Li, P.; Chen, J.; Zhang, Z.; Chen, M. A feed-forward loop between nuclear translocation of CXCR4 and HIF-1α promotes renal cell carcinoma metastasis. Oncogene 2019, 38, 881–895. [Google Scholar] [CrossRef]
- Schrevel, M.; Karim, R.; Ter Haar, N.; Van Der Burg, S.; Trimbos, J.; Fleuren, G.; Gorter, A.; Jordanova, E. CXCR7 expression is associated with disease-free and disease-specific survival in cervical cancer patients. Br. J. Cancer 2012, 106, 1520–1525. [Google Scholar] [CrossRef]
- Vag, T.; Steiger, K.; Rossmann, A.; Keller, U.; Noske, A.; Herhaus, P.; Ettl, J.; Niemeyer, M.; Wester, H.J.; Schwaiger, M. PET imaging of chemokine receptor CXCR4 in patients with primary and recurrent breast carcinoma. EJNMMI Res. 2018, 8, 90. [Google Scholar] [CrossRef]
- Labrosse, B.; Treboute, C.; Brelot, A.; Alizon, M. Cooperation of the V1/V2 and V3 domains of human immunodeficiency virus type 1 gp120 for interaction with the CXCR4 receptor. J. Virol. 2001, 75, 5457–5464. [Google Scholar] [CrossRef] [Green Version]
- Bleul, C.C.; Wu, L.; Hoxie, J.A.; Springer, T.A.; Mackay, C.R. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc. Natl. Acad. Sci. USA 1997, 94, 1925–1930. [Google Scholar] [CrossRef]
- Demmer, O.; Gourni, E.; Schumacher, U.; Kessler, H.; Wester, H.J. PET imaging of CXCR4 receptors in cancer by a new optimized ligand. ChemMedChem 2011, 6, 1789–1791. [Google Scholar] [CrossRef]
- Jacobs, S.M.; Wesseling, P.; de Keizer, B.; Tolboom, N.; Ververs, F.F.T.; Krijger, G.C.; Westerman, B.A.; Snijders, T.J.; Robe, P.A.; van der Kolk, A.G. CXCR4 expression in glioblastoma tissue and the potential for PET imaging and treatment with [(68)Ga]Ga-Pentixafor /[(177)Lu]Lu-Pentixather. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 481–491. [Google Scholar] [CrossRef]
- Buck, A.K.; Serfling, S.E.; Lindner, T.; Hänscheid, H.; Schirbel, A.; Hahner, S.; Fassnacht, M.; Einsele, H.; Werner, R.A. CXCR4-targeted theranostics in oncology. Eur. J. Nucl. Med. Mol. Imaging 2022, 8, 1–12. [Google Scholar] [CrossRef]
- Serfling, S.E.; Lapa, C.; Dreher, N.; Hartrampf, P.E.; Rowe, S.P.; Higuchi, T.; Schirbel, A.; Weich, A.; Hahner, S.; Fassnacht, M. Impact of tumor burden on normal organ distribution in patients imaged with CXCR4-targeted [68Ga] Ga-PentixaFor PET/CT. Mol. Imaging Biol. 2022, 24, 659–665. [Google Scholar] [CrossRef]
- Beauregard, J.-M.; Hofman, M.S.; Kong, G.; Hicks, R.J. The tumour sink effect on the biodistribution of 68Ga-DOTA-octreotate: Implications for peptide receptor radionuclide therapy. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 50–56. [Google Scholar] [CrossRef]
- Vag, T.; Gerngross, C.; Herhaus, P.; Eiber, M.; Philipp-Abbrederis, K.; Graner, F.-P.; Ettl, J.; Keller, U.; Wester, H.-J.; Schwaiger, M. First experience with chemokine receptor CXCR4–targeted PET imaging of patients with solid cancers. J. Nucl. Med. 2016, 57, 741–746. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Cohen, N.; Fedewa, S.; Chen, A.Y. Epidemiology and Demographics of the Head and Neck Cancer Population. Oral Maxillofac. Surg. Clin. N. Am. 2018, 30, 381–395. [Google Scholar] [CrossRef]
- Lefebvre, J.-L. Current clinical outcomes demand new treatment options for SCCHN. Ann. Oncol. 2005, 16 (Suppl. S6), vi7–vi12. [Google Scholar] [CrossRef]
