Association Between Atherosclerosis-Related Cardiovascular Disease and Uveitis: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Data Extraction and Study Quality Assessment
2.4. Statistical Analysis
3. Results
3.1. Literature Search
3.2. Characteristics of the Included Studies
3.3. Association between Uveitis and Carotid Atherosclerosis
3.4. Association between Uveitis and Atherosclerosis-Related CVD
4. Discussion
5. Further Directions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rothova, A.; Suttorp-van Schulten, M.S.; Frits Treffers, W.; Kijlstra, A. Causes and frequency of blindness in patients with intraocular inflammatory disease. Br. J. Ophthalmol. 1996, 80, 332–336. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Suttorp-Schulten, M.S.; Rothova, A. The possible impact of uveitis in blindness: A literature survey. Br. J. Ophthalmol. 1996, 80, 844–848. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Commodaro, A.G.; Bueno, V.; Belfort, R., Jr.; Rizzo, L.V. Autoimmune uveitis: The associated proinflammatory molecules and the search for immunoregulation. Autoimmun. Rev. 2011, 10, 205–209. [Google Scholar] [CrossRef]
- Barisani-Asenbauer, T.; Maca, S.M.; Mejdoubi, L.; Emminger, W.; Machold, K.; Auer, H. Uveitis- a rare disease often associated with systemic diseases and infections- a systematic review of 2619 patients. Orphanet J. Rare Dis. 2012, 7, 57. [Google Scholar] [CrossRef][Green Version]
- Lambert, J.R.; Wright, V. Eye inflammation in psoriatic arthritis. Ann. Rheum. Dis. 1976, 35, 354–356. [Google Scholar] [CrossRef][Green Version]
- Zeboulon, N.; Dougados, M.; Gossec, L. Prevalence and characteristics of uveitis in the spondyloarthropathies: A systematic literature review. Ann. Rheum. Dis. 2008, 67, 955–959. [Google Scholar] [CrossRef]
- Greco, A.; De Virgilio, A.; Ralli, M.; Ciofalo, A.; Mancini, P.; Attanasio, G.; de Vincentiis, M.; Lambiase, A. Behcet’s disease: New insights into pathophysiology, clinical features and treatment options. Autoimmun. Rev. 2018, 17, 567–575. [Google Scholar] [CrossRef]
- Lee, R.W.; Dick, A.D. Current concepts and future directions in the pathogenesis and treatment of non-infectious intraocular inflammation. Eye (Lond) 2012, 26, 17–28. [Google Scholar] [CrossRef][Green Version]
- Carreno, E.; Portero, A.; Herreras, J.M.; Garcia-Vazquez, C.; Whitcup, S.M.; Stern, M.E.; Calonge, M.; Enriquez-de-Salamanca, A. Cytokine and chemokine tear levels in patients with uveitis. Acta Ophthalmol. 2017, 95, e405–e414. [Google Scholar] [CrossRef][Green Version]
- Valentincic, N.V.; de Groot-Mijnes, J.D.; Kraut, A.; Korosec, P.; Hawlina, M.; Rothova, A. Intraocular and serum cytokine profiles in patients with intermediate uveitis. Mol. Vis. 2011, 17, 2003–2010. [Google Scholar]
- Zhong, Z.; Su, G.; Kijlstra, A.; Yang, P. Activation of the interleukin-23/interleukin-17 signalling pathway in autoinflammatory and autoimmune uveitis. Prog. Retin. Eye Res. 2021, 80, 100866. [Google Scholar] [CrossRef] [PubMed]
- Hohki, S.; Ohguro, N.; Haruta, H.; Nakai, K.; Terabe, F.; Serada, S.; Fujimoto, M.; Nomura, S.; Kawahata, H.; Kishimoto, T.; et al. Blockade of interleukin-6 signaling suppresses experimental autoimmune uveoretinitis by the inhibition of inflammatory Th17 responses. Exp. Eye Res. 2010, 91, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Caspi, R. Autoimmunity in the immune privileged eye: Pathogenic and regulatory T cells. Immunol. Res. 2008, 42, 41–50. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Amadi-Obi, A.; Yu, C.R.; Liu, X.; Mahdi, R.M.; Clarke, G.L.; Nussenblatt, R.B.; Gery, I.; Lee, Y.S.; Egwuagu, C.E. TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat. Med. 2007, 13, 711–718. [Google Scholar] [CrossRef]
