Integration of Artificial Intelligence into the Approach for Diagnosis and Monitoring of Dry Eye Disease
Abstract
:1. Introduction
2. Application of AI in Anterior Segment Diseases
3. Application of AI in Diagnosis and Treatment of Ded
3.1. Application of AI for Analysis of Medical Data
3.2. Analysis of ASPs and Videos Using AI
3.3. Analysis of Meibography Images Using AI
3.4. Analysis of Interferometry Images Using AI
3.5. Analysis of IVCM Images Using AI
3.6. Application of AI for Analysis of AS-OCT Images
4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Balyen, L.; Peto, T. Promising Artificial Intelligence-Machine Learning-Deep Learning Algorithms in Ophthalmology. Asia Pac. J. Ophthalmol. 2019, 8, 264–272. [Google Scholar]
- Ting, D.S.J.; Foo, V.H.; Yang, L.W.Y.; Sia, J.T.; Ang, M.; Lin, H.; Chodosh, J.; Mehta, J.S.; Ting, D.S.W. Artificial intelligence for anterior segment diseases: Emerging applications in ophthalmology. Br. J. Ophthalmol. 2021, 105, 158–168. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Murdoch, T.B.; Detsky, A.S. The inevitable application of big data to health care. JAMA 2013, 309, 1351–1352. [Google Scholar] [CrossRef] [PubMed]
- Ting, D.S.W.; Pasquale, L.R.; Peng, L.; Campbell, J.P.; Lee, A.Y.; Raman, R.; Tan, G.S.W.; Schmetterer, L.; Keane, P.A.; Wong, T.Y. Artificial intelligence and deep learning in ophthalmology. Br. J. Ophthalmol. 2019, 103, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Storås, A.M.; Strümke, I.; Riegler, M.A.; Grauslund, J.; Hammer, H.L.; Yazidi, A.; Halvorsen, P.; Gundersen, K.G.; Utheim, T.P.; Jackson, C.J. Artificial intelligence in dry eye disease. Ocul. Surf. 2022, 23, 74–86. [Google Scholar] [CrossRef]
- Kapoor, R.; Walters, S.P.; Al-Aswad, L.A. The current state of artificial intelligence in ophthalmology. Surv. Ophthalmol. 2019, 64, 233–240. [Google Scholar] [CrossRef]
- Wu, X.; Liu, L.; Zhao, L.; Guo, C.; Li, R.; Wang, T.; Yang, X.; Xie, P.; Liu, Y.; Lin, H. Application of artificial intelligence in anterior segment ophthalmic diseases: Diversity and standardization. Ann. Transl. Med. 2020, 8, 714. [Google Scholar] [CrossRef] [PubMed]
- Ting, D.S.W.; Lee, A.Y.; Wong, T.Y. An Ophthalmologist’s Guide to Deciphering Studies in Artificial Intelligence. Ophthalmology 2019, 126, 1475–1479. [Google Scholar] [CrossRef] [Green Version]
- De Fauw, J.; Ledsam, J.R.; Romera-Paredes, B.; Nikolov, S.; Tomasev, N.; Blackwell, S.; Askham, H.; Glorot, X.; O’Donoghue, B.; Visentin, D.; et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 2018, 24, 1342–1350. [Google Scholar] [CrossRef]
- Ting, D.S.W.; Cheung, C.Y.; Lim, G.; Tan, G.S.W.; Quang, N.D.; Gan, A.; Hamzah, H.; Garcia-Franco, R.; San Yeo, I.Y.; Lee, S.Y.; et al. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA 2017, 318, 2211–2223. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.; Brown, J.M.; Gupta, K.; Campbell, J.P.; Ostmo, S.; Chan, R.V.P.; Dy, J.; Erdogmus, D.; Ioannidis, S.; Kim, S.J.; et al. Monitoring Disease Progression With a Quantitative Severity Scale for Retinopathy of Prematurity Using Deep Learning. JAMA Ophthalmol. 2019, 137, 1022–1028. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S.K.; Fu, D.J.; Faes, L.; Liu, X.X.; Huemer, J.; Khalid, H.; Ferraz, D.; Korot, E.; Kelly, C.; Balaskas, K.; et al. Insights into Systemic Disease through Retinal Imaging-Based Oculomics. Transl. Vis. Sci. Technol. 2020, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Schmidt-Erfurth, U.; Sadeghipour, A.; Gerendas, B.S.; Waldstein, S.M.; Bogunović, H. Artificial intelligence in retina. Prog. Retin. Eye Res. 2018, 67, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Han, S.B.; Liu, Y.C.; Mohamed-Noriega, K.; Mehta, J.S. Advances in Imaging Technology of Anterior Segment of the Eye. J. Ophthalmol. 2021, 2021, 9539765. [Google Scholar] [CrossRef]
- Mahesh Kumar, S.V.; Gunasundari, R. Computer-Aided Diagnosis of Anterior Segment Eye Abnormalities using Visible Wavelength Image Analysis Based Machine Learning. J. Med. Syst. 2018, 42, 128. [Google Scholar]
- Liu, X.; Jiang, J.; Zhang, K.; Long, E.; Cui, J.; Zhu, M.; An, Y.; Zhang, J.; Liu, Z.; Lin, Z.; et al. Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network. PLoS ONE 2017, 12, e0168606. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.J.; Li, J.; Shen, R.; He, J.; Bi, J.; Li, Y.; Zhang, Q.; Peng, L.; Wang, Q. Exploiting ensemble learning for automatic cataract detection and grading. Comput. Methods Programs Biomed. 2016, 124, 45–57. [Google Scholar] [CrossRef]