- Castelli, J.; Depeursinge, A.; Ndoh, V.; Prior, J.O.; Ozsahin, M.; Devillers, A.; Bouchaab, H.; Chajon, E.; De Crevoisier, R.; Scher, N. A PET-based nomogram for oropharyngeal cancers. Eur. J. Cancer 2017, 75, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Chin, D.; Boyle, G.M.; Porceddu, S.; Theile, D.R.; Parsons, P.G.; Coman, W.B. Head and neck cancer: Past, present and future. Expert Rev. Anticancer Ther. 2006, 6, 1111–1118. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.T.; An, J. Biology and clinical relevance of chemokines and chemokine receptors CXCR4 and CCR5 in human diseases. Exp. Biol. Med. 2011, 236, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Qiao, N.; Wang, L.; Wang, T.; Li, H. Inflammatory CXCL12-CXCR4/CXCR7 axis mediates G-protein signaling pathway to influence the invasion and migration of nasopharyngeal carcinoma cells. Tumour Biol. 2016, 37, 8169–8179. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018. Neuro-Oncology 2021, 23 (Suppl. S3), iii1–iii105. [Google Scholar] [CrossRef]
- Komatani, H.; Sugita, Y.; Arakawa, F.; Ohshima, K.; Shigemori, M. Expression of CXCL12 on pseudopalisading cells and proliferating microvessels in glioblastomas: An accelerated growth factor in glioblastomas. Int. J. Oncol. 2009, 34, 665–672. [Google Scholar]
- Stevenson, C.B.; Ehtesham, M.; McMillan, K.M.; Valadez, J.G.; Edgeworth, M.L.; Price, R.R.; Abel, T.W.; Mapara, K.Y.; Thompson, R.C. CXCR4 Expression is elevated in glioblastoma multiforme and correlates with an increase in intensity and extent of peritumoral T2-weighted magnetic resonance imaging signal abnormalities. Neurosurgery 2008, 63, 560–570. [Google Scholar] [CrossRef]
- Gravina, G.L.; Mancini, A.; Colapietro, A.; Vitale, F.; Vetuschi, A.; Pompili, S.; Rossi, G.; Marampon, F.; Richardson, P.J.; Patient, L. The novel CXCR4 antagonist, PRX177561, reduces tumor cell proliferation and accelerates cancer stem cell differentiation in glioblastoma preclinical models. Tumor Biol. 2017, 39, 1010428317695528. [Google Scholar] [CrossRef]
- Arnal, M.J.D.; Arenas, Á.F.; Arbeloa, Á.L. Esophageal cancer: Risk factors, screening and endoscopic treatment in Western and Eastern countries. World J. Gastroenterol. WJG 2015, 21, 7933. [Google Scholar] [CrossRef]
- Kaifi, J.T.; Yekebas, E.F.; Schurr, P.; Obonyo, D.; Wachowiak, R.; Busch, P.; Heinecke, A.; Pantel, K.; Izbicki, J.R. ARTICLES Tumor-Cell Homing to Lymph Nodes and Bone Marrow and CXCR4 Expression in Esophageal Cancer. J. Natl. Cancer Inst. 2005, 97, 1840–1847. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wu, X.; Liang, W.; Chen, C.; Zheng, L.; An, H. Clinicopathological and prognostic significance of chemokine receptor CXCR4 overexpression in patients with esophageal cancer: A meta-analysis. Tumor Biol. 2014, 35, 3709–3715. [Google Scholar] [CrossRef] [PubMed]
- Goto, M.; Yoshida, T.; Yamamoto, Y.; Furukita, Y.; Inoue, S.; Fujiwara, S.; Kawakita, N.; Nishino, T.; Minato, T.; Yuasa, Y.; et al. CXCR4 Expression is Associated with Poor Prognosis in Patients with Esophageal Squamous Cell Carcinoma. Ann. Surg. Oncol. 2017, 24, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lu, Q.; Xu, Y.; Liu, C.; Sun, Q. Clinicopathologic significance of CXCR4 expressions in patients with esophageal squamous cell carcinoma. Pathol.-Res. Pract. 2020, 216, 152787. [Google Scholar] [CrossRef]
- Kobe, C.; Baues, C.; Nast-Kolb, B.; Stockter, S.; Kuhnert, G.; Wester, H.; Fischer, T.; Schomäcker, K.; Drzezga, A. First clinical experience with [68] Ga-Pentixafor PET/CT in esophageal cancer. Soc. Nucl. Med. 2015, 56 (Suppl. S3), 635. [Google Scholar]
- Linde, P.; Baues, C.; Wegen, S.; Trommer, M.; Quaas, A.; Rosenbrock, J.; Celik, E.; Marnitz, S.; Bruns, C.J.; Fischer, T.; et al. Pentixafor PET/CT for imaging of chemokine receptor 4 expression in esophageal cancer—A first clinical approach. Cancer Imaging 2021, 21, 22. [Google Scholar] [CrossRef]
