p53 Modulates Radiosensitivity in Head and Neck Cancers—From Classic to Future Horizons
Abstract
:1. Introduction:
2. p53 and Therapeutic Interactions in Cancer—A Brief Description
3. p53 and Chemotherapy—An Old but Always Up-to-Date Collaboration
4. p53—Orchestrator of Cancer Radiosensitivity
5. p53, Chemo-Sensitivity, Radiosensitivity and Tumor Metabolism—An Alliance Finally Revealed in HNSCC
6. MicroRNAs—New Kids on the HNSCC Block—Focus on p53 Mediated Radiosensitivity and Chemo-Sensitivity
7. p53 in Immunotherapy ERA
8. p53, New Horizons for Head Neck Cancer Treatment
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References and Notes
- Gasco, M.; Crook, T. The p53 network in head and neck cancer. Oral Oncol. 2003, 39, 222–231. [Google Scholar] [CrossRef]
- De Bakker, T.; Journe, F.; Descamps, G.; Saussez, S.; Dragan, T.; Ghanem, G.; Krayem, M.; Van Gestel, D. Restoring p53 Function in Head and Neck Squamous Cell Carcinoma to Improve Treatments. Front. Oncol. 2022, 11, 799993. [Google Scholar] [CrossRef]
- Lu, C.; El-Deiry, W.S. Targeting p53 for enhanced radio- and chemo-sensitivity. Apoptosis 2009, 14, 597–606. [Google Scholar] [CrossRef]
- Kong, X.; Yu, D.; Wang, Z.; Li, S. Relationship between p53 status and the bioeffect of ionizing radiation (Review). Oncol. Lett. 2021, 22, 661. [Google Scholar] [CrossRef]
- Perri, F.; Pisconti, S.; Della Vittoria Scarpati, G. P53 mutations and cancer: A tight linkage. Ann. Transl. Med. 2016, 4, 522. [Google Scholar] [CrossRef]
- Ozaki, T.; Nakagawara, A. Role of p53 in Cell Death and Human Cancers. Cancers 2011, 3, 994–1013. [Google Scholar] [CrossRef] [Green Version]
- Fischbach, A.; Krüger, A.; Hampp, S.; Assmann, G.; Rank, L.; Hufnagel, M.; Stöckl, M.; Fischer, J.M.; Veith, S.; Rossatti, P.; et al. The C-terminal domain of p53 orchestrates the interplay between non-covalent and covalent poly(ADP-ribosyl)ation of p53 by PARP1. Nucleic Acids Res. 2018, 46, 804–822. [Google Scholar] [CrossRef] [Green Version]
- Milner, J.; Medcalf, E.A.; Cook, A.C. Tumor suppressor p53: Analysis of wild-type and mutant p53 complexes. Mol. Cell. Biol. 1991, 11, 12–19. [Google Scholar] [CrossRef]
- Lee, D.-H.; Kim, C.; Zhang, L.; Lee, Y.J. Role of p53, PUMA, and Bax in wogonin-induced apoptosis in human cancer cells. Biochem. Pharmacol. 2008, 75, 2020–2033. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Rodríguez, C.A.; Cerbón, M.A. El gen supresor de tumores p53: Mecanismos de acción en la proliferación y muerte celular [Tumor suppressor gene p53: Mechanisms of action in cell proliferation and death]. Rev. Investig. Clin. 2001, 53, 266–273. (In Spanish) [Google Scholar]
- Oren, M.; Rotter, V. Mutant p53 Gain-of-Function in Cancer. Cold Spring Harb. Perspect. Biol. 2010, 2, a001107. [Google Scholar] [CrossRef]
- Cooks, T.; Pateras, I.S.; Tarcic, O.; Solomon, H.; Schetter, A.J.; Wilder, S.; Lozano, G.; Pikarsky, E.; Forshew, T.; Rozenfeld, N.; et al. Mutant p53 Prolongs NF-κB Activation and Promotes Chronic Inflammation and Inflammation-Associated Colorectal Cancer. Cancer Cell 2013, 23, 634–646. [Google Scholar] [CrossRef] [Green Version]
- Roszkowska, K.A.; Gizinski, S.; Sady, M.; Gajewski, Z.; Olszewski, M.B. Gain-of-Function Mutations in p53 in Cancer Invasiveness and Metastasis. Int. J. Mol. Sci. 2020, 21, 1334. [Google Scholar] [CrossRef] [Green Version]
- Cordani, M.; Pacchiana, R.; Butera, G.; D’Orazi, G.; Scarpa, A.; Donadelli, M. Mutant p53 proteins alter cancer cell secretome and tumour microenvironment: Involvement in cancer invasion and metastasis. Cancer Lett. 2016, 376, 303–309. [Google Scholar] [CrossRef]
- Jacquemin-Sablon, A. Les mutations de p53, un atout ou un inconvénient pour la chimiothérapie? [P53 mutations, asset or disadvantage for cancer chemotherapy]. Bull Cancer. 1997, 84, 741–746. (In French) [Google Scholar]
- Miyashita, T. p53-mediated apoptosis. Tanpakushitsu Kakusan Koso 1997, 42 (Suppl. 10), 1657–1663. (In Japanese) [Google Scholar]
- Chresta, C.M.; Arriola, E.L.; Hickman, J.A. Apoptosis and cancer chemotherapy. Behring Inst. Mitteilungen 1996, 97, 232–240. [Google Scholar]
- Burger, H.G.; Nooter, K.; Boersma, A.W.; Kortland, C.J.; Stoter, G. Expression of p53, Bcl-2 and Bax in cisplatin-induced apoptosis in testicular germ cell tumour cell lines. Br. J. Cancer 1998, 77, 1562–1567. [Google Scholar] [CrossRef] [Green Version]
- Pestell, K.E.; Hobbs, S.M.; Titley, J.C.; Kelland, L.R.; Walton, M.I. Effect of p53 Status on Sensitivity to Platinum Complexes in a Human Ovarian Cancer Cell Line. Mol. Pharmacol. 2000, 57, 503–511. [Google Scholar] [CrossRef]
- Singh, S.; Upadhyay, A.K.; Ajay, A.K.; Bhat, M.K. p53 regulates ERK activation in carboplatin induced apoptosis in cervical carcinoma: A novel target of p53 in apoptosis. FEBS Lett. 2007, 581, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.-H.; Ro, E.J.; Yoon, J.-S.; Mizutani, T.; Kang, D.-W.; Park, J.-C.; Kim, T.I.; Clevers, H.; Choi, K.-Y. 5-FU promotes stemness of colorectal cancer via p53-mediated WNT/β-catenin pathway activation. Nat. Commun. 2020, 11, 5321. [Google Scholar] [CrossRef]
- Shu, C.; Zheng, X.; Wuhafu, A.; Cicka, D.; Doyle, S.; Niu, Q.; Fan, D.; Qian, K.; Ivanov, A.A.; Du, Y.; et al. Acquisition of taxane resistance by p53 inactivation in ovarian cancer cells. Acta Pharmacol. Sin. 2022, 43, 2419–2428. [Google Scholar] [CrossRef]
- Wu, C.-E.; Pan, Y.-R.; Yeh, C.-N.; Lunec, J. Targeting P53 as a Future Strategy to Overcome Gemcitabine Resistance in Biliary Tract Cancers. Biomolecules 2020, 10, 1474. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, N.; Liu, J.; Liu, Y.; Zhang, C.; Long, S.; Luo, G.; Zhang, L.; Zhang, Y. Mutant p53 drives cancer chemotherapy resistance due to loss of function on activating transcription of PUMA. Cell Cycle 2019, 18, 3442–3455. [Google Scholar] [CrossRef]
- Klimovich, B.; Merle, N.; Neumann, M.; Elmshäuser, S.; Nist, A.; Mernberger, M.; Kazdal, D.; Stenzinger, A.; Timofeev, O.; Stiewe, T. p53 partial loss-of-function mutations sensitize to chemotherapy. Oncogene 2022, 41, 1011–1023. [Google Scholar] [CrossRef]
- Mueller, H.; Eppenberger, U. The dual role of mutant p53 protein in chemosensitivity of human cancers. Anticancer Res. 1996, 16, 3845–3848. [Google Scholar]
- Hientz, K.; Mohr, A.; Bhakta-Guha, D.; Efferth, T. The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget 2017, 8, 8921–8946. [Google Scholar] [CrossRef] [Green Version]
- Dunkern, T.R.; Wedemeyer, I.; Baumgärtner, M.; Fritz, G.; Kaina, B. Resistance of p53 knockout cells to doxorubicin is related to reduced formation of DNA strand breaks rather than impaired apoptotic signaling. DNA Repair 2003, 2, 49–60. [Google Scholar] [CrossRef]
- Chen, M.; Hough, A.M.; Lawrence, T.S. The role of p53 in gemcitabine-mediated cytotoxicity and radiosensitization. Cancer Chemother. Pharmacol. 2000, 45, 369–374. [Google Scholar] [CrossRef] [Green Version]