- Wu, X.; Huang, Y.; Liu, Z.; Lai, W.; Long, E.; Zhang, K.; Jiang, J.; Lin, D.; Chen, K.; Yu, T. Universal artificial intelligence platform for collaborative management of cataracts. Br. J. Ophthalmol. 2019, 103, 1553–1560. [Google Scholar] [CrossRef] [Green Version]
- Son, K.Y.; Ko, J.; Kim, E.; Lee, S.Y.; Kim, M.J.; Han, J.; Shin, E.; Chung, T.Y.; Lim, D.H. Deep Learning-Based Cataract Detection and Grading from Slit-Lamp and Retro-Illumination Photographs: Model Development and Validation Study. Ophthalmol. Sci. 2022, 2, 100147. [Google Scholar] [CrossRef]
- Gutierrez, L.; Lim, J.S.; Foo, L.L.; Ng, W.Y.; Yip, M.; Lim, G.Y.S.; Wong, M.H.Y.; Fong, A.; Rosman, M.; Mehta, J.S.; et al. Application of artificial intelligence in cataract management: Current and future directions. Eye Vis. 2022, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Sramka, M.; Slovak, M.; Tuckova, J.; Stodulka, P. Improving clinical refractive results of cataract surgery by machine learning. PeerJ 2019, 7, e7202. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Stein, J.; Nallasamy, N. AI-powered effective lens position prediction improves the accuracy of existing lens formulas. Br. J. Ophthalmol. 2022, 106, 1222–1226. [Google Scholar] [CrossRef]
- Hung, K.H.; Lin, C.; Roan, J.; Kuo, C.F.; Hsiao, C.H.; Tan, H.Y.; Chen, H.C.; Ma, D.H.; Yeh, L.K.; Lee, O.K. Application of a Deep Learning System in Pterygium Grading and Further Prediction of Recurrence with Slit Lamp Photographs. Diagnostics 2022, 12, 888. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Jin, L.; Zhu, P.Z.; Yang, W.H.; Wu, M.N. Implementation and Application of an Intelligent Pterygium Diagnosis System Based on Deep Learning. Front. Psychol. 2021, 12, 759229. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Deshmukh, M.; Chee, M.L.; Soh, Z.D.; Teo, Z.L.; Thakur, S.; Goh, J.H.L.; Liu, Y.C.; Husain, R.; Mehta, J.; et al. Deep learning algorithms for automatic detection of pterygium using anterior segment photographs from slit-lamp and hand-held cameras. Br. J. Ophthalmol. 2021, 106, 1642–1647. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, Y.J.; Lee, Y.J.; Hyon, J.Y.; Han, S.B.; Kim, K.G. Automated histopathological evaluation of pterygium using artificial intelligence. Br. J. Ophthalmol. 2022. [Google Scholar] [CrossRef]
- Saini, J.S.; Jain, A.K.; Kumar, S.; Vikal, S.; Pankaj, S.; Singh, S. Neural network approach to classify infective keratitis. Curr. Eye Res. 2003, 27, 111–116. [Google Scholar] [CrossRef]
- Patel, T.P.; Prajna, N.V.; Farsiu, S.; Valikodath, N.G.; Niziol, L.M.; Dudeja, L.; Kim, K.H.; Woodward, M.A. Novel Image-Based Analysis for Reduction of Clinician-Dependent Variability in Measurement of the Corneal Ulcer Size. Cornea 2018, 37, 331–339. [Google Scholar] [CrossRef]
- Liu, Z.; Shi, Y.; Zhan, P.; Zhang, Y.; Gong, Y.; Tang, X. Automatic Corneal Ulcer Segmentation Combining Gaussian Mixture Modeling and Otsu Method. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2019, 2019, 6298–6301. [Google Scholar]
- Sun, Q.; Deng, L.; Liu, J.; Yuan, J.; Tang, X. Patch-based deep convolutional neural network for corneal ulcer area segmentation. In Proceedings of the Fetal, Infant and Ophthalmic Medical Image Analysis. International Workshop, FIFI 2017, and 4th International Workshop, OMIA 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, 14 September 2017. [Google Scholar]
- Wu, X.; Tao, Y.; Qiu, Q.; Wu, X. Application of image recognition-based automatic hyphae detection in fungal keratitis. Australas Phys. Eng. Sci. Med. 2018, 41, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Qiu, Q.; Liu, Z.; Zhao, Y.; Zhang, B.; Zhang, Y.; Wu, X.; Ren, J. Hyphae detection in fungal keratitis images with adaptive robust binary pattern. IEEE Access 2018, 6, 13449–13460. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, Y.; Li, Y.; Xiao, X.; Qiu, Q.; Yang, M.; Zhao, Y.; Cui, L. Automatic diagnosis of fungal keratitis using data augmentation and image fusion with deep convolutional neural network. Comput. Methods Programs Biomed. 2019, 187, 105019. [Google Scholar] [CrossRef] [PubMed]
- Ouabida, E.; Essadike, A.; Bouzid, A. Automated segmentation of ophthalmological images by an optical based approach for early detection of eye tumor growing. Phys. Med. 2018, 48, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Ambrósio, R., Jr.; Lopes, B.T.; Faria-Correia, F.; Salomão, M.Q.; Bühren, J.; Roberts, C.J.; Elsheikh, A.; Vinciguerra, R.; Vinciguerra, P. Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection. J. Refract. Surg. 2017, 33, 434–443. [Google Scholar] [CrossRef] [Green Version]