- Weich, A.; Werner, R.A.; Buck, A.K.; Hartrampf, P.E.; Serfling, S.E.; Scheurlen, M.; Wester, H.-J.; Meining, A.; Kircher, S.; Higuchi, T.; et al. CXCR4-Directed PET/CT in Patients with Newly Diagnosed Neuroendocrine Carcinomas. Diagnostics 2021, 11, 605. [Google Scholar] [CrossRef]
- Werner, R.A.; Weich, A.; Higuchi, T.; Schmid, J.S.; Schirbel, A.; Lassmann, M.; Wild, V.; Rudelius, M.; Kudlich, T.; Herrmann, K.; et al. Imaging of Chemokine Receptor 4 Expression in Neuroendocrine Tumors—A Triple Tracer Comparative Approach. Theranostics 2017, 7, 1489–1498. [Google Scholar] [CrossRef]
- Lapa, C.; Lückerath, K.; Rudelius, M.; Schmid, J.-S.; Schoene, A.; Schirbel, A.; Samnick, S.; Pelzer, T.; Buck, A.K.; Kropf, S. [68Ga] Pentixafor-PET/CT for imaging of chemokine receptor 4 expression in small cell lung cancer-initial experience. Oncotarget 2016, 7, 9288. [Google Scholar] [CrossRef]
- Kaemmerer, D.; Reimann, C.; Specht, E.; Wirtz, R.M.; Sayeg, M.; Baum, R.P.; Schulz, S.; Lupp, A. Differential expression and prognostic value of the chemokine receptor CXCR4 in bronchopulmonary neuroendocrine neoplasms. Oncotarget 2015, 6, 3346. [Google Scholar] [CrossRef]
- Watts, A.; Singh, B.; Basher, R.; Singh, H.; Bal, A.; Kapoor, R.; Arora, S.K.; Wester, H.J.; Mittal, B.R.; Behera, D. 68Ga-Pentixafor PET/CT demonstrating higher CXCR4 density in small cell lung carcinoma than in non-small cell variant. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 909–910. [Google Scholar] [CrossRef]
- Li, T.; Li, H.; Wang, Y.; Harvard, C.; Tan, J.L.; Au, A.; Xu, Z.; Jablons, D.M.; You, L. The expression of CXCR4, CXCL12 and CXCR7 in malignant pleural mesothelioma. J. Pathol. 2011, 223, 519–530. [Google Scholar] [CrossRef] [Green Version]
- Lapa, C.; Kircher, S.; Schirbel, A.; Rosenwald, A.; Kropf, S.; Pelzer, T.; Walles, T.; Buck, A.K.; Weber, W.A.; Wester, H.J.; et al. Targeting CXCR4 with [(68)Ga]Pentixafor: A suitable theranostic approach in pleural mesothelioma? Oncotarget 2017, 8, 96732–96737. [Google Scholar] [CrossRef]
- Otani, Y.; Kijima, T.; Kohmo, S.; Oishi, S.; Minami, T.; Nagatomo, I.; Takahashi, R.; Hirata, H.; Suzuki, M.; Inoue, K. Suppression of metastases of small cell lung cancer cells in mice by a peptidic CXCR4 inhibitor TF14016. FEBS Lett. 2012, 586, 3639–3644. [Google Scholar] [CrossRef]
- Pollino, S.; Palmerini, E.; Dozza, B.; Bientinesi, E.; Piccinni-Leopardi, M.; Lucarelli, E.; Righi, A.; Benassi, M.S.; Pazzaglia, L. CXCR4 in human osteosarcoma malignant progression. The response of osteosarcoma cell lines to the fully human CXCR4 antibody MDX1338. J. Bone Oncol. 2019, 17, 100239. [Google Scholar] [CrossRef]
- Gong, C.; Sun, K.; Xiong, H.H.; Sneh, T.; Zhang, J.; Zhou, X.; Yan, P.; Wang, J.H. Expression of CXCR4 and MMP-2 is associated with poor prognosis in patients with osteosarcoma. Histol. Histopathol. 2020, 35, 863–870. [Google Scholar] [CrossRef]
- Firnhaber, C.; Wilkin, T. Human papillomavirus vaccines: Where do they fit in HIV-infected individuals? Curr. HIV/AIDS Rep. 2012, 9, 278–286. [Google Scholar] [CrossRef]
- Rusetska, N.; Kowalski, K.; Zalewski, K.; Zięba, S.; Bidziński, M.; Goryca, K.; Kotowicz, B.; Fuksiewicz, M.; Kopczynski, J.; Bakuła-Zalewska, E. CXCR4/ACKR3/CXCL12 axis in the lymphatic metastasis of vulvar squamous cell carcinoma. J. Clin. Pathol. 2021, 75, 324–332. [Google Scholar] [CrossRef]
- Shiozaki, T.; Tabata, T.; Ma, N.; Yamawaki, T.; Motohashi, T.; Kondo, E.; Tanida, K.; Okugawa, T.; Ikeda, T. Association of CXC chemokine receptor type 4 expression and clinicopathologic features in human vulvar cancer. Int. J. Gynecol. Cancer 2013, 23, 1111–1117. [Google Scholar] [CrossRef]
- Sun, W.-L.; Shen, Y.; Yuan, Y.; Zhou, X.-J.; Li, W.-P. The value and clinical significance of tumor marker detection in cervical cancer. Sci. Program. 2021, 2021, 6643782. [Google Scholar] [CrossRef]