- Li, C.K.H.; Xu, Z.; Ho, J.; Lakhani, I.; Liu, Y.Z.; Bazoukis, G.; Liu, T.; Wong, W.T.; Cheng, S.H.; Chan, M.T.V.; et al. Association of NPAC score with survival after acute myocardial infarction. Atherosclerosis 2020, 301, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.T.; Laxton, V.; Lin, H.Y.; Chan, Y.W.F.; Fitzgerald-Smith, S.; To, T.L.O.; Yan, B.P.; Liu, T.; Tse, G. Animal models of atherosclerosis (Review). Biomed. Rep. 2017, 6, 259–266. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lee, Y.T.; Lin, H.Y.; Chan, Y.W.F.; Li, K.H.C.; To, O.T.L.; Yan, B.P.; Liu, T.; Li, G.; Wong, W.T.; Keung, W.; et al. Mouse models of atherosclerosis: A historical perspective and recent advances. Lipids Health Dis. 2017, 16, 12. [Google Scholar] [CrossRef][Green Version]
- Koltsova, E.K.; Garcia, Z.; Chodaczek, G.; Landau, M.; McArdle, S.; Scott, S.R.; von Vietinghoff, S.; Galkina, E.; Miller, Y.I.; Acton, S.T.; et al. Dynamic T cell-APC interactions sustain chronic inflammation in atherosclerosis. J. Clin. Investig. 2012, 122, 3114–3126. [Google Scholar] [CrossRef][Green Version]
- Centa, M.; Prokopec, K.E.; Garimella, M.G.; Habir, K.; Hofste, L.; Stark, J.M.; Dahdah, A.; Tibbitt, C.A.; Polyzos, K.A.; Gistera, A.; et al. Acute Loss of Apolipoprotein E Triggers an Autoimmune Response That Accelerates Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2018, 38, e145–e158. [Google Scholar] [CrossRef]
- Wolf, D.; Ley, K. Immunity and Inflammation in Atherosclerosis. Circ. Res. 2019, 124, 315–327. [Google Scholar] [CrossRef]
- Dimitroulas, T.; Baniotopoulos, P.; Pagkopoulou, E.; Soulaidopoulos, S.; Nightingale, P.; Sandoo, A.; Karagiannis, A.; Douglas, K.; Sachinidis, A.; Garyfallos, A.; et al. Subclinical atherosclerosis in systemic sclerosis and rheumatoid arthritis: A comparative matched-cohort study. Rheumatol. Int. 2020, 40, 1997–2004. [Google Scholar] [CrossRef] [PubMed]
- Ambrosino, P.; Lupoli, R.; Di Minno, A.; Tasso, M.; Peluso, R.; Di Minno, M.N. Subclinical atherosclerosis in patients with rheumatoid arthritis. A meta-analysis of literature studies. Thromb. Haemost. 2015, 113, 916–930. [Google Scholar] [CrossRef] [PubMed]
- Merashli, M.; Ster, I.C.; Ames, P.R. Subclinical atherosclerosis in Behcet’s disease: A systematic review and meta-analysis. Semin Arthritis Rheum. 2016, 45, 502–510. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wu, G.C.; Liu, H.R.; Leng, R.X.; Li, X.P.; Li, X.M.; Pan, H.F.; Ye, D.Q. Subclinical atherosclerosis in patients with systemic lupus erythematosus: A systemic review and meta-analysis. Autoimmun. Rev. 2016, 15, 22–37. [Google Scholar] [CrossRef]
- Gimbrone, M.A., Jr.; Garcia-Cardena, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef][Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef][Green Version]
- Bai, Y.C.; Liu, C.H.; Leong, P.Y.; Lai, K.L.; Chen, H.H.; Wei, J.C. The Risk of Major Adverse Cardiovascular Events in Ankylosing Spondylitis Patients With a History of Acute Anterior Uveitis: A Nationwide, Population Based Cohort Study. Front. Med. (Lausanne) 2022, 9, 884800. [Google Scholar] [CrossRef]
- Feng, K.M.; Chien, W.C.; Chen, Y.H.; Sun, C.A.; Chung, C.H.; Chen, J.T.; Chen, C.L. Increased Risk of Acute Coronary Syndrome in Ankylosing Spondylitis Patients With Uveitis: A Population-Based Cohort Study. Front. Immunol. 2022, 13, 890543. [Google Scholar] [CrossRef]
- Lai, Y.F.; Lin, T.Y.; Chien, W.C.; Sun, C.A.; Chung, C.H.; Chen, Y.H.; Chen, J.T.; Chen, C.L. Uveitis as a Risk Factor for Developing Acute Myocardial Infarction in Ankylosing Spondylitis: A National Population-Based Longitudinal Cohort Study. Front. Immunol. 2021, 12, 811664. [Google Scholar] [CrossRef]