- Salem, S.D.; Abou-Tarboush, F.M.; Saeed, N.M.; Al-Qadasi, W.D.; Farah, M.A.; Al-Buhairi, M.; Al-Harbi, N.; Alhazza, I.; Alsbeih, G. Involvement of p53 in gemcitabine mediated cytotoxicity and radiosensitivity in breast cancer cell lines. Gene 2012, 498, 300–307. [Google Scholar] [CrossRef]
- Jackson, J.G.; Pant, V.; Li, Q.; Chang, L.L.; Quintás-Cardama, A.; Garza, D.; Tavana, O.; Yang, P.; Manshouri, T.; Li, Y.; et al. p53-Mediated Senescence Impairs the Apoptotic Response to Chemotherapy and Clinical Outcome in Breast Cancer. Cancer Cell 2012, 21, 793–806. [Google Scholar] [CrossRef] [Green Version]
- Lonning, P.E.; Knappskog, S. Chemosensitivity and p53; new tricks by an old dog. Breast Cancer Res. 2012, 14, 325. [Google Scholar] [CrossRef] [Green Version]
- Chrisanthar, R.; Knappskog, S.; Løkkevik, E.; Anker, G.; Østenstad, B.; Lundgren, S.; Berge, E.O.; Risberg, T.; Mjaaland, I.; Mæhle, L.; et al. CHEK2 Mutations Affecting Kinase Activity Together With Mutations in TP53 Indicate a Functional Pathway Associated with Resistance to Epirubicin in Primary Breast Cancer. PLoS ONE 2008, 3, e3062. [Google Scholar] [CrossRef] [Green Version]
- Blough, M.D.; Beauchamp, D.C.; Westgate, M.R.; Kelly, J.J.; Cairncross, J.G. Effect of aberrant p53 function on temozolomide sensitivity of glioma cell lines and brain tumor initiating cells from glioblastoma. J. Neuro-Oncol. 2010, 102, 1–7. [Google Scholar] [CrossRef]
- Reles, A.; Wen, W.H.; Schmider, A.; Gee, C.; Runnebaum, I.B.; Kilian, U.; Jones, L.A.; El-Naggar, A.; Minguillon, C.; Schönborn, I.; et al. Correlation of p53 mutations with resistance to platinum-based chemotherapy and shortened survival in ovarian cancer. Clin. Cancer Res. 2001, 7, 2984–2997. [Google Scholar]
- Gadducci, A.; Di Cristofano, C.; Zavaglia, M.; Giusti, L.; Menicagli, M.; Cosio, S.; Naccarato, A.G.; Genazzani, A.R.; Bevilacqua, G.; O Cavazzana, A. P53 gene status in patients with advanced serous epithelial ovarian cancer in relation to response to paclitaxel- plus platinum-based chemotherapy and long-term clinical outcome. Anticancer Res. 2006, 26, 687–693. [Google Scholar]
- Souza, L.C.D.M.E.; Faletti, A.; Veríssimo, C.P.; Stelling, M.P.; Borges, H.L. p53 Signaling on Microenvironment and Its Contribution to Tissue Chemoresistance. Membranes 2022, 12, 202. [Google Scholar] [CrossRef]
- Fei, P.; El-Deiry, W.S. P53 and radiation responses. Oncogene 2003, 22, 5774–5783. [Google Scholar] [CrossRef] [Green Version]
- Yoon, H.S.; Chen, X.; Yang, V.W. Krüppel-like Factor 4 Mediates p53-dependent G1/S Cell Cycle Arrest in Response to DNA Damage. J. Biol. Chem. 2003, 278, 2101–2105. [Google Scholar] [CrossRef] [Green Version]
- Lashgari, A.; Fauteux, M.; Maréchal, A.; Gaudreau, L. Cellular Depletion of BRD8 Causes p53-Dependent Apoptosis and Induces a DNA Damage Response in Non-Stressed Cells. Sci. Rep. 2018, 8, 14089. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.-X.; Zhou, P.-K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct. Target. Ther. 2020, 5, 60. [Google Scholar] [CrossRef]
- Hinata, N.; Shirakawa, T.; Zhang, Z.; Matsumoto, A.; Fujisawa, M.; Okada, H.; Kamidono, S.; Gotoh, A. Radiation induces p53 -dependent cell apoptosis in bladder cancer cells with wild-type- p53 but not in p53 -mutated bladder cancer cells. Urol. Res. 2003, 31, 387–396. [Google Scholar] [CrossRef]
- Wong, P.; Han, K. Lack of Toxicity in a Patient with Germline Tp53 Mutation Treated with Radiotherapy. Curr. Oncol. 2014, 21, 349–353. [Google Scholar] [CrossRef] [Green Version]
- Morita, A.; Wang, B.; Tanaka, K.; Katsube, T.; Murakami, M.; Shimokawa, T.; Nishiyama, Y.; Ochi, S.; Satoh, H.; Nenoi, M.; et al. Protective Effects of p53 Regulatory Agents Against High-LET Radiation-Induced Injury in Mice. Front. Public Health 2020, 8, 601124. [Google Scholar] [CrossRef]
- Pant, V.; Xiong, S.; Wasylishen, A.R.; Larsson, C.A.; Aryal, N.K.; Chau, G.; Tailor, R.C.; Lozano, G. Transient enhancement of p53 activity protects from radiation-induced gastrointestinal toxicity. Proc. Natl. Acad. Sci. USA 2019, 116, 17429–17437. [Google Scholar] [CrossRef] [Green Version]
- De Almeida, V.; de Melo, A.C.; Meira, D.; Pires, A.; Nogueira-Rodrigues, A.; Pimenta-Inada, H.; Alves, F.; Moralez, G.; Thiago, L.; Ferreira, C.; et al. Radiotherapy modulates expression of EGFR, ERCC1 and p53 in cervical cancer. Braz. J. Med. Biol. Res. 2018, 51, e6822. [Google Scholar] [CrossRef] [Green Version]
- Anbalagan, S.; Ström, C.; Downs, J.A.; Jeggo, P.A.; McBay, D.; Wilkins, A.; Rothkamm, K.; Harrington, K.J.; Yarnold, J.R.; Somaiah, N. TP53 modulates radiotherapy fraction size sensitivity in normal and malignant cells. Sci. Rep. 2021, 11, 7119. [Google Scholar] [CrossRef]
- Leszczynska, K.B.; Foskolou, I.P.; Abraham, A.G.; Anbalagan, S.; Tellier, C.; Haider, S.; Span, P.N.; O’Neill, E.E.; Buffa, F.M.; Hammond, E.M. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT. J. Clin. Investig. 2015, 125, 2385–2398. [Google Scholar] [CrossRef] [Green Version]
- Stewart-Ornstein, J.; Iwamoto, Y.; Miller, M.A.; Prytyskach, M.A.; Ferretti, S.; Holzer, P.; Kallen, J.; Furet, P.; Jambhekar, A.; Forrester, W.C.; et al. p53 dynamics vary between tissues and are linked with radiation sensitivity. Nat. Commun. 2021, 12, 898. [Google Scholar] [CrossRef]
- Cheng, G.; Kong, D.; Hou, X.; Liang, B.; He, M.; Liang, N.; Ma, S.; Liu, X. The Tumor Suppressor, p53, Contributes to Radiosensitivity of Lung Cancer Cells by Regulating Autophagy and Apoptosis. Cancer Biotherapy Radiopharm. 2013, 28, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Cuddihy, A.R.; Bristow, R.G. The p53 protein family and radiation sensitivity: Yes or no? Cancer Metastasis Rev. 2004, 23, 237–257. [Google Scholar] [CrossRef]
- Casey, D.L.; Pitter, K.L.; Wexler, L.H.; Slotkin, E.K.; Gupta, G.P.; Wolden, S.L. TP53 mutations increase radioresistance in rhabdomyosarcoma and Ewing sarcoma. Br. J. Cancer 2021, 125, 576–581. [Google Scholar] [CrossRef]
- Akiyama, A.; Minaguchi, T.; Fujieda, K.; Hosokawa, Y.; Nishida, K.; Shikama, A.; Tasaka, N.; Sakurai, M.; Ochi, H.; Satoh, T. Abnormal accumulation of p53 predicts radioresistance leading to poor survival in patients with endometrial carcinoma. Oncol. Lett. 2019, 18, 5952–5958. [Google Scholar] [CrossRef] [Green Version]
- Lambing, S.; Holdenrieder, S.; Müller, P.; Tan, Y.P.; Hagen, C.; Garbe, S.; Schlee, M.; van den Boorn, J.G.; Bartok, E.; Hartmann, G.; et al. RIG-I immunotherapy overcomes radioresistance in p53-positive malignant melanoma. BioRxiv 2021. [Google Scholar] [CrossRef]
- Sun, Y.; Myers, C.J.; Dicker, A.P.; Lu, B. A Novel Radiation-Induced p53 Mutation Is Not Implicated in Radiation Resistance via a Dominant-Negative Effect. PLoS ONE 2014, 9, e87492. [Google Scholar] [CrossRef] [Green Version]