- Lopes, B.T.; Ramos, I.C.; Salomão, M.Q.; Guerra, F.P.; Schallhorn, S.C.; Schallhorn, J.M.; Vinciguerra, R.; Vinciguerra, P.; Price, F.W., Jr.; Price, M.O.; et al. Enhanced Tomographic Assessment to Detect Corneal Ectasia Based on Artificial Intelligence. Am. J. Ophthalmol. 2018, 195, 223–232. [Google Scholar] [CrossRef]
- Ferreira-Mendes, J.; Lopes, B.T.; Faria-Correia, F.; Salomao, M.Q.; Rodrigues-Barros, S.; Ambrosio, R., Jr. Enhanced Ectasia Detection Using Corneal Tomography and Biomechanics. Am. J. Ophthalmol. 2019, 197, 7–16. [Google Scholar] [CrossRef]
- Yousefi, S.; Yousefi, E.; Takahashi, H.; Hayashi, T.; Tampo, H.; Inoda, S.; Arai, Y.; Asbell, P. Keratoconus severity identification using unsupervised machine learning. PLoS ONE 2018, 13, e0205998. [Google Scholar] [CrossRef]
- Lavric, A.; Valentin, P. KeratoDetect: Keratoconus Detection Algorithm Using Convolutional Neural Networks. Comput. Intell. Neurosci. 2019, 2019, 8162567. [Google Scholar] [CrossRef] [Green Version]
- Accardo, P.A.; Pensiero, S. Neural network-based system for early keratoconus detection from corneal topography. J. Biomed. Inform. 2002, 35, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, K.; Ayatsuka, Y.; Kato, Y.; Fujimura, F.; Takahashi, M.; Shoji, N.; Mori, Y.; Miyata, K. Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography: A diagnostic accuracy study. BMJ Open 2019, 9, e031313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valdes-Mas, M.A.; Martin-Guerrero, J.D.; Ruperez, M.J.; Pastor, F.; Dualde, C.; Monserrat, C.; Peris-Martinez, C. A new approach based on Machine Learning for predicting corneal curvature (K1) and astigmatism in patients with keratoconus after intracorneal ring implantation. Comput. Methods Programs Biomed. 2014, 116, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.; Gatinel, D. Combining Placido and Corneal Wavefront Data for the Detection of Forme Fruste Keratoconus. J. Refract Surg. 2016, 32, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Yoo, T.K.; Ryu, I.H.; Lee, G.; Kim, M.J.; Tchah, H. Adopting machine learning to automatically identify candidate patients for corneal refractive surgery. J. Refract Surg. 2015, 31, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.; Wang, Y.; Ji, S.; Li, Y.; Hao, W.; Zou, H.; Jhanji, V. Applying Machine Learning Techniques in Nomogram Prediction and Analysis for SMILE Treatment. Am. J. Ophthalmol. 2020, 210, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Joseph, N.; Kolluru, C.; Benetz, B.A.M.; Menegay, H.J.; Lass, J.H.; Wilson, D.L. Quantitative and qualitative evaluation of deep learning automatic segmentations of corneal endothelial cell images of reduced image quality obtained following cornea transplant. J. Med. Imaging 2020, 7, 014503. [Google Scholar] [CrossRef]
- Kolluru, C.; Benetz, B.A.; Joseph, N.; Menegay, H.J.; Lass, J.H.; Wilson, D. Machine learning for segmenting cells in corneal endothelium images. Proc. SPIE Int. Soc. Opt. Eng. 2019, 10950, 1126–1135. [Google Scholar]
- Vigueras-Guillen, J.P.; Andrinopoulou, E.R.; Engel, A.; Lemij, H.G.; van Rooij, J.; Vermeer, K.A.; van Vliet, L.J. Corneal Endothelial Cell Segmentation by Classifier-Driven Merging of Oversegmented Images. IEEE Trans. Med. Imaging 2018, 37, 2278–2289. [Google Scholar] [CrossRef]
- Vigueras-Guillen, J.P.; van Rooij, J.; Lemij, H.G.; Vermeer, K.A.; van Vliet, L.J. Convolutional neural network-based regression for biomarker estimation in corneal endothelium microscopy images. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 876–881. [Google Scholar]
- Heinzelmann, S.; Daniel, M.C.; Maier, P.C.; Reinhard, T.; Böhringer, D. Automated Cell Counting Using “Deep Learning” in Donor Corneas from Organ Culture Achieves High Precision and Accuracy. Klin. Monbl. Augenheilkd. 2019, 236, 1407–1412. [Google Scholar]
- Vigueras-Guillén, J.P.; Sari, B.; Goes, S.F.; Lemij, H.G.; van Rooij, J.; Vermeer, K.A.; van Vliet, L.J. Fully convolutional architecture vs. sliding-window CNN for corneal endothelium cell segmentation. BMC Biomed. Eng. 2019, 1, 4. [Google Scholar] [CrossRef]