- Lin, H.Y.; Lee, Y.T.; Chan, Y.W.; Tse, G. Animal models for the study of primary and secondary hypertension in humans (Review). Biomed. Rep. 2016, 5, 653–659. [Google Scholar] [CrossRef][Green Version]
- Boudoulas, K.D.; Triposkiadis, F.; Geleris, P.; Boudoulas, H. Coronary Atherosclerosis: Pathophysiologic Basis for Diagnosis and Management. Prog. Cardiovasc. Dis. 2016, 58, 676–692. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Dhindsa, D.S.; Hooda, A.; Nayak, A.; Massad, C.S.; Rao, B.; Makue, L.F.; Rajani, R.R.; Alabi, O.; Quyyumi, A.A.; et al. Premature atherosclerotic peripheral artery disease: An underrecognized and undertreated disorder with a rising global prevalence. Trends Cardiovasc. Med. 2021, 31, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Elkind, M.S.V. Inflammation, Atherosclerosis, and Stroke. Neurologist 2006, 12, 140–148. [Google Scholar] [CrossRef]
- Lehmann, N.; Erbel, R.; Mahabadi, A.A.; Rauwolf, M.; Mohlenkamp, S.; Moebus, S.; Kalsch, H.; Budde, T.; Schmermund, A.; Stang, A.; et al. Value of Progression of Coronary Artery Calcification for Risk Prediction of Coronary and Cardiovascular Events: Result of the HNR Study (Heinz Nixdorf Recall). Circulation 2018, 137, 665–679. [Google Scholar] [CrossRef] [PubMed]
- Azen, S.P.; Mack, W.J.; Cashin-Hemphill, L.; LaBree, L.; Shircore, A.M.; Selzer, R.H.; Blankenhorn, D.H.; Hodis, H.N. Progression of coronary artery disease predicts clinical coronary events. Long-term follow-up from the Cholesterol Lowering Atherosclerosis Study. Circulation 1996, 93, 34–41. [Google Scholar] [CrossRef]
- Roever, L.; Tse, G.; Biondi-Zoccai, G. Trends in cardiovascular disease in Australia and in the world. Eur. J. Prev. Cardiol. 2018, 25, 1278–1279. [Google Scholar] [CrossRef][Green Version]
- Cao, J.J.; Arnold, A.M.; Manolio, T.A.; Polak, J.F.; Psaty, B.M.; Hirsch, C.H.; Kuller, L.H.; Cushman, M. Association of carotid artery intima-media thickness, plaques, and C-reactive protein with future cardiovascular disease and all-cause mortality: The Cardiovascular Health Study. Circulation 2007, 116, 32–38. [Google Scholar] [CrossRef][Green Version]
- Rosvall, M.; Janzon, L.; Berglund, G.; Engstrom, G.; Hedblad, B. Incidence of stroke is related to carotid IMT even in the absence of plaque. Atherosclerosis 2005, 179, 325–331. [Google Scholar] [CrossRef]
- Iglesias del Sol, A.; Bots, M.L.; Grobbee, D.E.; Hofman, A.; Witteman, J.C. Carotid intima-media thickness at different sites: Relation to incident myocardial infarction; The Rotterdam Study. Eur. Heart J. 2002, 23, 934–940. [Google Scholar] [CrossRef][Green Version]
- Chambless, L.E.; Folsom, A.R.; Clegg, L.X.; Sharrett, A.R.; Shahar, E.; Nieto, F.J.; Rosamond, W.D.; Evans, G. Carotid wall thickness is predictive of incident clinical stroke: The Atherosclerosis Risk in Communities (ARIC) study. Am. J. Epidemiol. 2000, 151, 478–487. [Google Scholar] [CrossRef]
- Lorenz, M.W.; Markus, H.S.; Bots, M.L.; Rosvall, M.; Sitzer, M. Prediction of clinical cardiovascular events with carotid intima-media thickness: A systematic review and meta-analysis. Circulation 2007, 115, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, P.; Perrone-Filardi, P.; Vassallo, E.; Paolillo, S.; Cesarano, P.; Brevetti, G.; Chiariello, M. Does carotid intima-media thickness regression predict reduction of cardiovascular events? A meta-analysis of 41 randomized trials. J. Am. Coll. Cardiol. 2010, 56, 2006–2020. [Google Scholar] [CrossRef] [PubMed][Green Version]