- Pustovalova, M.; Alhaddad, L.; Smetanina, N.; Chigasova, A.; Blokhina, T.; Chuprov-Netochin, R.; Osipov, A.N.; Leonov, S. The p53–53BP1-Related Survival of A549 and H1299 Human Lung Cancer Cells after Multifractionated Radiotherapy Demonstrated Different Response to Additional Acute X-ray Exposure. Int. J. Mol. Sci. 2020, 21, 3342. [Google Scholar] [CrossRef]
- Ma, S.; Kong, D.; Fu, X.; Liu, L.; Liu, Y.; Xue, C.; Tian, Z.; Li, L.; Liu, X. p53-Induced Autophagy Regulates Chemotherapy and Radiotherapy Resistance in Multidrug Resistance Cancer Cells. Dose-Response 2021, 19, 15593258211048046. [Google Scholar] [CrossRef]
- Miles, X.; Vandevoorde, C.; Hunter, A.; Bolcaen, J. MDM2/X Inhibitors as Radiosensitizers for Glioblastoma Targeted Therapy. Front. Oncol. 2021, 11, 703442. [Google Scholar] [CrossRef]
- Beck, J.; Turnquist, C.; Horikawa, I.; Harris, C.C. Targeting cellular senescence in cancer and aging: Roles of p53 and its isoforms. Carcinogenesis 2020, 41, 1017–1029. [Google Scholar] [CrossRef]
- Phatak, V.; von Grabowiecki, Y.; Janus, J.; Officer, L.; Behan, C.; Aschauer, L.; Pinon, L.; Mackay, H.; Zanivan, S.; Norman, J.C.; et al. Mutant p53 promotes RCP-dependent chemoresistance coinciding with increased delivery of P-glycoprotein to the plasma membrane. Cell Death Dis. 2021, 12, 207. [Google Scholar] [CrossRef]
- Liu, C.; Jin, Y.; Fan, Z. The Mechanism of Warburg Effect-Induced Chemoresistance in Cancer. Front. Oncol. 2021, 11, 698023. [Google Scholar] [CrossRef]
- Simabuco, F.M.; Morale, M.G.; Pavan, I.C.B.; Morelli, A.P.; Silva, F.R.; Tamura, R.E. p53 and metabolism: From mechanism to therapeutics. Oncotarget 2018, 9, 23780–23823, Correction in Oncotarget 2018, 9, 34030. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Liu, J.; Liang, Y.; Wu, R.; Zhao, Y.; Hong, X.; Lin, M.; Yu, H.; Liu, L.; Levine, A.J.; et al. Tumour-associated mutant p53 drives the Warburg effect. Nat. Commun. 2013, 4, 2935. [Google Scholar] [CrossRef] [Green Version]
- Zong, Y.; Li, Q.; Zhang, F.; Xian, X.; Wang, S.; Xia, J.; Li, J.; Tuo, Z.; Xiao, G.; Liu, L.; et al. SDH5 Depletion Enhances Radiosensitivity by Regulating p53: A New Method for Noninvasive Prediction of Radiotherapy Response. Theranostics 2019, 9, 6380–6395. [Google Scholar] [CrossRef]
- Han, C.Y.; Patten, D.A.; Richardson, R.B.; Harper, M.-E.; Tsang, B.K. Tumor metabolism regulating chemosensitivity in ovarian cancer. Genes Cancer 2018, 9, 155–175. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Niu, W.; Luo, Y.; Li, H.; Xie, Y.; Wang, H.; Liu, Y.; Fan, S.; Li, Z.; Xiong, W.; et al. p53/Lactate dehydrogenase A axis negatively regulates aerobic glycolysis and tumor progression in breast cancer expressing wild-type p53. Cancer Sci. 2019, 110, 939–949. [Google Scholar] [CrossRef]
- Sandulache, V.C.; Skinner, H.D.; Ow, T.J.; Zhang, A.; Xia, X.; Ms, J.M.L.; Wong, L.-J.C.; Pickering, C.R.; Zhou, G.; Myers, J.N. Individualizing antimetabolic treatment strategies for head and neck squamous cell carcinoma based on TP53 mutational status. Cancer 2012, 118, 711–721. [Google Scholar] [CrossRef]
- Wilkie, M.D.; Anaam, E.A.; Lau, A.S.; Rubbi, C.P.; Jones, T.M.; Boyd, M.T.; Vlatkovic, N. TP53 mutations in head and neck cancer cells determine the Warburg phenotypic switch creating metabolic vulnerabilities and therapeutic opportunities for stratified therapies. Cancer Lett. 2020, 478, 107–121. [Google Scholar] [CrossRef]
- Wilkie, M.; Lau, A.; Vlatković, N.; Jones, T.; Boyd, M. Tumour metabolism in squamous cell carcinoma of the head and neck: An in-vitro study of the consequences of TP53 mutation and therapeutic implications. Lancet 2015, 385 (Suppl. 1), S101. [Google Scholar] [CrossRef] [Green Version]
- Castellanos, M.R.; Pan, Q. Novel p53 therapies for head and neck cancer. World J. Otorhinolaryngol. Head Neck Surg. 2016, 2, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Kawauchi, K.; Araki, K.; Tobiume, K.; Tanaka, N. p53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation. Nat. Cell Biol. 2008, 10, 611–618. [Google Scholar] [CrossRef]
- Chandel, V.; Raj, S.; Kumar, P.; Gupta, S.; Dhasmana, A.; Kesari, K.K.; Ruokolainen, J.; Mehra, P.; Das, B.C.; Kamal, M.A.; et al. Metabolic regulation in HPV associated head and neck squamous cell carcinoma. Life Sci. 2020, 258, 118236. [Google Scholar] [CrossRef]
- Hernández-Reséndiz considera mutatia p53 ca favorizatoare a efectului Warburg si statusul wild type p53 ca antagonist al acestui tip de metabolism si favorizant al fosforilarii oxidative
- Hernández-Reséndiz, I.; Román-Rosales, A.; García-Villa, E.; López-Macay, A.; Pineda, E.; Saavedra, E.; Gallardo-Pérez, J.C.; Alvarez-Ríos, E.; Gariglio, P.; Moreno-Sánchez, R.; et al. Dual regulation of energy metabolism by p53 in human cervix and breast cancer cells. Biochim. et Biophys. Acta 2015, 1853, 3266–3278. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.-T.; Zhou, S.-H. Warburg effect, hexokinase-II, and radioresistance of laryngeal carcinoma. Oncotarget 2017, 8, 14133–14146, Erratum in Front Oncol. 2020, 10, 410. [Google Scholar] [CrossRef] [Green Version]
- Li, W.-C.; Huang, C.-H.; Hsieh, Y.-T.; Chen, T.-Y.; Cheng, L.-H.; Chen, C.-Y.; Liu, C.-J.; Chen, H.-M.; Lo, J.-F.; Chang, K.-W. Regulatory Role of Hexokinase 2 in Modulating Head and Neck Tumorigenesis. Front. Oncol. 2020, 10, 176, Erratum in Front Oncol. 2020, 10, 410. [Google Scholar] [CrossRef] [Green Version]
- Sattler, U.G.; Meyer, S.S.; Quennet, V.; Hoerner, C.; Knoerzer, H.; Fabian, C.; Yaromina, A.; Zips, D.; Walenta, S.; Baumann, M.; et al. Glycolytic metabolism and tumour response to fractionated irradiation. Radiother. Oncol. 2010, 94, 102–109. [Google Scholar] [CrossRef]
- Kumar, D. Regulation of glycolysis in head and neck squamous cell carcinoma. postdoc J. 2017, 5, 14–28. [Google Scholar] [CrossRef]
- Yu, W.; Chen, Y.; Putluri, N.; Coarfa, C.; Robertson, M.J.; Putluri, V.; Stossi, F.; Dubrulle, J.; Mancini, M.A.; Pang, J.C.; et al. Acquisition of Cisplatin Resistance Shifts Head and Neck Squamous Cell Carcinoma Metabolism toward Neutralization of Oxidative Stress. Cancers 2020, 12, 1670. [Google Scholar] [CrossRef]
- Chasov, V.; Zaripov, M.; Mirgayazova, R.; Khadiullina, R.; Zmievskaya, E.; Ganeeva, I.; Valiullina, A.; Rizvanov, A.; Bulatov, E. Promising New Tools for Targeting p53 Mutant Cancers: Humoral and Cell-Based Immunotherapies. Front. Immunol. 2021, 12, 707734. [Google Scholar] [CrossRef]
- Cortez, M.A.; Ivan, C.; Valdecanas, D.; Wang, X.; Peltier, H.J.; Ye, Y.; Araujo, L.; Carbone, D.P.; Shilo, K.; Giri, D.K.; et al. PDL1 Regulation by p53 via miR-34. J. Natl. Cancer Inst. 2015, 108, djv303. [Google Scholar] [CrossRef] [Green Version]
- Low, L.; Goh, A.; Koh, J.; Lim, S.; Wang, C.-I. Targeting mutant p53-expressing tumours with a T cell receptor-like antibody specific for a wild-type antigen. Nat. Commun. 2019, 10, 5382. [Google Scholar] [CrossRef] [Green Version]