- Treder, M.; Lauermann, J.L.; Alnawaiseh, M.; Eter, N. Using Deep Learning in Automated Detection of Graft Detachment in Descemet Membrane Endothelial Keratoplasty: A Pilot Study. Cornea 2019, 38, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Tabuchi, H.; Masumoto, H.; Morita, S.; Oyakawa, I.; Inoda, S.; Kato, N.; Takahashi, H. A Deep Learning Approach in Rebubbling After Descemet’s Membrane Endothelial Keratoplasty. Eye Contact Lens. 2020, 46, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Han, S.B.; Yang, H.K.; Hyon, J.Y.; Wee, W.R. Association of dry eye disease with psychiatric or neurological disorders in elderly patients. Clin. Interv. Aging 2017, 12, 785–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stapleton, F.; Alves, M.; Bunya, V.Y.; Jalbert, I.; Lekhanont, K.; Malet, F.; Na, K.S.; Schaumberg, D.; Uchino, M.; Vehof, J.; et al. TFOS DEWS II Epidemiology Report. Ocul. Surf. 2017, 15, 334–365. [Google Scholar] [CrossRef] [PubMed]
- Yamanishi, R.; Uchino, M.; Uchino, Y.; Kawashima, M.; Dogru, M.; Yokoi, N.; Tsubota, K. Changes in Distribution of Dry Eye Diagnostic Status Among Visual Display Terminal Workers According to the Revised Criteria of the Asia Dry Eye Society. Cornea 2020, 39, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Craig, J.P.; Nichols, K.K.; Akpek, E.K.; Caffery, B.; Dua, H.S.; Joo, C.K.; Liu, Z.; Nelson, J.D.; Nichols, J.J.; Tsubota, K. TFOS DEWS II Definition and Classification Report. Ocul. Surf. 2017, 15, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Miljanovic, B.; Trivedi, K.A.; Dana, M.R.; Gilbard, J.P.; Buring, J.E.; Schaumberg, D.A. Relation between dietary n-3 and n-6 fatty acids and clinically diagnosed dry eye syndrome in women. Am. J. Clin. Nutr. 2005, 82, 887–893. [Google Scholar] [CrossRef] [Green Version]
- Uchino, M.; Schaumberg, D.A.; Dogru, M.; Uchino, Y.; Fukagawa, K.; Shimmura, S.; Satoh, T.; Takebayashi, T.; Tsubota, K. Prevalence of dry eye disease among Japanese visual display terminal users. Ophthalmology 2008, 115, 1982–1988. [Google Scholar] [CrossRef]
- Sayegh, R.R.; Yu, Y.; Farrar, J.T.; Kuklinski, E.J.; Shtein, R.M.; Asbell, P.A.; Maguire, M.G. Ocular Discomfort and Quality of Life Among Patients in the Dry Eye Assessment and Management Study. Cornea 2021, 40, 869–876. [Google Scholar] [CrossRef]
- Nichols, K.K.; Nichols, J.J.; Mitchell, G.L. The lack of association between signs and symptoms in patients with dry eye disease. Cornea 2004, 23, 762–770. [Google Scholar] [CrossRef]
- Vehof, J.; Sillevis Smitt-Kamminga, N.; Nibourg, S.A.; Hammond, C.J. Predictors of Discordance between Symptoms and Signs in Dry Eye Disease. Ophthalmology 2017, 124, 280–286. [Google Scholar] [CrossRef]
- Ong, E.S.; Felix, E.R.; Levitt, R.C.; Feuer, W.J.; Sarantopoulos, C.D.; Galor, A. Epidemiology of discordance between symptoms and signs of dry eye. Br. J. Ophthalmol. 2018, 102, 674–679. [Google Scholar] [CrossRef]
- Han, S.B.; Hyon, J.Y.; Woo, S.J.; Lee, J.J.; Kim, T.H.; Kim, K.W. Prevalence of dry eye disease in an elderly Korean population. Arch. Ophthalmol. 2011, 129, 633–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, K.K.; Mitchell, G.L.; Zadnik, K. The repeatability of clinical measurements of dry eye. Cornea 2004, 23, 272–285. [Google Scholar] [CrossRef]
- Savini, G.; Prabhawasat, P.; Kojima, T.; Grueterich, M.; Espana, E.; Goto, E. The challenge of dry eye diagnosis. Clin. Ophthalmol. 2008, 2, 31–55. [Google Scholar] [CrossRef] [PubMed]
- Grus, F.H.; Augustin, A.J. Analysis of tear protein patterns by a neural network as a diagnostical tool for the detection of dry eyes. Electrophoresis 1999, 20, 875–880. [Google Scholar] [CrossRef]
- Nam, S.M.; Peterson, T.A.; Butte, A.J.; Seo, K.Y.; Han, H.W. Explanatory Model of Dry Eye Disease Using Health and Nutrition Examinations: Machine Learning and Network-Based Factor Analysis From a National Survey. JMIR Med. Inform. 2020, 8, e16153. [Google Scholar] [CrossRef] [PubMed]
- Dros, J.T.; Bos, I.; Bennis, F.C.; Wiegersma, S.; Paget, J.; Seghieri, C.; Barrio Cortés, J.; Verheij, R.A. Detection of primary Sjögren’s syndrome in primary care: Developing a classification model with the use of routine healthcare data and machine learning. BMC Prim. Care 2022, 23, 199. [Google Scholar] [CrossRef]
- Yedidya, T.; Hartley, R.; Guillon, J.-P.; Kanagasingam, Y. Automatic Dry Eye Detection. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2007; Ayache, N., Ourselin, S., Maeder, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Yedidya, T.; Carr, P.; Hartley, R.; Guillon, J.P. Enforcing monotonic temporal evolution in dry eye images. Med. Image Comput. Comput. Assist. Interv. 2009, 12 Pt 2, 976–984. [Google Scholar] [PubMed] [Green Version]