- Oany, A.R.; Mia, M.; Pervin, T.; Alyami, S.A.; Moni, M.A. Integrative Systems Biology Approaches to Identify Potential Biomarkers and Pathways of Cervical Cancer. J. Pers. Med. 2021, 11, 363. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Tong, R.; Guo, H.; Yu, T.; Wang, C. Association of CXCR4, CCR7, VEGF-C and VEGF-D expression with lymph node metastasis in patients with cervical cancer. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 214, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xi, Y.; Feng, Y. Ovarian cancer risk in relation to blood lipid levels and hyperlipidemia: A systematic review and meta-analysis of observational epidemiologic studies. Eur. J. Cancer Prev. 2021, 30, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-F.; Liu, S.-Y.; Min, X.-Y.; Ji, Y.-Y.; Wang, N.; Liu, D.; Ma, N.; Li, Z.-F.; Li, K. The prognostic value of CXCR4 in ovarian cancer: A meta-analysis. PLoS ONE 2014, 9, e92629. [Google Scholar] [CrossRef] [PubMed]
- Scotton, C.J.; Wilson, J.L.; Scott, K.; Stamp, G.; Wilbanks, G.D.; Fricker, S.; Bridger, G.; Balkwill, F.R. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res. 2002, 62, 5930–5938. [Google Scholar] [PubMed]
- Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast Cancer—Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies—An Updated Review. Cancers 2021, 13, 4287. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhu, C.; Zhang, F.; Zhou, Z.; Sun, M. “Attractive/adhesion force” dual-regulatory nanogels capable of CXCR4 antagonism and autophagy inhibition for the treatment of metastatic breast cancer. J. Control. Release 2022, 341, 892–903. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Zheng, J.; Zhuo, W.; Pan, P.; Li, M.; Zhang, W.; Zhou, H.; Gao, Y.; Li, X.; Liu, Z. ETV4 promotes breast cancer cell stemness by activating glycolysis and CXCR4-mediated sonic Hedgehog signaling. Cell Death Discov. 2021, 7, 126. [Google Scholar] [CrossRef]
- Mukherjee, D.; Zhao, J. The Role of chemokine receptor CXCR4 in breast cancer metastasis. Am. J. Cancer Res. 2013, 3, 46. [Google Scholar]
- Muller, A.; Homey, B.; Soto, H.; Ge, N.; Catron, D.; Buchanan, M.; McClanahan, T.; Murphy, E.; Yuan, W.; Wagner, S.; et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001, 410, 6824. [Google Scholar] [CrossRef]
- Zhang, Z.; Ni, C.; Chen, W.; Wu, P.; Wang, Z.; Yin, J.; Huang, J.; Qiu, F. Expression of CXCR4 and breast cancer prognosis: A systematic review and meta-analysis. BMC Cancer 2014, 14, 126. [Google Scholar] [CrossRef]
- Xu, T.-p.; Shen, H.; Liu, L.-x.; Shu, Y.-q. The impact of chemokine receptor CXCR4 on breast cancer prognosis: A meta-analysis. Cancer Epidemiol. 2013, 37, 725–731. [Google Scholar] [CrossRef]
- Xu, C.; Zhao, H.; Chen, H.; Yao, Q. CXCR4 in breast cancer: Oncogenic role and therapeutic targeting. Drug Des. Dev. Ther. 2015, 9, 4953. [Google Scholar]
- Yang, Q.; Zhang, F.; Ding, Y.; Huang, J.; Chen, S.; Wu, Q.; Wang, Z.; Chen, C. Antitumour activity of the recombination polypeptide GST-NT21MP is mediated by inhibition of CXCR4 pathway in breast cancer. Br. J. Cancer 2014, 110, 1288–1297. [Google Scholar] [CrossRef] [Green Version]
- Rawla, P. Epidemiology of prostate cancer. World J. Oncol. 2019, 10, 63. [Google Scholar] [CrossRef]
- Vorster, M.; Sathekge, M.M. Theranostics in Metastatic Castrate Resistant Prostate Cancer; Exon Publications: Brisbane, Australia, 2021; pp. 81–96. [Google Scholar]
- Schwarzenböck, S.M.; Stenzel, J.; Otto, T.; Helldorff, H.V.; Bergner, C.; Kurth, J.; Polei, S.; Lindner, T.; Rauer, R.; Hohn, A.; et al. [(68)Ga]pentixafor for CXCR4 imaging in a PC-3 prostate cancer xenograft model—Comparison with [(18)F]FDG PET/CT, MRI and ex vivo receptor expression. Oncotarget 2017, 8, 95606–95619. [Google Scholar] [CrossRef]