- Sobhani, N.; D’Angelo, A.; Wang, X.; Young, K.H.; Generali, D.; Li, Y. Mutant p53 as an Antigen in Cancer Immunotherapy. Int. J. Mol. Sci. 2020, 21, 4087. [Google Scholar] [CrossRef]
- Sun, H.; Liu, S.-Y.; Zhou, J.-Y.; Xu, J.-T.; Zhang, H.-K.; Yan, H.-H.; Huan, J.-J.; Dai, P.-P.; Xu, C.-R.; Su, J.; et al. Specific TP53 subtype as biomarker for immune checkpoint inhibitors in lung adenocarcinoma. eBioMedicine 2020, 60, 102990. [Google Scholar] [CrossRef]
- Marcu, L.G.; Marcu, D. The role of hypofractionated radiotherapy in the management of head and neck cancer—A modelling approach. J. Theor. Biol. 2019, 482, 109998. [Google Scholar] [CrossRef]
- Homma, A.; Inamura, N.; Oridate, N.; Suzuki, S.; Hatakeyama, H.; Mizumachi, T.; Kano, S.; Sakashita, T.; Onimaru, R.; Yasuda, K.; et al. Concomitant Weekly Cisplatin and Radiotherapy for Head and Neck Cancer. Jpn. J. Clin. Oncol. 2011, 41, 980–986. [Google Scholar] [CrossRef]
- Wang, Z.; Mao, J.-W.; Liu, G.-Y.; Wang, F.-G.; Ju, Z.-S.; Zhou, N.; Wang, R.-Y. MicroRNA-372 enhances radiosensitivity while inhibiting cell invasion and metastasis in nasopharyngeal carcinoma through activating the PBK-dependent p53 signaling pathway. Cancer Med. 2019, 8, 712–728, Erratum in Cancer Med. 2022, 11, 1244–1245. [Google Scholar] [CrossRef]
- Chang, A.; Chao, C.-H.; Xia, W.; Yang, J.-Y.; Xiong, Y.; Li, C.-W.; Yu, W.-H.; Rehman, S.K.; Hsu, J.L.; Lee, H.-H.; et al. p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nat. Cell Biol. 2011, 13, 317–323, Erratum in Nat. Cell Biol. 2011, 13, 1466; Erratum in Nat. Cell Biol. 2011, 13, 1467. [Google Scholar] [CrossRef] [Green Version]
- Fitriana, M.; Hwang, W.-L.; Chan, P.-Y.; Hsueh, T.-Y.; Liao, T.-T. Roles of microRNAs in Regulating Cancer Stemness in Head and Neck Cancers. Cancers 2021, 13, 1742. [Google Scholar] [CrossRef]
- Peng, C.-Y.; Wang, T.-Y.; Lee, S.-S.; Hsieh, P.-L.; Liao, Y.-W.; Tsai, L.-L.; Fang, C.-Y.; Yu, C.-C.; Hsieh, C.-S. Let-7c restores radiosensitivity and chemosensitivity and impairs stemness in oral cancer cells through inhibiting interleukin-8. J. Oral Pathol. Med. 2018, 47, 590–597. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Wu, A.T.; Liu, S.-H. MicroRNA-17-5p regulated apoptosis-related protein expression and radiosensitivity in oral squamous cell carcinoma caused by betel nut chewing. Oncotarget 2016, 7, 51482–51493. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Wang, L.; Xie, X.; Qin, Y.; Xie, Z.; Ouyang, M.; Zhou, C. Prognostic Biomarker TP53 Mutations for Immune Checkpoint Blockade Therapy and Its Association With Tumor Microenvironment of Lung Adenocarcinoma. Front. Mol. Biosci. 2020, 7, 602328. [Google Scholar] [CrossRef]
- Cramer, J.D.; Burtness, B.; Ferris, R.L. Immunotherapy for head and neck cancer: Recent advances and future directions. Oral Oncol. 2019, 99, 104460. [Google Scholar] [CrossRef]
- Wong, D.J.; Fayette, J.; Guo, Y.; Kowgier, M.; Cohen, E.; Nin, R.M.; Dechaphunkul, A.; Prabhash, K.; Geiger, J.; Bishnoi, S.; et al. Abstract CT123: IMvoke010: Randomized Phase III study of atezolizumab as adjuvant monotherapy after definitive therapy of squamous cell carcinoma of the head and neck (SCCHN). Cancer Res. 2019, 79 (Suppl. 13), CT123. [Google Scholar] [CrossRef]
- Yu, Y.; Zakeri, K.; Lee, N. Javelin Head Neck 100: Should we combine immunotherapy with radiation therapy? Oncotarget 2021, 12, 2223–2226. [Google Scholar] [CrossRef]
- Gebre-Medhin, M.; Brun, E.; Engström, P.; Cange, H.H.; Hammarstedt-Nordenvall, L.; Reizenstein, J.; Nyman, J.; Abel, E.; Friesland, S.; Sjödin, H.; et al. ARTSCAN III: A Randomized Phase III Study Comparing Chemoradiotherapy With Cisplatin Versus Cetuximab in Patients With Locoregionally Advanced Head and Neck Squamous Cell Cancer. J. Clin. Oncol. 2021, 39, 38–47. [Google Scholar] [CrossRef]
- Yamamoto, V.N.; Thylur, D.S.; Bauschard, M.; Schmale, I.; Sinha, U.K. Overcoming radioresistance in head and neck squamous cell carcinoma. Oral Oncol. 2016, 63, 44–51. [Google Scholar] [CrossRef]
- Haddad, R.; Posner, M.; Hitt, R.; Cohen, E.; Schulten, J.; Lefebvre, J.-L.; Vermorken, J. Induction chemotherapy in locally advanced squamous cell carcinoma of the head and neck: Role, controversy, and future directions. Ann. Oncol. 2018, 29, 1130–1140. [Google Scholar] [CrossRef]
- Anderson, C.M.; Kimple, R.J.; Lin, A.; Karam, S.D.; Margalit, D.N.; Chua, M.L. De-Escalation Strategies in HPV-Associated Oropharynx Cancer—Are we Putting the Cart Before the Horse? Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 705–709. [Google Scholar] [CrossRef]
- Brachman, D.G.; Beckett, M.; Graves, D.; Haraf, D.; Vokes, E.; Weichselbaum, R.R. p53 mutation does not correlate with radiosensi-tivity in 24 head and neck cancer cell lines. Cancer Res. 1993, 53, 3667–3669. [Google Scholar]
- Jung, M.; Notario, V.; Dritschilo, A. Mutations in the p53 gene in radiation-sensitive and -resistant human squamous carcino-ma cells. Cancer Res. 1992, 52, 6390–6393. [Google Scholar]
- Wu, C.; Guo, E.; Ming, J.; Sun, W.; Nie, X.; Sun, L.; Peng, S.; Luo, M.; Liu, D.; Zhang, L.; et al. Radiation-Induced DNMT3B Promotes Radioresistance in Nasopharyngeal Carcinoma through Methylation of p53 and p21. Mol. Ther. Oncolytics 2020, 17, 306–319. [Google Scholar] [CrossRef]
- Tojyo, I.; Shintani, Y.; Nakanishi, T.; Okamoto, K.; Hiraishi, Y.; Fujita, S.; Enaka, M.; Sato, F.; Muragaki, Y. PD-L1 expression correlated with p53 expression in oral squamous cell carcinoma. Maxillofac. Plast. Reconstr. Surg. 2019, 41, 56. [Google Scholar] [CrossRef] [Green Version]
- Seltzsam, S.; Ziemann, F.; Dreffke, K.; Preising, S.; Arenz, A.; Schötz, U.; Engenhart-Cabillic, R.; Dikomey, E.; Wittig, A. In HPV-Positive HNSCC Cells, Functional Restoration of the p53/p21 Pathway by Proteasome Inhibitor Bortezomib Does Not Affect Radio- or Chemosensitivity. Transl. Oncol. 2019, 12, 417–425. [Google Scholar] [CrossRef]
- Mireştean, C.C.; Crişan, A.; Buzea, C.; Iancu, R.I.; Iancu, D.T. Synergies Radiotherapy-Immunotherapy in Head and Neck Cancers. A New Concept for Radiotherapy Target Volumes-"Immunological Dose Painting". Medicina (Kaunas) 2021, 57, 6. [Google Scholar] [CrossRef]
- Waitzberg, A.F.; Nonogaki, S.; Nishimoto, I.N.; Kowalski, L.P.; Miguel, R.E.; Brentani, R.R.; Brentani, M.M. Clinical significance of c-myc and p53 expression in head and neck squamous cell carcinomas. Cancer Detect. Prev. 2004, 28, 178–186. [Google Scholar] [CrossRef]
- Ganci, F.; Pulito, C.; Valsoni, S.; Sacconi, A.; Turco, C.; Vahabi, M.; Manciocco, V.; Mazza, E.M.C.; Meens, J.; Karamboulas, C.; et al. PI3K Inhibitors Curtail MYC-Dependent Mutant p53 Gain-of-Function in Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2020, 26, 2956–2971. [Google Scholar] [CrossRef] [Green Version]