- van den Oord, S.C.; Sijbrands, E.J.; ten Kate, G.L.; van Klaveren, D.; van Domburg, R.T.; van der Steen, A.F.; Schinkel, A.F. Carotid intima-media thickness for cardiovascular risk assessment: Systematic review and meta-analysis. Atherosclerosis 2013, 228, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Den Ruijter, H.M.; Peters, S.A.; Anderson, T.J.; Britton, A.R.; Dekker, J.M.; Eijkemans, M.J.; Engstrom, G.; Evans, G.W.; de Graaf, J.; Grobbee, D.E.; et al. Common carotid intima-media thickness measurements in cardiovascular risk prediction: A meta-analysis. JAMA 2012, 308, 796–803. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Stork, S.; van den Beld, A.W.; von Schacky, C.; Angermann, C.E.; Lamberts, S.W.; Grobbee, D.E.; Bots, M.L. Carotid artery plaque burden, stiffness, and mortality risk in elderly men: A prospective, population-based cohort study. Circulation 2004, 110, 344–348. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Belcaro, G.; Nicolaides, A.N.; Ramaswami, G.; Cesarone, M.R.; De Sanctis, M.; Incandela, L.; Ferrari, P.; Geroulakos, G.; Barsotti, A.; Griffin, M.; et al. Carotid and femoral ultrasound morphology screening and cardiovascular events in low risk subjects: A 10-year follow-up study (the CAFES-CAVE study(1)). Atherosclerosis 2001, 156, 379–387. [Google Scholar] [CrossRef]
- Ansell, B.J. The two faces of the ‘good’ cholesterol. Cleve Clin. J. Med. 2007, 74, 695–703. [Google Scholar] [CrossRef]
- Lee, S.; Zhou, J.; Guo, C.L.; Wong, W.T.; Liu, T.; Wong, I.C.K.; Jeevaratnam, K.; Zhang, Q.; Tse, G. Predictive scores for identifying patients with type 2 diabetes mellitus at risk of acute myocardial infarction and sudden cardiac death. Endocrinol. Diabetes Metab. 2021, 4, e00240. [Google Scholar] [CrossRef]
- Lee, S.; Zhou, J.; Leung, K.S.K.; Wu, W.K.K.; Wong, W.T.; Liu, T.; Wong, I.C.K.; Jeevaratnam, K.; Zhang, Q.; Tse, G. Development of a predictive risk model for all-cause mortality in patients with diabetes in Hong Kong. BMJ Open Diabetes Res. Care 2021, 9, e001950. [Google Scholar] [CrossRef]
- Lee, S.; Zhou, J.; Wong, W.T.; Liu, T.; Wu, W.K.K.; Wong, I.C.K.; Zhang, Q.; Tse, G. Glycemic and lipid variability for predicting complications and mortality in diabetes mellitu.us using machine learning. BMC Endocr. Disord. 2021, 21, 94. [Google Scholar] [CrossRef]
- Ansell, B.J.; Navab, M.; Hama, S.; Kamranpour, N.; Fonarow, G.; Hough, G.; Rahmani, S.; Mottahedeh, R.; Dave, R.; Reddy, S.T.; et al. Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation 2003, 108, 2751–2756. [Google Scholar] [CrossRef] [PubMed]
- Al-Banna, N.; Lehmann, C. Oxidized LDL and LOX-1 in experimental sepsis. Mediat. Inflamm. 2013, 2013, 761789. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kim, S.Y.; Yu, M.; Morin, E.E.; Kang, J.; Kaplan, M.J.; Schwendeman, A. High-Density Lipoprotein in Lupus: Disease Biomarkers and Potential Therapeutic Strategy. Arthritis Rheumatol. 2020, 72, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Telles, R.W.; Lanna, C.C.; Sousa, A.J.; Navarro, T.P.; Souza, F.L.; Rodrigues, L.A.; Reis, R.C.; Ribeiro, A.L. Progression of carotid atherosclerosis in patients with systemic lupus erythematosus. Clin. Rheumatol. 2013, 32, 1293–1300. [Google Scholar] [CrossRef]
- Roman, M.J.; Shanker, B.A.; Davis, A.; Lockshin, M.D.; Sammaritano, L.; Simantov, R.; Crow, M.K.; Schwartz, J.E.; Paget, S.A.; Devereux, R.B.; et al. Prevalence and correlates of accelerated atherosclerosis in systemic lupus erythematosus. N. Engl. J. Med. 2003, 349, 2399–2406. [Google Scholar] [CrossRef][Green Version]
- Deo, S.S.; Chogle, A.R.; Mistry, K.J.; Shetty, R.R.; Nadkar, U.L. Increased prevalence of subclinical atherosclerosis in rheumatoid arthritis patients of Indian descent. Exp. Clin. Cardiol. 2012, 17, 20–25. [Google Scholar]