- Zheng, Q.; Wang, L.; Wen, H.; Ren, Y.; Huang, S.; Bai, F.; Li, N.; Craig, J.P.; Tong, L.; Chen, W. Impact of Incomplete Blinking Analyzed Using a Deep Learning Model With the Keratograph 5M in Dry Eye Disease. Transl. Vis. Sci. Technol. 2022, 11, 38. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, X.; Wei, S.; Li, X. A deep learning model established for evaluating lid margin signs with colour anterior segment photography. Eye 2022, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Chun, Y.S.; Yoon, W.B.; Kim, K.G.; Park, I.K. Objective assessment of corneal staining using digital image analysis. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7896–7903. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, M.; Bernabei, F.; Moscardelli, F.; Vagge, A.; Scotto, R.; Bovone, C.; Scorcia, V.; Giannaccare, G. Assessment of Corneal Fluorescein Staining in Different Dry Eye Subtypes Using Digital Image Analysis. Transl. Vis. Sci. Technol. 2019, 8, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, I.K.; Chun, Y.S.; Kim, K.G.; Yang, H.K.; Hwang, J.M. New clinical grading scales and objective measurement for conjunctival injection. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5249–5257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.B.; Jeon, H.S.; Kim, M.; Lee, S.J.; Yang, H.K.; Hwang, J.M.; Kim, K.G.; Hyon, J.Y.; Wee, W.R. Risk Factors for Recurrence After Pterygium Surgery: An Image Analysis Study. Cornea 2016, 35, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Han, S.B.; Jeon, H.S.; Kim, M.; Lee, S.J.; Yang, H.K.; Hwang, J.M.; Kim, K.G.; Hyon, J.Y.; Wee, W.R. Quantification of Astigmatism Induced by Pterygium Using Automated Image Analysis. Cornea 2016, 35, 370–376. [Google Scholar] [CrossRef]
- Yang, H.K.; Lee, Y.J.; Hyon, J.Y.; Kim, K.G.; Han, S.B. Efficacy of bevacizumab injection after pterygium excision and limbal conjunctival autograft with limbal fixation suture. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 1451–1457. [Google Scholar] [CrossRef]
- Kim, Y.J.; Yang, H.K.; Lee, Y.J.; Hyon, J.Y.; Kim, K.G.; Han, S.B. Efficacy of a new automated method for quantification of corneal neovascularisation. Br. J. Ophthalmol. 2020, 104, 989–993. [Google Scholar] [CrossRef]
- Han, S.B.; Liu, Y.C.; Mohamed-Noriega, K.; Tong, L.; Mehta, J.S. Objective Imaging Diagnostics for Dry Eye Disease. J. Ophthalmol. 2020, 2020, 3509064. [Google Scholar] [CrossRef]
- Ban, Y.; Shimazaki-Den, S.; Tsubota, K.; Shimazaki, J. Morphological evaluation of meibomian glands using noncontact infrared meibography. Ocul. Surf. 2013, 11, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Binotti, W.W.; Bayraktutar, B.; Ozmen, M.C.; Cox, S.M.; Hamrah, P. A Review of Imaging Biomarkers of the Ocular Surface. Eye Contact Lens 2020, 46 (Suppl. S2), S84–S105. [Google Scholar] [CrossRef] [PubMed]
- Llorens-Quintana, C.; Rico-Del-Viejo, L.; Syga, P.; Madrid-Costa, D.; Iskander, D.R. A Novel Automated Approach for Infrared-Based Assessment of Meibomian Gland Morphology. Transl. Vis. Sci. Technol. 2019, 8, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, P.; Luo, Z.; Deng, Y.; Wang, G.; Yuan, J. An automated and multiparametric algorithm for objective analysis of meibography images. Quant Imaging Med. Surg. 2021, 11, 1586–1599. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.W.; Celik, T.; Lee, H.K.; Petznick, A.; Tong, L. Detection of meibomian glands and classification of meibography images. J. Biomed. Opt. 2012, 17, 086008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Yeh, T.N.; Chakraborty, R.; Yu, S.X.; Lin, M.C. A Deep Learning Approach for Meibomian Gland Atrophy Evaluation in Meibography Images. Transl. Vis. Sci. Technol. 2019, 8, 37. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Yeh, T.N.; Chakraborty, R.; Graham, A.D.; Yu, S.X.; Lin, M.C. Quantifying Meibomian Gland Morphology Using Artificial Intelligence. Optom. Vis. Sci. 2021, 98, 1094–1103. [Google Scholar] [CrossRef]
- Yeh, C.H.; Yu, S.X.; Lin, M.C. Meibography Phenotyping and Classification From Unsupervised Discriminative Feature Learning. Transl. Vis. Sci. Technol. 2021, 10, 4. [Google Scholar] [CrossRef]