- Ohnishi, K.; Ota, I.; Takahashi, A.; Ohnishi, T. Glycerol restores p53-dependent radiosensitivity of human head and neck cancer cells bearing mutant p53. Br. J. Cancer 2000, 83, 1735–1739. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Lee, W.H.; Seong, D.; An, J.H.; Je, H.U.; Nam, H.Y.; Kim, S.Y.; Kim, S.W.; Han, M.W. The role of CIP2A as a therapeutic target of rapamycin in radioresistant head and neck cancer with TP53 mutation. Head Neck 2019, 41, 3362–3371. [Google Scholar] [CrossRef]
- Ventelä, S.; Sittig, E.; Mannermaa, L.; Mäkelä, J.-A.; Kulmala, J.; Löyttyniemi, E.; Strauss, L.; Cárpen, O.; Toppari, J.; Grénman, R.; et al. CIP2A is an Oct4 target gene involved in head and neck squamous cell cancer oncogenicity and radioresistance. Oncotarget 2015, 6, 144–158. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell 2015, 161, 1681–1696. [Google Scholar]
- De Felice, M.; Tammaro, M.; Leopardo, D.; Ianniello, G.P.; Turitto, G. Moving towards the Future of Radio-Immunotherapy: Could We “Tailor” the Abscopal Effect on Head and Neck Cancer Patients? Immuno 2021, 1, 410–423. [Google Scholar] [CrossRef]
- Mazzaschi, G.; Tommasi, C.; Pietri, E.; Corcione, L.; De Giorgi, A.; Bini, P.; Bui, S. Abscopal effect as part of treatment of oligometastatic head and neck cancer: A case report. Clin. Case Rep. 2021, 9, 1334–1338. [Google Scholar] [CrossRef]
- Routila, J.; Suvila, K.; Grénman, R.; Leivo, I.; Westermarck, J.; Ventelä, S. Cancer cell line microarray as a novel screening method for identification of radioresistance biomarkers in head and neck squamous cell carcinoma. BMC Cancer 2021, 21, 868. [Google Scholar] [CrossRef]
- Van Ginkel, J.H.; de Leng, W.W.; de Bree, R.; van Es, R.J.; Willems, S.M. Targeted sequencing reveals TP53 as a potential diagnostic biomarker in the post-treatment surveillance of head and neck cancer. Oncotarget 2016, 7, 61575–61586. [Google Scholar] [CrossRef] [Green Version]
- Klinakis, A.; Rampias, T. TP53 mutational landscape of metastatic head and neck cancer reveals patterns of mutation selection. eBioMedicine 2020, 58, 102905. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, Z.; Myers, J.N. TP53Mutations in Head and Neck Squamous Cell Carcinoma and Their Impact on Disease Progression and Treatment Response. J. Cell. Biochem. 2016, 117, 2682–2692. [Google Scholar] [CrossRef] [Green Version]
- Ganci, F.; Sacconi, A.; Ben-Moshe, N.B.; Manciocco, V.; Sperduti, I.; Strigari, L.; Covello, R.; Benevolo, M.; Pescarmona, E.; Domany, E.; et al. Expression of TP53 mutation-associated microRNAs predicts clinical outcome in head and neck squamous cell carcinoma patients. Ann. Oncol. 2013, 24, 3082–3088. [Google Scholar] [CrossRef]
- Chen, J.; Ouyang, H.; An, X.; Liu, S. miR-125a is upregulated in cancer stem-like cells derived from TW01 and is responsible for maintaining stemness by inhibiting p53. Oncol. Lett. 2019, 17, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Asakawa, I.; Yoshimura, H.; Takahashi, A.; Ohnishi, K.; Nakagawa, H.; Ota, I.; Furusawa, Y.; Tamamoto, T.; Ohishi, H.; Ohnishi, T. Ra-diation-induced growth inhibition in transplanted human tongue carcinomas with different p53 gene status. Anticancer Res. 2002, 22, 2037–2043. [Google Scholar]
- Chang, H.W.; Kim, M.R.; Lee, H.J.; Lee, H.M.; Kim, G.C.; Lee, Y.S.; Nam, H.Y.; Lee, M.; Jang, H.J.; Lee, K.E.; et al. p53/BNIP3-dependent mitophagy limits glycolytic shift in radioresistant cancer. Oncogene 2019, 38, 3729–3742. [Google Scholar] [CrossRef]
- Ren, X.; Liu, H.; Zhang, M.; Wang, M.; Ma, S. Co-expression of ING4 and P53 enhances hypopharyngeal cancer chemosensitivity to cisplatin in vivo. Mol. Med. Rep. 2016, 14, 2431–2438. [Google Scholar] [CrossRef]
- Lin, M.-Y.; Chang, Y.-C.; Wang, S.-Y.; Yang, M.-H.; Chang, C.-H.; Hsiao, M.; Kitsis, R.N.; Lee, Y.-J. OncomiR miR-182-5p Enhances Radiosensitivity by Inhibiting the Radiation-Induced Antioxidant Effect through SESN2 in Head and Neck Cancer. Antioxidants 2021, 10, 1808. [Google Scholar] [CrossRef]
- Xu, R.; Li, H.; Wu, S.; Qu, J.; Yuan, H.; Zhou, Y.; Lu, Q. MicroRNA-1246 regulates the radio-sensitizing effect of curcumin in bladder cancer cells via activating P53. Int. Urol. Nephrol. 2019, 51, 1771–1779. [Google Scholar] [CrossRef]
- Osu, N.; Kobayashi, D.; Shirai, K.; Musha, A.; Sato, H.; Hirota, Y.; Shibata, A.; Oike, T.; Ohno, T. Relative Biological Effectiveness of Carbon Ions for Head-and-Neck Squamous Cell Carcinomas According to Human Papillomavirus Status. J. Pers. Med. 2020, 10, 71. [Google Scholar] [CrossRef]
- Peltonen, J.K.; Helppi, H.M.; Pääkkö, P.; Turpeenniemi-Hujanen, T.; Vähäkangas, K.H. p53 in head and neck cancer: Functional consequences and environmental implications of TP53mutations. Head Neck Oncol. 2010, 2, 36. [Google Scholar] [CrossRef] [Green Version]
- Peltonen, J.K.; Vähäkangas, K.H.; Helppi, H.M.; Bloigu, R.; Pääkkö, P.; Turpeenniemi-Hujanen, T. Specific TP53 mutations predict aggressive phenotype in head and neck squamous cell carcinoma: A retrospective archival study. Head Neck Oncol. 2011, 3, 20. [Google Scholar] [CrossRef] [Green Version]
- Poeta, M.L.; Manola, J.; Goldwasser, M.A.; Forastiere, A.; Benoit, N.; Califano, J.A.; Ridge, J.A.; Goodwin, J.; Kenady, D.; Saunders, J.; et al. TP53Mutations and Survival in Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2007, 357, 2552–2561. [Google Scholar] [CrossRef] [Green Version]
- Westra, W.H.; Taube, J.M.; Poeta, M.; Begum, S.; Sidransky, D.; Koch, W.M. Inverse Relationship between Human Papillomavirus-16 Infection and Disruptive p53 Gene Mutations in Squamous Cell Carcinoma of the Head and Neck. Clin. Cancer Res. 2008, 14, 366–369. [Google Scholar] [CrossRef] [Green Version]
- Golusinski, P.; Lamperska, K.; Pazdrowski, J.; Golusinski, W. Analiza wystepowania mutacji w obrebie genu TP53 u chorych na raka płaskonabłonkowego głowy i szyi [Analysis of mutations within the TP53 gene in patients with squamous cell carci-noma of the head and neck]. Otolaryngol. Polska 2011, 65, 114–121. [Google Scholar] [CrossRef]
- Van Houten, V.M.; Tabor, M.P.; van den Brekel, M.W.; Kummer, J.A.; Denkers, F.; Dijkstra, J.; Leemans, R.; van der Waal, I.; Snow, G.B.; Brakenhoff, R.H. Mutated p53 as a molecular marker for the diagnosis of head and neck cancer. J. Pathol. 2002, 198, 476–486. [Google Scholar] [CrossRef]
- Ragos, V.; SMastronikolis, N.; Tsiambas, E.; Baliou, E.; Mastronikolis, S.N.; Tsoukalas, N.; Patsouri, E.E.; Fotiades, P.P. p53 mutations in oral cavity carcinoma. J. BUON. 2018, 23, 1569–1572. [Google Scholar]
- Lazarus, P.; Stern, J.; Zwiebel, N.; Fair, A.; Richie, J.; Schantz, S. Relationship between p53 mutation incidence in oral cavity squamous cell carcinomas and patient tobacco use. Carcinogenesis 1996, 17, 733–739. [Google Scholar] [CrossRef]