- Breun, M.; Monoranu, C.M.; Kessler, A.F.; Matthies, C.; Löhr, M.; Hagemann, C.; Schirbel, A.; Rowe, S.P.; Pomper, M.G.; Buck, A.K.; et al. [(68)Ga]-Pentixafor PET/CT for CXCR4-Mediated Imaging of Vestibular Schwannomas. Front. Oncol. 2019, 9, 503. [Google Scholar] [CrossRef]
- Carlson, M.L.; Link, M.J. Vestibular schwannomas. N. Engl. J. Med. 2021, 384, 1335–1348. [Google Scholar] [CrossRef]
- Breun, M.; Schwerdtfeger, A.; Martellotta, D.D.; Kessler, A.F.; Perez, J.M.; Monoranu, C.M.; Ernestus, R.I.; Matthies, C.; Löhr, M.; Hagemann, C. CXCR4: A new player in vestibular schwannoma pathogenesis. Oncotarget 2018, 9, 9940–9950. [Google Scholar] [CrossRef]
- Kimpel, O.; Bedrose, S.; Megerle, F.; Berruti, A.; Terzolo, M.; Kroiss, M.; Mai, K.; Dekkers, O.M.; Habra, M.A.; Fassnacht, M. Adjuvant platinum-based chemotherapy in radically resected adrenocortical carcinoma: A cohort study. Br. J. Cancer 2021, 125, 1233–1238. [Google Scholar] [CrossRef]
- Chifu, I.; Heinze, B.; Fuss, C.T.; Lang, K.; Kroiss, M.; Kircher, S.; Ronchi, C.L.; Altieri, B.; Schirbel, A.; Fassnacht, M. Impact of the chemokine receptors CXCR4 and CXCR7 on clinical outcome in adrenocortical carcinoma. Front. Endocrinol. 2020, 11, 597878. [Google Scholar] [CrossRef]
- Heinze, B.; Bluemel, C.; Chifu, I.; Schirbel, A.; Burger-Stritt, S.; Hirsch, K.; Lang, K.; Schottelius, M.; Wester, H.; Lapa, C. A novel theranostic concept for adrenocortical neoplasia targeting the chemokine receptor CXCR4. Exp. Clin. Endocrinol. Diabetes 2015, 123, OP1_01. [Google Scholar] [CrossRef]
- Buck, A.K.; Haug, A.; Dreher, N.; Lambertini, A.; Higuchi, T.; Lapa, C.; Weich, A.; Pomper, M.G.; Wester, H.J.; Zehnder, A.; et al. Imaging of C-X-C Motif Chemokine Receptor 4 Expression in 690 Patients with Solid or Hematologic Neoplasms using (68)Ga-PentixaFor PET. J. Nucl. Med. 2022, 63, e29–e34. [Google Scholar] [CrossRef]
- Bluemel, C.; Lapa, C.; Schirbel, A.; Fassnacht, M.; Allolio, B.; Schottelius, M.; Kropf, S.; Wester, H.; Hahner, S.; Herrmann, K. A theranostic approach for adrenocortical neoplasia based on high adrenal CXCR4 expression. Soc. Nucl. Med. 2015, 56, 145. [Google Scholar]
- Bluemel, C.; Hahner, S.; Heinze, B.; Fassnacht, M.; Kroiss, M.; Bley, T.A.; Wester, H.-J.; Kropf, S.; Lapa, C.; Schirbel, A. Investigating the chemokine receptor 4 as potential theranostic target in adrenocortical cancer patients. Clin. Nucl. Med. 2017, 42, e29–e34. [Google Scholar] [CrossRef]
- Daniel, S.K.; Seo, Y.D.; Pillarisetty, V.G. The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies. Semin. Cancer Biol. 2020, 65, 176–188. [Google Scholar] [CrossRef]
- Ottaiano, A.; Scala, S.; Normanno, N.; Botti, G.; Tatangelo, F.; Di Mauro, A.; Capozzi, M.; Facchini, S.; Tafuto, S.; Nasti, G. Prognostic and Predictive Role of CXC Chemokine Receptor 4 in Metastatic Colorectal Cancer Patients. Appl. Immunohistochem. Mol. Morphol. 2020, 28, 755–760. [Google Scholar] [CrossRef]
- Jiang, Q.; Sun, Y.; Liu, X. CXCR4 as a prognostic biomarker in gastrointestinal cancer: A meta-analysis. Biomarkers 2019, 24, 510–516. [Google Scholar] [CrossRef]
- Ahern, E.; Thomas, P.; Campbell, L.; Latter, M.; Eastgate, M.; Wyld, D.; Clark, D.A.; Stevenson, A.R.; O’Rourke, N.; Cavallucci, D. Pentixafor as a Theranostic Agent in Rectal and Pancreatic Adenocarcinoma: Outcomes from a Pilot Study. 2022. Available online: https://assets.researchsquare.com/files/rs-1274952/v2/a428a666-268f-4ecb-ab7b-775009d7d389.pdf?c=1650455491 (accessed on 11 June 2022).