- Setu, M.A.K.; Horstmann, J.; Schmidt, S.; Stern, M.E.; Steven, P. Deep learning-based automatic meibomian gland segmentation and morphology assessment in infrared meibography. Sci. Rep. 2021, 11, 7649. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, Y.; Tian, M.; Zhou, Y.; Tan, Y.; Wu, L.; Zheng, H.; Yang, Y. Automatic identification of meibomian gland dysfunction with meibography images using deep learning. Int. Ophthalmol. 2022, 42, 3275–3284. [Google Scholar] [CrossRef]
- Saha, R.K.; Chowdhury, A.M.M.; Na, K.S.; Hwang, G.D.; Eom, Y.; Kim, J.; Jeon, H.G.; Hwang, H.S.; Chung, E. Automated quantification of meibomian gland dropout in infrared meibography using deep learning. Ocul. Surf. 2022, 26, 283–294. [Google Scholar] [CrossRef]
- Arita, R.; Morishige, N.; Fujii, T.; Fukuoka, S.; Chung, J.L.; Seo, K.Y.; Itoh, K. Tear Interferometric Patterns Reflect Clinical Tear Dynamics in Dry Eye Patients. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3928–3934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remeseiro, B.; Penas, M.; Mosquera, A.; Novo, J.; Penedo, M.G.; Yebra-Pimentel, E. Statistical comparison of classifiers applied to the interferential tear film lipid layer automatic classification. Comput. Math Methods Med. 2012, 2012, 207315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remeseiro, B.; Penas, M.; Barreira, N.; Mosquera, A.; Novo, J.; García-Resúa, C. Automatic classification of the interferential tear film lipid layer using colour texture analysis. Comput. Methods Programs Biomed. 2013, 111, 93–103. [Google Scholar] [CrossRef]
- Remeseiro, B.; Bolon-Canedo, V.; Peteiro-Barral, D.; Alonso-Betanzos, A.; Guijarro-Berdiñas, B.; Mosquera, A.; Penedo, M.G.; Sánchez-Maroño, N. A methodology for improving tear film lipid layer classification. IEEE J. Biomed. Health Inform. 2014, 18, 1485–1493. [Google Scholar] [CrossRef]
- Peteiro-Barral, D.; Remeseiro, B.; Méndez, R.; Penedo, M.G. Evaluation of an automatic dry eye test using MCDM methods and rank correlation. Med. Biol. Eng. Comput. 2017, 55, 527–536. [Google Scholar] [CrossRef] [PubMed]
- da Cruz, L.B.; Souza, J.C.; de Sousa, J.A.; Santos, A.M.; de Paiva, A.C.; de Almeida, J.D.S.; Silva, A.C.; Junior, G.B.; Gattass, M. Interferometer eye image classification for dry eye categorization using phylogenetic diversity indexes for texture analysis. Comput. Methods Programs Biomed. 2020, 188, 105269. [Google Scholar] [CrossRef]
- da Cruz, L.B.; Souza, J.C.; de Paiva, A.C.; de Almeida, J.D.S.; Junior, G.B.; Aires, K.R.T.; Silva, A.C.; Gattass, M. Tear Film Classification in Interferometry Eye Images Using Phylogenetic Diversity Indexes and Ripley’s K Function. IEEE J. Biomed. Health Inform. 2020, 24, 3491–3498. [Google Scholar] [CrossRef] [PubMed]
- Villani, E.; Bonsignore, F.; Cantalamessa, E.; Serafino, M.; Nucci, P. Imaging Biomarkers for Dry Eye Disease. Eye Contact. Lens 2020, 46 (Suppl. S2), S141–S145. [Google Scholar] [CrossRef] [PubMed]
- Al-Fahdawi, S.; Qahwaji, R.; Al-Waisy, A.S.; Ipson, S.; Malik, R.A.; Brahma, A.; Chen, X. A fully automatic nerve segmentation and morphometric parameter quantification system for early diagnosis of diabetic neuropathy in corneal images. Comput. Methods Programs Biomed. 2016, 135, 151–166. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Graham, J.; Dabbah, M.A.; Petropoulos, I.N.; Tavakoli, M.; Malik, R.A. An Automatic Tool for Quantification of Nerve Fibers in Corneal Confocal Microscopy Images. IEEE Trans. Biomed. Eng. 2017, 64, 786–794. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.M.; Borroni, D.; Liu, R.; Zhao, Y.; Zhang, J.; Lim, J.; Ma, B.; Romano, V.; Qi, H.; Ferdousim, M.; et al. An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: A development and validation study. Diabetologia 2020, 63, 419–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruoka, S.; Tabuchi, H.; Nagasato, D.; Masumoto, H.; Chikama, T.; Kawai, A.; Oishi, N.; Maruyama, T.; Kato, Y.; Hayashi, T.; et al. Deep Neural Network-Based Method for Detecting Obstructive Meibomian Gland Dysfunction With in Vivo Laser Confocal Microscopy. Cornea 2020, 39, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Shi, F.; Wang, Y.; Chou, Y.; Li, X. A Deep Learning Model for Automated Sub-Basal Corneal Nerve Segmentation and Evaluation Using In Vivo Confocal Microscopy. Transl. Vis. Sci. Technol. 2020, 9, 32. [Google Scholar] [CrossRef]
- Jing, D.; Liu, Y.; Chou, Y.; Jiang, X.; Ren, X.; Yang, L.; Su, J.; Li, X. Change patterns in the corneal sub-basal nerve and corneal aberrations in patients with dry eye disease: An artificial intelligence analysis. Exp Eye Res 2022, 215, 108851. [Google Scholar] [CrossRef]