- Hsieh, L.-L.; Wang, P.-F.; Chen, I.-H.; Liao, C.-T.; Wang, H.-M.; Chen, M.-C.; Chang, J.T.-C.; Cheng, A.-J. Characteristics of mutations in the p53 gene in oral squamous cell carcinoma associated with betel quid chewing and cigarette smoking in Taiwanese. Carcinogenesis 2001, 22, 1497–1503. [Google Scholar] [CrossRef] [Green Version]
- Agaoglu, F.Y.; Dizdar, Y.; Dogan, O.; Alatli, C.; Ayan, I.; Savci, N.; Tas, S.; Dalay, N.; Altun, M. P53 overexpression in nasopharyngeal carcinoma. In Vivo 2004, 18, 555–560. [Google Scholar]
- Amit, M.; Takahashi, H.; Dragomir, M.P.; Lindemann, A.; Gleber-Netto, F.O.; Pickering, C.R.; Anfossi, S.; Osman, A.A.; Cai, Y.; Wang, R.; et al. Loss of p53 drives neuron reprogramming in head and neck cancer. Nature 2020, 578, 449–454. [Google Scholar] [CrossRef]
- Somers, K.D.; Merrick, M.A.; Lopez, M.E.; Incognito, L.S.; Schechter, G.L.; Casey, G. Frequent p53 mutations in head and neck cancer. Cancer Res. 1992, 52, 5997–6000. [Google Scholar]
- Maruyama, H.; Yasui, T.; Ishikawa-Fujiwara, T.; Morii, E.; Yamamoto, Y.; Yoshii, T.; Takenaka, Y.; Nakahara, S.; Todo, T.; Hongyo, T.; et al. Human papillomavirus and p53 mutations in head and neck squamous cell carcinoma among Japanese population. Cancer Sci. 2014, 105, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Effert, P.; McCoy, R.; Abdel-Hamid, M.; Flynn, K.; Zhang, Q.; Busson, P.; Tursz, T.; Liu, E.; Raab-Traub, N. Alterations of the p53 gene in nasopharyngeal carcinoma. J. Virol. 1992, 66, 3768–3775. [Google Scholar] [CrossRef] [Green Version]
- Kumar, B.; Cordell, K.G.; D’Silva, N.; Prince, M.E.; Adams, M.E.; Fisher, S.G.; Wolf, G.T.; Carey, T.E.; Bradford, C.R. Expression of p53 and Bcl-xL as Predictive Markers for Larynx Preservation in Advanced Laryngeal Cancer. Arch. Otolaryngol. Head Neck Surg. 2008, 134, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Gwosdz, C.; Balz, V.; Scheckenbach, K.; Bier, H. p53, p63 and p73 Expression in Squamous Cell Carcinomas of the Head and Neck and Their Response to Cisplatin Exposure. Adv. Otorhinolaryngol. 2005, 62, 58–71. [Google Scholar] [CrossRef]
- Sittel, C.; Ruiz, S.; Volling, P.; Kvasnicka, H.M.; Jungehülsing, M.; Eckel, H.E. Prognostic significance of Ki-67 (MIB1), PCNA and p53 in cancer of the oropharynx and oral cavity. Oral Oncol. 1999, 35, 583–589. [Google Scholar] [CrossRef]
- Ganly, I.; Soutar, D.S.; Brown, R.; Kaye, S.B. p53 alterations in recurrent squamous cell cancer of the head and neck refractory to radiotherapy. Br. J. Cancer 2000, 82, 392–398. [Google Scholar] [CrossRef] [Green Version]
- Imai, Y.; Ohnishi, K.; Yasumoto, J.-I.; Kajiwara, A.; Yamakawa, N.; Takahashi, A.; Ohnishi, T.; Kirita, T. Glycerol enhances radiosensitivity in a human oral squamous cell carcinoma cell line (Ca9-22) bearing a mutant p53 gene via Bax-mediated induction of apoptosis. Oral Oncol. 2005, 41, 631–636. [Google Scholar] [CrossRef]
- Servomaa, K.; Kiuru, A.; Grenman, R.; Pekkola-Heino, K.; Pulkkinen, J.O.; Rytomaa, T. p53 mutations associated with increased sensitivity to ionizing radiation in human head and neck cancer cell lines. Cell Prolif. 1996, 29, 219–230. [Google Scholar] [CrossRef]
- Nie, X.; Guo, E.; Wu, C.; Liu, D.; Sun, W.; Zhang, L.; Long, G.; Mei, Q.; Wu, K.; Xiong, H.; et al. SALL 4 induces radioresistance in nasopharyngeal carcinoma via the ATM /Chk2/p53 pathway. Cancer Med. 2019, 8, 1779–1792. [Google Scholar] [CrossRef]
- Yang, C.-F.; Peng, L.-X.; Huang, T.-J.; Yang, G.-D.; Chu, Q.-Q.; Liang, Y.-Y.; Cao, X.; Xie, P.; Zheng, L.-S.; Huang, H.-B.; et al. Cancer stem-like cell characteristics induced by EB virus-encoded LMP1 contribute to radioresistance in nasopharyngeal carcinoma by suppressing the p53-mediated apoptosis pathway. Cancer Lett. 2014, 344, 260–271. [Google Scholar] [CrossRef]
- Koelbl, O.; Rosenwald, A.; Haberl, M.; Müller, J.; Reuther, J.; Flentje, M. p53 and Ki-67 as predictive markers for radiosensitivity in squamous cell carcinoma of the oral cavity? an immunohistochemical and clinicopathologic study. Int. J. Radiat. Oncol. Biol. Phys. 2001, 49, 147–154. [Google Scholar] [CrossRef]
- Couture, C.; Raybaud-Diogène, H.; Têtu, B.; Bairati, I.; Murry, D.; Allard, J.; Fortin, A. p53 and Ki-67 as markers of radioresistance in head and neck carcinoma. Cancer 2002, 94, 713–722. [Google Scholar] [CrossRef] [Green Version]
- Maalouf, M.; Alphonse, G.; Colliaux, A.; Beuve, M.; Trajkovic-Bodennec, S.; Battiston-Montagne, P.; Testard, I.; Chapet, O.; Bajard, M.; Taucher-Scholz, G.; et al. Different Mechanisms of Cell Death in Radiosensitive and Radioresistant P53 Mutated Head and Neck Squamous Cell Carcinoma Cell Lines Exposed to Carbon Ions and X-Rays. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 200–209. [Google Scholar] [CrossRef]
- Hutchinson, M.-K.N.D.; Mierzwa, M.; D’Silva, N.J. Radiation resistance in head and neck squamous cell carcinoma: Dire need for an appropriate sensitizer. Oncogene 2020, 39, 3638–3649. [Google Scholar] [CrossRef] [Green Version]
- Perri, F.; Pacelli, R.; Della Vittoria Scarpati, G.; Cella, L.; Giuliano, M.; Caponigro, F.; Pepe, S. Radioresistance in head and neck squamous cell carcinoma: Biological bases and therapeutic implications. Head Neck 2015, 37, 763–770. [Google Scholar] [CrossRef]
- Pirollo, K.F.; Hao, Z.; Rait, A.; Jang, Y.-J.; Fee, W.E., Jr.; Ryan, P.; Chiang, Y.; Chang, E.H. p53 mediated sensitization of squamous cell carcinoma of the head and neck to radiotherapy. Oncogene 1997, 14, 1735–1746. [Google Scholar] [CrossRef] [Green Version]
- Kojima, Y.; Otsuki, N.; Kubo, M.; Kitamoto, J.; Takata, E.; Saito, H.; Kosaka, K.; Morishita, N.; Uehara, N.; Shirakawa, T.; et al. Adenovirus-mediated transfer of HPV 16 E6/E7 antisense RNA combined with cisplatin inhibits cellular growth and induces apoptosis in HPV-positive head and neck cancer cells. Cancer Gene Ther. 2018, 25, 274–283. [Google Scholar] [CrossRef]
- Arya, A.K.; El-Fert, A.; Devling, T.; Eccles, R.; Aslam, M.A.; Rubbi, C.P.; Vlatkovic, N.; Fenwick, J.; Lloyd, B.H.; Sibson, D.R.; et al. Nutlin-3, the small-molecule inhibitor of MDM2, promotes senescence and radiosensitises laryngeal carcinoma cells harbouring wild-type p53. Br. J. Cancer 2010, 103, 186–195. [Google Scholar] [CrossRef]
- Yee-Lin, V.; Pooi-Fong, W.; Soo-Beng, A.K. Nutlin-3, A p53-Mdm2 Antagonist for Nasopharyngeal Carcinoma Treatment. Mini-Reviews Med. Chem. 2018, 18, 173–183. [Google Scholar] [CrossRef]
- Mortensen, A.C.L.; Spiegelberg, D.; Brown, C.J.; Lane, D.P.; Nestor, M. The Stapled Peptide PM2 Stabilizes p53 Levels and Radiosensitizes Wild-Type p53 Cancer Cells. Front. Oncol. 2019, 9, 923. [Google Scholar] [CrossRef]
- Khuri, F.R.; Nemunaitis, J.; Ganly, I.; Arseneau, J.; Tannock, I.F.; Romel, L.; Gore, M.; Ironside, J.; MacDougall, R.H.; Heise, C.; et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat. Med. 2000, 6, 879–885. [Google Scholar] [CrossRef]