- Karalexi, M.A.; Katsimpris, A.; Panagopoulou, P.; Bouka, P.; Schüz, J.; Ntzani, E.; Petridou, E.T.; Servitzoglou, M.; Baka, M.; Moschovi, M. Maternal lifestyle factors and risk of neuroblastoma in the offspring: A meta-analysis including Greek NARECHEM-ST primary data. Cancer Epidemiol. 2022, 77, 102055. [Google Scholar] [CrossRef]
- Van Heerdena, J. The management and outcomes of neuroblastoma in South African children. Belg. J. Paediatr. 2021, 23, 330–333. [Google Scholar]
- Quinn, C.H.; Beierle, A.M.; Beierle, E.A. Artificial Tumor Microenvironments in Neuroblastoma. Cancers 2021, 13, 1629. [Google Scholar] [CrossRef]
- Liberman, J.; Sartelet, H.; Flahaut, M.; Mühlethaler-Mottet, A.; Coulon, A.; Nyalendo, C.; Vassal, G.; Joseph, J.M.; Gross, N. Involvement of the CXCR7/CXCR4/CXCL12 axis in the malignant progression of human neuroblastoma. PLoS ONE 2012, 7, e43665. [Google Scholar] [CrossRef]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of hepatocellular carcinoma. Hepatology 2021, 73, 4–13. [Google Scholar] [CrossRef]
- Samant, H.; Amiri, H.S.; Zibari, G.B. Addressing the worldwide hepatocellular carcinoma: Epidemiology, prevention and management. J. Gastrointest. Oncol. 2021, 12 (Suppl. S2), S361–S373. [Google Scholar] [CrossRef]
- Liu, H.; Pan, Z.; Li, A.; Fu, S.; Lei, Y.; Sun, H.; Wu, M.; Zhou, W. Roles of Chemokine Receptor 4 (CXCR4) and Chemokine Ligand 12 (CXCL12) in Metastasis of Hepatocellular Carcinoma Cells. Cell. Mol. Immunol. 2008, 5, 373–378. [Google Scholar] [CrossRef]
- Werner, R.A.; Kircher, S.; Higuchi, T.; Kircher, M.; Schirbel, A.; Wester, H.J.; Buck, A.K.; Pomper, M.G.; Rowe, S.P.; Lapa, C. CXCR4-Directed Imaging in Solid Tumors. Front. Oncol. 2019, 9, 770. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Wang, G.; Kou, M.; Huang, Y.; Yanhong, H.; Yunpeng, B.; Yingbang, L.; Huang, W. The Therapeutic and Prognostic Value of Chemokine Receptors (CXCRs) in Skin Cutaneous Melanoma (SKCM) Progression. 2021. Available online: https://assets.researchsquare.com/files/rs-618975/v1/5863050f-b9f2-4c8e-a64b-b8944e2e167c.pdf?c=1631884921 (accessed on 12 June 2022).
- Soltantoyeh, T.; Akbari, B.; Karimi, A.; Mahmoodi Chalbatani, G.; Ghahri-Saremi, N.; Hadjati, J.; Hamblin, M.R.; Mirzaei, H.R. Chimeric Antigen Receptor (CAR) T Cell Therapy for Metastatic Melanoma: Challenges and Road Ahead. Cells 2021, 10, 1450. [Google Scholar] [CrossRef]
- Dong, L.; You, S.; Zhang, Q.; Osuka, S.; Devi, N.S.; Kaluz, S.; Ferguson, J.H.; Yang, H.; Chen, G.; Wang, B. Arylsulfonamide 64B inhibits hypoxia/HIF-induced expression of c-Met and CXCR4 and reduces primary tumor growth and metastasis of uveal melanoma. Clin. Cancer Res. 2019, 25, 2206–2218. [Google Scholar] [CrossRef]
- Alimohammadi, M.; Rahimi, A.; Faramarzi, F.; Alizadeh-Navaei, R.; Rafiei, A. Overexpression of chemokine receptor CXCR4 predicts lymph node metastatic risk in patients with melanoma: A systematic review and meta-analysis. Cytokine 2021, 148, 155691. [Google Scholar] [CrossRef]
- Liu, J.; Ren, W.X.; Shu, J. Multimodal molecular imaging evaluation for early diagnosis and prognosis of cholangiocarcinoma. Insights Imaging 2022, 13, 10. [Google Scholar] [CrossRef]
- Saffioti, F.; Mavroeidis, V.K. Review of incidence and outcomes of treatment of cholangiocarcinoma in patients with primary sclerosing cholangitis. World J. Gastrointest. Oncol. 2021, 13, 1336–1366. [Google Scholar] [CrossRef] [PubMed]
- Sahu, R.; Sharma, P.; Kumar, A. An Insight into Cholangiocarcinoma and Recent Advances in its Treatment. J. Gastrointest. Cancer 2022, 13, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Leelawat, K.; Keeratichamroen, S.; Leelawat, S.; Tohtong, R. CD24 induces the invasion of cholangiocarcinoma cells by upregulating CXCR4 and increasing the phosphorylation of ERK1/2. Oncol. Lett. 2013, 6, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Wang, J.; Qin, C. Blockade of CXCL12/CXCR4 signaling inhibits intrahepatic cholangiocarcinoma progression and metastasis via inactivation of canonical Wnt pathway. J. Exp. Clin. Cancer Res. 2014, 33, 103. [Google Scholar] [CrossRef]
- Tan, X.-Y.; Chang, S.; Liu, W.; Tang, H.-H. Silencing of CXCR4 inhibits tumor cell proliferation and neural invasion in human hilar cholangiocarcinoma. Gut Liver 2014, 8, 196–204. [Google Scholar] [CrossRef]