- Xu, F.; Qin, Y.; He, W.; Huang, G.; Lv, J.; Xie, X.; Diao, C.; Tang, F.; Jiang, L.; Lan, R.; et al. A deep transfer learning framework for the automated assessment of corneal inflammation on in vivo confocal microscopy images. PLoS ONE 2021, 16, e0252653. [Google Scholar] [CrossRef]
- Yildiz, E.; Arslan, A.T.; Yildiz Tas, A.; Acer, A.F.; Demir, S.; Sahin, A.; Erol Barkana, D. Generative Adversarial Network Based Automatic Segmentation of Corneal Subbasal Nerves on In Vivo Confocal Microscopy Images. Transl. Vis. Sci. Technol. 2021, 10, 33. [Google Scholar] [CrossRef]
- Setu, M.A.K.; Schmidt, S.; Musial, G.; Stern, M.E.; Steven, P. Segmentation and Evaluation of Corneal Nerves and Dendritic Cells From In Vivo Confocal Microscopy Images Using Deep Learning. Transl. Vis. Sci. Technol. 2022, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Zhao, H.; Lin, J.Y.; Wu, S.N.; Liu, X.W.; Zhang, H.D.; Shao, Y.; Yang, W.F. Artificial Intelligence to Detect Meibomian Gland Dysfunction From in-vivo Laser Confocal Microscopy. Front. Med. 2021, 8, 774344. [Google Scholar] [CrossRef]
- Chan, T.C.Y.; Wan, K.H.; Shih, K.C.; Jhanji, V. Advances in dry eye imaging: The present and beyond. Br. J. Ophthalmol. 2018, 102, 295–301. [Google Scholar] [CrossRef]
- Ramos, J.L.; Li, Y.; Huang, D. Clinical and research applications of anterior segment optical coherence tomography—A review. Clin. Exp. Ophthalmol. 2009, 37, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Han, S.B.; Liu, Y.C.; Noriega, K.M.; Mehta, J.S. Applications of Anterior Segment Optical Coherence Tomography in Cornea and Ocular Surface Diseases. J. Ophthalmol. 2016, 2016, 4971572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stegmann, H.; Werkmeister, R.M.; Pfister, M.; Garhöfer, G.; Schmetterer, L.; Dos Santos, V.A. Deep learning segmentation for optical coherence tomography measurements of the lower tear meniscus. Biomed. Opt. Express. 2020, 11, 1539–1554. [Google Scholar] [CrossRef] [PubMed]
- Elsawy, A.; Eleiwa, T.; Chase, C.; Ozcan, E.; Tolba, M.; Feuer, W.; Abdel-Mottaleb, M.; Abou Shousha, M. Multidisease Deep Learning Neural Network for the Diagnosis of Corneal Diseases. Am. J. Ophthalmol. 2021, 226, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Edorh, N.A.; El Maftouhi, A.; Djerada, Z.; Arndt, C.; Denoyer, A. New model to better diagnose dry eye disease integrating OCT corneal epithelial mapping. Br. J. Ophthalmol. 2022, 106, 1488–1495. [Google Scholar] [CrossRef]
Abbreviation | Name |
---|---|
AI | Artificial intelligence |
ML | Machine learning |
CML | Conventional machine learning |
DL | Deep learning |
SVM | Support vector machine |
RF | Random forest |
DT | Decision tree |
ANN | Artificial neural network |
RNN | Recurrent neural network |
CNN | Convolutional neural network |
OCT | Optical coherence tomography |
ASP | Anterior segment photographs |
AS-OCT | Anterior segment optical coherence tomography |
IVCM | In vivo confocal microscopy |
LASEK | Laser-assisted epithelial keratomileusis |
LASIK | Laser in situ keratomileusis |
SMILE | Small incision lenticular extraction |
DMEK | Descemet membrane endothelial keratoplasty |
AUC | Area under the receiver operating characteristic curve |
DED | Dry eye disease |
BUT | Break-up time |
KNHANES | Korea National Health and Nutrition Examination Survey |
LASSO | Least absolute shrinkage and selection operator |
LR | logistic regression |
RANSAC | RANdom SAmple Consensus |
MRF | Material recovery facilities |
MG | Meibomian gland |
MGD | Meibomian gland dysfunction |
mAP | Mean average precision |
GAN | Generative adversarial network |
CNF | Corneal nerve fiber |
DC | Dendritic cell |
AUPRC | Area under precision-recall curve |
Study | Method (Protocol) | Number of Image Samples | Results |
---|---|---|---|
Koh et al. [87] (2012) | linear classifier | 26 ‘healthy’ images 29 ‘unhealthy’ images | sensitivity, 97.9% specificity, 96.1% |
Wang et al. [88] (2019) | deep neural network | 497 for training and tuning 209 for evaluations | 95.6% accuracy for meiboscore grading, 97.6% and 95.4% accuracy for eyelid and atrophy segmentations, respectively |
Wang et al. [89] (2021) | DL model SVM | 1039 for training and tuning 404 for evaluations | 84.4% sensitivity and 71.7% specificity in identifying ghost meibomian gland |