- Roh, J.-L.; Park, J.Y.; Kim, E.H. XI-011 enhances cisplatin-induced apoptosis by functional restoration of p53 in head and neck cancer. Apoptosis 2014, 19, 1594–1602. [Google Scholar] [CrossRef]
- Chuang, H.-C.; Yang, L.P.; Fitzgerald, A.L.; Osman, A.; Woo, S.H.; Myers, J.N.; Skinner, H.D. The p53-Reactivating Small Molecule RITA Induces Senescence in Head and Neck Cancer Cells. PLoS ONE 2014, 9, e104821. [Google Scholar] [CrossRef] [Green Version]
- Lindemann, A.; Patel, A.A.; Silver, N.L.; Tang, L.; Liu, Z.; Wang, L.; Tanaka, N.; Rao, X.; Takahashi, H.; Maduka, N.K.; et al. COTI-2, A Novel Thiosemicarbazone Derivative, Exhibits Antitumor Activity in HNSCC through p53-dependent and -independent Mechanisms. Clin. Cancer Res. 2019, 25, 5650–5662. [Google Scholar] [CrossRef] [Green Version]
- Moser, R.; Xu, C.; Kao, M.; Annis, J.; Lerma, L.A.; Schaupp, C.M.; Gurley, K.E.; Jang, I.S.; Biktasova, A.; Yarbrough, W.G.; et al. Functional Kinomics Identifies Candidate Therapeutic Targets in Head and Neck Cancer. Clin. Cancer Res. 2014, 20, 4274–4288. [Google Scholar] [CrossRef] [Green Version]
- Osman, A.A.; Monroe, M.M.; Ortega Alves, M.V.; Patel, A.A.; Katsonis, P.; Fitzgerald, A.L.; Neskey, D.M.; Frederick, M.J.; Woo, S.H.; Cau-lin, C.; et al. Wee-1 kinase inhibition overcomes cisplatin re-sistance associated with high-risk TP53 mutations in head and neck cancer through mitotic arrest followed by senescence. Mol. Cancer Ther. 2015, 14, 608–619. [Google Scholar] [CrossRef]
- Available online: https://clinicaltrials.gov/ct2/show/NCT00041626 (accessed on 1 December 2022).
- Available online: https://clinicaltrials.gov/ct2/show/NCT02433626 (accessed on 1 December 2022).
- Zhang, S.W.; Xiao, S.W.; Liu, C.Q.; Sun, Y.; Su, X.; Li, D.M.; Xu, G.; Zhu, G.Y.; Xu, B. Recombinant adenovirus-p53 gene therapy combined with radiotherapy for head and neck squamous-cell carcinoma. Zhonghua Zhong Liu Za Zhi 2005, 27, 426–428. (In Chinese) [Google Scholar]
- Available online: https://clinicaltrials.gov/ct2/show/NCT02842125 (accessed on 1 December 2022).
- Available online: https://www.clinicaltrials.gov/ct2/show/NCT00003257 (accessed on 1 December 2022).
- Available online: https://clinicaltrials.gov/ct2/show/NCT00017173 (accessed on 1 December 2022).
- Available online: https://clinicaltrials.gov/ct2/show/NCT03544723 (accessed on 1 December 2022).
- Available online: https://clinicaltrials.gov/ct2/show/NCT00006106 (accessed on 1 December 2022).
P53 in Head and Neck Squamous Cell Carcinomas (HNSCC) | |||
---|---|---|---|
Cancer Type | Mechanism of Action | Results/Clinical Implication | References |
All types of HNSCC | 36–39 TP53 mutations detection | not specified | Peltonen et al., 2010 [126] |
All types of HNSCC | identification of p53 as the most common somatic mutation | biomarker for prognosis and a predictor of clinical response to radiotherapy and chemotherapy | Zhou et al., 2016 [117] |
All types of HNSCC | identification of p53 TP53 mutations in DNA-binding regions (L2, L3 and LSH motif) | marker for predicting prognosis and response to radiation | Peltonen et al., 2011 [127] |
All types of HNSCC | TP53 mutation detection in 53.3% of patients | TP53 mutation is associated with reduced survival | Poeta et al., 2007 [128] |
HNSCC treated surgically with curative intent | HPV16-positive and p53 mutation coexistence | possible implications for patient outcomes | Westra et al., 2008 [129] |
Oral cavity, oropharynx or larynx surgically treated | TP53 mutation detection | tobacco and alcohol consumption correlation, tumor histological grading correlation, no correlation with T and N stages and no clinical correlation specified | Golusinski et al., 2016 [130] |
HNSCC with radical tumor resection | p53 mutations detection in surgical margins | identification of p53 in surgical margins as a prognostic factor for high recurrence risk | van Houten et al., 2002 [131] |
Oral cavity SCC (OCSCC) | P53 mutation detection | not specified | Ragos et al., 2018 [132] |
OCSCC | P53 identification in relation with carcinogens | high incidence of P53 mutation in tobacco users. | Lazarus et al., 1996 [133] |
OCSCC | betel quid chewing, alcohol use and smoking in relation to the p53 mutation | not specified | Hsieh et al., 2001 [134] |
All types of HNSCC | correlation of the 36 TP53 mutations confirmed with carcinogens | smoking, alcohol and work history and no clinical correlation specified | Peltonen et al., 2010 [126] |
Nasopharyngeal carcinoma (NPC) | identification of p53 protein in NPC primary tumor and metastatic nodes | no statistically significant correlation with p53 immuno-reactivity and overall and disease-free survival was identified. | van Houten et al., 2002 [131] |
All types of HNSCC | loss of p53 function | adrenergic trans-differentiation of tumor-associated sensory nerves with inhibition of tumor growth as a consequence | Amit et al., 2020 [136] |
All types of HNSCC | overexpression of p53 protein was detected | not specified, only the association of the p53 mutation with carcinogens such as tobacco is mentioned | Somers et al., 1992 [137] |
p53 mutations are uncommon in virus-related HNSCC but common in oropharyngeal and hypopharyngeal carcinoma | Maruyama et al., 2014 [138] | ||
All types of HNSCC | p53 protein degradation by the viral oncoprotein E6 and p53 mutations inHPV16-positive tumors | inverse relationship between human papillomavirus-16 infection and disruptive p53 gene mutations, clinical implications not specified | Westra et al., 2008 [129] |
NPC | to determine if the mutation in p53 participates in the development of the malignant clone | p53 gene are unlikely to be involved initially contributing to clonal outgrowth, clinical implications not specified | Effert et al., 1992 [139] |
All types of HNSCC | restoring the tumor suppressor activity of p53 | Ad-E6/E7-As and bortezomib may restore p53 function to improve therapeutic outcomes | de Bakker et al., 2022 [2] |
Larynx HNSCC | evaluation of p53 as a predictor for larynx preservation | p53 and Bcl-xL are strong predictors of larynx preservation after induction chemotherapy and radiotherapy | Kumar et al., 2008 [78] |
All types of HNSCC | evaluation of differences in the mutation profile of TP53 in primary and metastatic disease | TP53 mutations are associated with higher TMB scores in only metastatic NHSCC, suggesting an unfavorable response to ICI | Klinakis et al., 2020 [116] |
All types of HNSCC | evidence of concordance between p53 mutations in primary disease and metastasis | TP53 is associated with metastases, recurrence and as a post-treatment biomarker of disease evolution | van Ginkel et al., 2016 [115] |
All types of HNSCC | p63 and p73 may act synergic with p53 | p63 and p73 profiles modulate sensitivity to chemotherapy | Gwosdz et al., 2005 [141] |