- Krieg, A.; Riemer, J.C.; Telan, L.A.; Gabbert, H.E.; Knoefel, W.T. CXCR4-A prognostic and clinicopathological biomarker for pancreatic ductal adenocarcinoma: A Meta-Analysis. PLoS ONE 2015, 10, e0130192. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Du, Y. Clinicopathological significance and prognostic role of chemokine receptor CXCR4 expression in pancreatic ductal adenocarcinoma, a meta-analysis and literature review. Int. J. Surg. 2019, 65, 32–38. [Google Scholar] [CrossRef]
- Capitanio, U.; Bensalah, K.; Bex, A.; Boorjian, S.A.; Bray, F.; Coleman, J.; Gore, J.L.; Sun, M.; Wood, C.; Russo, P. Epidemiology of renal cell carcinoma. Eur. Urol. 2019, 75, 74–84. [Google Scholar] [CrossRef]
- Heidegger, I.; Pircher, A.; Pichler, R. Targeting the tumor microenvironment in renal cell cancer biology and therapy. Front. Oncol. 2019, 9, 490. [Google Scholar] [CrossRef]
- Si, X.; Ma, J.; Yu, F.; Zhao, H.; Huang, H.; Sun, Y.-W. Clinicopathological and prognostic significance of CXCR4 high expression in renal cell carcinoma: A meta-analysis and literature review. Int. J. Surg. 2019, 71, 12–18. [Google Scholar] [CrossRef]
- Pan, J.; Mestas, J.; Burdick, M.D.; Phillips, R.J.; Thomas, G.V.; Reckamp, K.; Belperio, J.A.; Strieter, R.M. Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis. Mol. Cancer 2006, 5, 1–14. [Google Scholar] [CrossRef]
- Machlowska, J.; Baj, J.; Sitarz, M.; Maciejewski, R.; Sitarz, R. Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int. J. Mol. Sci. 2020, 21, 4012. [Google Scholar] [CrossRef]
- Thrift, A.P.; El-Serag, H.B. Burden of gastric cancer. Clin. Gastroenterol. Hepatol. 2020, 18, 534–542. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, S.W.; Kim, H.Y.; Li, S.; Yun, H.J.; Song, K.S.; Kim, S.; Jo, D.Y. Chemokine receptor CXCR4 expression, function, and clinical implications in gastric cancer. Int. J. Oncol. 2009, 34, 473–480. [Google Scholar]
- Wen, F.; Lu, X.; Huang, W.; Chen, X.; Ruan, S.; Gu, S.; Gu, P.; Li, Y.; Liu, J.; Liu, S.; et al. Characteristics of immunophenotypes and immunological in tumor microenvironment and analysis of immune implication of CXCR4 in gastric cancer. Sci. Rep. 2022, 12, 5720. [Google Scholar] [CrossRef]
- Yasumoto, K.; Koizumi, K.; Kawashima, A.; Saitoh, Y.; Arita, Y.; Shinohara, K.; Minami, T.; Nakayama, T.; Sakurai, H.; Takahashi, Y. Role of the CXCL12/CXCR4 axis in peritoneal carcinomatosis of gastric cancer. Cancer Res. 2006, 66, 2181–2187. [Google Scholar] [CrossRef]
- Debnath, B.; Xu, S.; Grande, F.; Garofalo, A.; Neamati, N. Small molecule inhibitors of CXCR4. Theranostics 2013, 3, 47. [Google Scholar] [CrossRef] [Green Version]
- Song, J.-S.; Chang, C.-C.; Wu, C.-H.; Dinh, T.K.; Jan, J.-J.; Huang, K.-W.; Chou, M.-C.; Shiue, T.-Y.; Yeh, K.-C.; Ke, Y.-Y.; et al. A highly selective and potent CXCR4 antagonist for hepatocellular carcinoma treatment. Proc. Natl. Acad. Sci. USA 2021, 118, e2015433118. [Google Scholar] [CrossRef]
- Kircher, M.; Herhaus, P.; Schottelius, M.; Buck, A.K.; Werner, R.A.; Wester, H.J.; Keller, U.; Lapa, C. CXCR4-directed theranostics in oncology and inflammation. Ann. Nucl. Med. 2018, 32, 503–511. [Google Scholar] [CrossRef]
- Ling, X.; Spaeth, E.; Chen, Y.; Shi, Y.; Zhang, W.; Schober, W.; Hail, N., Jr.; Konopleva, M.; Andreeff, M. The CXCR4 antagonist AMD3465 regulates oncogenic signaling and invasiveness in vitro and prevents breast cancer growth and metastasis in vivo. PLoS ONE 2013, 8, e58426. [Google Scholar]
- Maurer, S.; Herhaus, P.; Lippenmeyer, R.; Hänscheid, H.; Kircher, M.; Schirbel, A.; Maurer, H.C.; Buck, A.K.; Wester, H.-J.; Einsele, H. Side effects of CXC-chemokine receptor 4–directed endoradiotherapy with pentixather before hematopoietic stem cell transplantation. J. Nucl. Med. 2019, 60, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, K.; Schottelius, M.; Lapa, C.; Osl, T.; Poschenrieder, A.; Hanscheid, H.; Luckerath, K.; Schreder, M.; Bluemel, C.; Knott, M.; et al. First-in-Human Experience of CXCR4-Directed Endoradiotherapy with 177Lu- and 90Y-Labeled Pentixather in Advanced-Stage Multiple Myeloma with Extensive Intra- and Extramedullary Disease. J. Nucl. Med. 2016, 57, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Lapa, C.; Hänscheid, H.; Kircher, M.; Schirbel, A.; Wunderlich, G.; Werner, R.A.; Samnick, S.; Kotzerke, J.; Einsele, H.; Buck, A.K. Feasibility of CXCR4-directed radioligand therapy in advanced diffuse large B-cell lymphoma. J. Nucl. Med. 2019, 60, 60–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tumour | CXCR4 Immunohistochemistry | Pentixafor | Pentixafor vs. FDG | Potential Application |
---|---|---|---|---|