- Chuang, K.W.; Chang, H.C. Risk of ischaemic heart diseases and stroke in behçet disease: A systematic review and meta-analysis. Eur. J. Clin. Investig. 2022, 52, e13778. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, Y.; Sun, C.; Jiang, M.; Lin, J. Ischaemic heart disease in Behcet’s syndrome: A systematic review and meta-analysis. Clin. Exp. Rheumatol. 2022, 40, 1497–1503. [Google Scholar] [CrossRef]
Study (First Author-Year) | Study Design | Regions and Number of Centers | Duration of Study | Participants | Sample. n | Male (%) | Uveitis (%) | Without Uveitis (%) | Definition of Uveitis | Type of Uveitis | Main Cardiovascular Outcomes | Follow-Up | Quality Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bai 2022 [27] | Retrospective cohort study | Taiwan (The Longitudinal Health Insurance Database) | 1 January 2003–31 December 2013 | Newly diagnosed AS patients | 17,720 | 11,535 (65.1) | 3544 (20.0) | 14176 (80.0) | ICD-9-CM codes | History of AAU | MACE * | AAU: 3.8 ± 1.9 years, Non-AAU: 3.9 ± 1.8 years | 7 |
Berg 2014 | Cross-sectional study | Norway (one-center) | 2008–2009 | AS patients | 159 | 98 (61.6) | 84 (52.8) | 75 (47.2) | NA | History of uveitis | Hypertension, atherosclerosis | NA | 6 |
Conkar 2017 | Cross-sectional study | Turkey (one-center) | 1 January 2010–1 March 2017 | Children | 125 | 55 (44.0) | 75 (60.0) | 50 (40.0) | Chronic uveitis: Persistent and characterized by prompt relapse (in <3 months) after discontinuation of therapy | Intermediate uveitis 58.7%, anterior uveitis 33.3%, panuveitis 8% | Subclinical atherosclerosis | 3.2 ± 3.04 years | 9 |
Feng 2022 [28] | Retrospective cohort study | Taiwan (The Longitudinal Health Insurance Database) | 1 January 2000–31 December 2015 | New onset of AS patients | 5555 | 3105 (55.9) | 1111 (20.0) | 4444 (80.0) | ICD-9-CM codes | Anterior uveitis (35.5%), posterior segment involvement uveitis (64.5%) | ACS | Uveitis: 9.82 ± 8.40 years, Without uveitis: 9.85 ± 8.55 years | 9 |
Gonzalez Mazon 2021 | Cross-sectional study | Spain (Multi-center) | NA | Axial spondylarthritis patients | 886 | 599 (67.6) | 177 (20.0) | 709 (80.0) | NA | Anterior uveitis | Carotid subclinical atherosclerosis | NA | 4 |
Lai 2022 [29] | Retrospective cohort study | Taiwan (The National Health Insurance Research Database) | January 2000–December 2015 | New onset of AS patients | 5905 | 3255 (55.1) | 1181 (20.0) | 4724 (80.0) | ICD-9-CM codes | Anterior uveitis (36.6%), posterior segment uveitis (63.4%) | AMI | 9.91 ± 8.56 years | 9 |
Study (First Author-Year) | With Uveitis | Anterior Uveitis | Posterior Segment Involvement Uveitis |
---|---|---|---|
Bai 2022 [27] | NA | 0.980 (0.700–1.370) | NA |
Feng 2022 [28] | 1.675 (1.501–1.947) | 1.665 (1.495–1.935) | 4.893 (4.385–5.689) |
Lai 2022 [29] | 1.653 (1.480–1.918) | 1.624 (1.409–1.874) | 1.673 (1.510–1.930) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Lv, T.; Li, G.; Tse, G.; Liu, T. Association Between Atherosclerosis-Related Cardiovascular Disease and Uveitis: A Systematic Review and Meta-Analysis. Diagnostics 2022, 12, 3178. https://doi.org/10.3390/diagnostics12123178
Gao X, Lv T, Li G, Tse G, Liu T. Association Between Atherosclerosis-Related Cardiovascular Disease and Uveitis: A Systematic Review and Meta-Analysis. Diagnostics. 2022; 12(12):3178. https://doi.org/10.3390/diagnostics12123178
Chicago/Turabian StyleGao, Xinyi, Tonglian Lv, Guangping Li, Gary Tse, and Tong Liu. 2022. "Association Between Atherosclerosis-Related Cardiovascular Disease and Uveitis: A Systematic Review and Meta-Analysis" Diagnostics 12, no. 12: 3178. https://doi.org/10.3390/diagnostics12123178