OSCC and oropharynx SCC | evaluation of Ki-67, PCNA and p53 status as prognostic factors | no relationship found between p53 or PCNA status and tumor prognosis | Sittel et al., 1999 [142] |
Cancer Type | Study Hypothesis | Radiosensitivity | Reference |
---|---|---|---|
All types of HNSCC | p53 tumor suppressor is associated with G1 arrest following DNA damage by X-irradiation | no effect related to p53 mutation | Brachman et al., 1993 [100] |
Human squamous cell carcinoma (SCC) cell lines | comparative evaluation of radiosensitive and radioresistant cell lines which exhibited alterations of the p53 gene | ras, myc, and raf expression correlated with radioresistance, but not p53 | Jung et al., 1992 [101] |
All types of HNSCC | determine the incidence of p53 alterations in HNSCC refractory to radiotherapy | p53 dysfunction associated with poor response to radiotherapy and chemotherapy | Ganly et al., 2000 [143] |
All types of HNSCC | proposing a new concept for mutant p53-targeting cancer therapies | glycerol-mediated restoring p53 function may increase radiosensitivity | Ohnishi et al., 2000 [108] |
Human OSCC cell lines | Bax-mediated induction of apoptosis for p53 mutant cells | glycerol enhances radiosensitivity | Imai et al., 2005 [144] |
OSCC | hypothesis that the p53 mutation is associated with resistance to chemotherapy and radiation therapy | DNA contact mutation of p53 could be marker radioresistance | Servomaa et al., 1996 [145] |
NPC | inhibition of cell invasion and metastasis through activating the PBK-dependent p53 signaling pathway | microRNA-372 enhances radiosensitivity via the p53 pathway | Wang et al., 2019 [87] |
NPC | SALL4 silencing increased radiation-induced DNA damage, apoptosis, and G2/M arrest | SALL4 induces radioresistance via the ATM/Chk2/p53 pathway | Nie et al., 2019 [146] |
Epstein–Barr virus-positive NPC | LMP1 induced an increase in CSC-like CD44(+/High) radioresistant cells | cancer stem-like cells contribute to radioresistance by suppressing the p53-mediated apoptosis pathway | Yang et al., 2014 [147] |
OSCC | evaluation of p53 and Ki-67 as a biomarker of response to radiochemotherapy | not confirmed as predictors of radiosensitivity and chemo-radiotherapy response | Koelbl et al., 2001 [148] |
OSCC | low proliferation (Ki-67 < 20%) is | Ki-67 and p53 overexpression may predict radioresistance | Couture et al., 2002 [149] |
2 HNSCC cell lines | carbon ions and x-rays induce different modes of p53-mediated cell death | high LET irradiation induced distinct types of cell death on 2 different cell lines, and different radiosensitivity may be the cause of target repopulation by modulating apoptosis. | Maalouf et al., 2009 [150] |
Human tongue SCC cell lines | testing for variations in p53-dependent cell death and radiosensitivity X-rays (low-linear energy transfer (LET) or carbon-ion beams (high-LET heavy ion) | radiation-induced growth inhibition | Asakawa et al., 2002 [120] |
All types of HNSCC | implication of p53 and epidermal growth factor receptor (EGFR) | radiation-mediated apoptosis by p53- and EGFR-mediated DNA repair are both factors of radioresistance | Hutchinson et al., 2020 [151] |
All types of HNSCC | evaluation of 3 main pathways: EGFR, the phosphotidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), and the p53 in radiosensitivity | association of radiochemotherapy with a specific target for improving radiosensitivity | Perri et al., 2015 [152] |
Cancer Type | p53 Function Restoration Therapy | Endpoint | References |
---|---|---|---|
Laryngeal wt p53 carcinoma | nutulin-3 | radiosensitivity | Arya et al., 2010 [155] |
HNSCC | Av1-p53 | radiosensitivity | Pirollo et al., 1997 [153] |
HPV+ HNSCC | Ad-E6/E7-As | sensitivity to Cisplatin | Kojima et al., 2018 [154] |
Nasopharyngeal carcinoma | nutulin-3 | chemosensitivity and radiosensitivity | Yee-Lin et al., 2018 [156] |
HPV+ HNSCC | bortezomib | chemosensitivity- or radiosensitivity-negative results | Seltzsam et al., 2019 [104] |
HNSCC OSCCC | glycerol | radiosensitivity | Ohnishi et al., 2000 [108] Imai et al., 2005 [144] |
Wt p53 HPV- cells | PM2 | radiosensitivity | Mortensen et al., 2019 [157] |
p53 deficient cells | ONYX-015 | synergy with cisplatin and 5-fluorouracil-based chemotherapy | Khuri et al., 2000 [158] |
HNSCC | XI-011 | increase Cisplatin sensitivity | Roh et al., 2014 [159] |
All types of HNSCC | RITA | Radiosensitivity | Chuang et al., 2014 [160] |
HNSCC | COTI-2 | Cisplatin-based chemotherapy and radiotherapy sensitivity | Lindemann et al., 2019 [161] |
HNSCC | MK-1775 | Cisplatin sensitivity | Moser et al., 2014 [162] Osman et al., 2015 [163] |
Cancer Type | p53 Function Restoration Therapy | Clinical Trial/Endpoint | References |
---|---|---|---|
Recurrent HNSCC | INGN 201 | NCT00041626/Phase III/Cisplatin and 5-Fluorouracil sensitivity | ClinicalTrials.gov NCT00041626 [164] |
HNSCC | COTI-2 | Phase I/Tolerability | ClinicalTrials.gov NCT02433626 [165] |
HNSCC | adenovirus-p53 gene (Gendicine) + radiotherapy | randomized controlled clinical trial/safety and efficacy | Zhang et al., 2005 [166] |
Liver metastases of solid tumors and recurrent HNSCC | Ad-p53 With Capecitabine (Xeloda) or Anti-PD-1 | phase 1–20/Safety and Efficacy | ClinicalTrials.gov NCT02842125 [167] |
Recurrent HNSCC | Ad5CMV-p53 | phase II/objective response rate | ClinicalTrials.gov NCT00003257 [168] |
Newly-diagnosed stage III/IV, resectable oral cavity, oropharynx, hypopharynx, or larynx SCC | Ad5CMV-p53 gene followed by cisplatin and radiotherapy | phase II/effectiveness | ClinicalTrials.gov NCT00017173 [169] |
Reccurent or metasatic HNSCC | Ad-p53 + immune checkpoint inhibitors | safety and efficacy | ClinicalTrials.gov NCT03544723 [170] |
HNSCC | ONYX-015+ cisplatin/fluorouracil | Phase I/feasibility and maximum tolerated dose (MTD)—Withdrawn | ClinicalTrials.gov NCT00006106 [171] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mireștean, C.C.; Iancu, R.I.; Iancu, D.P.T. p53 Modulates Radiosensitivity in Head and Neck Cancers—From Classic to Future Horizons. Diagnostics 2022, 12, 3052. https://doi.org/10.3390/diagnostics12123052
Mireștean CC, Iancu RI, Iancu DPT. p53 Modulates Radiosensitivity in Head and Neck Cancers—From Classic to Future Horizons. Diagnostics. 2022; 12(12):3052. https://doi.org/10.3390/diagnostics12123052
Chicago/Turabian StyleMireștean, Camil Ciprian, Roxana Irina Iancu, and Dragoș Petru Teodor Iancu. 2022. "p53 Modulates Radiosensitivity in Head and Neck Cancers—From Classic to Future Horizons" Diagnostics 12, no. 12: 3052. https://doi.org/10.3390/diagnostics12123052
APA StyleMireștean, C. C., Iancu, R. I., & Iancu, D. P. T. (2022). p53 Modulates Radiosensitivity in Head and Neck Cancers—From Classic to Future Horizons. Diagnostics, 12(12), 3052. https://doi.org/10.3390/diagnostics12123052