HNSCC | + in high grade tumours [34] | 2 patients-low uptake [84] | No published data | Select potential candidates for anti-CXCR4 therapies |
Glioblastoma | +++ in high grade tumours [37] | Low–moderate uptake [23] | Select potential candidates for anti-CXCR4 therapies | |
Oesophageal cancer | ++ in 38–50% [41,43] | Most lesions + [45,46] | FDG > Pentixafor [46,47] (7/26 lesions Pentixafor +, FDG −) [46] | Select potential candidates for anti-CXCR4 therapies Monitor treatment response Alter treatment plan (upstaging) [45] |
NET | Weak–moderate expression | 80% of Gr3 NET +, 50% Gr 2, Gr 1 neg [98] | Inferior to FDG and SSTR [47] | Role in higher grade tumours Prognosis Select potential candidates for anti-CXCR4 therapies |
Lung cancer | + [50] | SCLCa higher than NSCLCa [51] Mesothelioma controversial [52,53] | More sensitive than FDG in 6/10 patients [49] | More sensitive than 68Ga DOTANOC Select potential candidates for anti-CXCR4 therapies Monitor treatment response |
Osteosarcoma | + 68% of 36 tumours Worse prognosis [55,56] | No published data | No published data | Prognosis [54] Potentially select patients for CXCR4-targeted therapy Monitor treatment response |
Vulva cancer | + correlates with poorer prognosis [59] | No published data | No published data | Differentiate tumour from premalignant lesion [59] Prognosis Select patients who may benefit from therapy |
Cervix | + = poorer prognosis [62] | No data | No data | Prognosis |
Ovarian | + primary = more advanced disease, poorer prognosis [63] | No data | No data | Prognosis |
Breast | + but no correlation with molecular subtype, Ki67 or ER/PR [70,71,73] | 9/13 + [19] Recurrence metastasis 5/5 [27] 4/7 metastatic lesions | No data | Potentially select patients for therapy Monitor treatment response |
Prostate cancer | + = poorer prognosis | ++ In tumour models [77] Bladder activity seen | No published data | Insufficient evidence |
Vestibular schwannoma | +++ correlates with tumour invasiveness [80] | 6/6 sufficient uptake TBR matched w IHC [78] | No published data | Potentially to select patients for therapy Prognosis |
Adrenocortical cancer | +++ 9/18 samples + Ki67, poorer prognosis [82] | + in 6 patients adrenocortical [86] | Pentixafor + in 2/9 FDG negative lesions [85] FDG superior to Pentixafor 9/22 | Prognosis Treatment response Select patients for Rx [83] |
Colorectal | + in 76 samples = metastasis = aggressiveness [88,89] | Low to moderate 8 pts [90] | No published data | Potentially to select patients for therapy |
Neuroblastoma | + = tumour aggressiveness [13,94] | No published data | No published data | Potentially to select patients for therapy Prognosis |
HCC | + 65/78 patients [97] | Limited data + 2/5 pts [27,98] | No published data | Potential for selecting pts who may benefit from Rx |
Melanoma | + = higher tumour stage Mets > primary [99,101,102] | Limited data + 4/4 metastasis [27] | FDG SUVmax slightly higher [27] | Select potential candidates for anti-CXCR4 therapies |
Cholangiocarcinoma | 49% (122 pts) +++ = poorer prognosis [106,107] | 3 cases = high uptake [98] | No published data | Prognosis Select potential candidates for anti-CXCR4 therapies |
Pancreatic cancer | + = poorer prognosis [109,110] | Low–moderate uptake 12 patients (TBR 2.92- >4) [84,98] | No published data | |
Renal cell cancer | +++ with metastasis and poorer prognosis [113,114] | Low [98] | n/a | May be a marker of disease aggressiveness Select potential candidates for anti-CXCR4 therapies |
Gastric cancer | + = poorer prognosis [87,117,118] | No published data | No published data | Potentially select patients who may benefit from Rx |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadebe, B.; Sathekge, M.M.; Aldous, C.; Vorster, M. Current Status of 68Ga-Pentixafor in Solid Tumours. Diagnostics 2022, 12, 2135. https://doi.org/10.3390/diagnostics12092135
Hadebe B, Sathekge MM, Aldous C, Vorster M. Current Status of 68Ga-Pentixafor in Solid Tumours. Diagnostics. 2022; 12(9):2135. https://doi.org/10.3390/diagnostics12092135
Chicago/Turabian StyleHadebe, Bawinile, Machaba Michael Sathekge, Colleen Aldous, and Mariza Vorster. 2022. "Current Status of 68Ga-Pentixafor in Solid Tumours" Diagnostics 12, no. 9: 2135. https://doi.org/10.3390/diagnostics12092135
APA StyleHadebe, B., Sathekge, M. M., Aldous, C., & Vorster, M. (2022). Current Status of 68Ga-Pentixafor in Solid Tumours. Diagnostics, 12(9), 2135. https://doi.org/10.3390/diagnostics12092135