Yeh et al. [90] (2021) | unsupervised feature network learning | 497 for network learning and tuning 209 for evaluations | 80.9% accuracy for meiboscore grading, outperforming the clinical investigators by 25.9% |
Setu et al. [91] (2021) | transfer learning with a pre-trained backbone training with U-net model no image pre-processing | 502 and 126 for training and validation datasets, respectively 100 for comparison with manual annotations | The average precision score of 83% with AUC value of 0.96 |
Yu et al. [92] (2022) | Mask R-CNN | 1878 for training and tuning 58 for evaluations | High accuracy in the identification of conjunctiva and meibomian glands (validation loss < 0.35 and <1.0, respectively, and mAP > 0.976 and >0.92, respectively) High speed that was 21 times faster than specialists |
Saha et al. [93] (2022) | classification-based DL model generative adversarial network (GAN) | 752 for training 189 for analyzing the performance 600 from an independent center for validation | 73.01% and 59.17% accuracy for meiboscore classification on validation set and on images from independent center, respectively |
Study | Method (Protocol) | Number of Image Samples | Results |
---|---|---|---|
Al-Fahdawi et al. [102] (2016) | neural network RF SVM | 498 for evaluation of segmentation 919 for evaluation of extracting morphometric features with clinical utility | rapid (13 s/image), robust and effective automated corneal nerve quantification |
Chen et al. [103] (2017) | multi-layer perceptron neural network RF models | 200 for training and validation 888 for testing | AUC of 0.77 and 72% sensitivity/specificity for identification of diabetic sensorimotor polyneuropathy |
Williams et al. [104] (2020) | CNN with data augmentation | 1698 for training 2137 for external validation | AUC of 0.83, specificity of 0.87, and sensitivity of 0.68 for detection of diabetic neuropathy |
Wei et al. [106] (2020) | CNN | 552 for training 139 for testing | High accuracy for corneal nerve segmentation (AUC 0.96) and a mean average precision (mAP) of 94% |
Wei et al. [107] (2020) | CNN | 229 eyes of 155 patients with DED 40 eyes of 20 healthy control | reduced density and maximum length of corneal nerve measured with AI algorithm had been association with DED |
Xu et al. [108] (2021) | deep transfer learning network | 3453 for training 558 for validation | AUC, 0.9646; sensitivity, 0.8171; specificity, 0.9517 in identifying activated dendritic cells AUC, 0.9901; sensitivity, 0.9174; specificity, 0.9931 in identifying inflammatory cells |
Setu et al. [110] (2022) | U-Net for segmentation of corneal nerve fibers Mask R-CNN for segmentation of dendritic cells | U-Net (corneal nerve fibers) 1097 for training 122 for testing Dendritic cells 679 for training 75 for testing | Corneal nerve fibers model: 86.1% sensitivity and 90.1% specificity dendritic cell model: 89.37% precision, 94.43% recall, and 91.83% F1 score |
Yildiz et al. [109] (2021) | U-net GANs | 403 for training 102 for testing | The GAN-based algorithms showed higher accuracy than U-Net for automated corneal nerve segmentation based on IVCM images |
Maruoka et al. [105] (2020) | Deep neural network | 137 with obstructive MGD 84 with normal meibomian glands | High level of accuracy for detection of obstructive meibomian gland dysfunction (AUC 0.981, sensitivity 92.1%, and specificity 98.8%) |
Zhang et al. [111] (2021) | multi-layer deep CNN | 4985 for training 1663 for validation | excellent accuracy (over 97%) for differential diagnosis of MGD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.K.; Che, S.A.; Hyon, J.Y.; Han, S.B. Integration of Artificial Intelligence into the Approach for Diagnosis and Monitoring of Dry Eye Disease. Diagnostics 2022, 12, 3167. https://doi.org/10.3390/diagnostics12123167
Yang HK, Che SA, Hyon JY, Han SB. Integration of Artificial Intelligence into the Approach for Diagnosis and Monitoring of Dry Eye Disease. Diagnostics. 2022; 12(12):3167. https://doi.org/10.3390/diagnostics12123167
Chicago/Turabian StyleYang, Hee Kyung, Song A Che, Joon Young Hyon, and Sang Beom Han. 2022. "Integration of Artificial Intelligence into the Approach for Diagnosis and Monitoring of Dry Eye Disease" Diagnostics 12, no. 12: 3167. https://doi.org/10.3390/diagnostics12123167
APA StyleYang, H. K., Che, S. A., Hyon, J. Y., & Han, S. B. (2022). Integration of Artificial Intelligence into the Approach for Diagnosis and Monitoring of Dry Eye Disease. Diagnostics, 12(12), 3167. https://doi.org/10.3390/diagnostics12123167