The Role of Radiomics in Salivary Gland Imaging: A Systematic Review and Radiomics Quality Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Radiomics Quality Score
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, C.; Zhou, Y.; Lo, G.G.; Wong, O.L.; Yu, S.K.; Cheung, K.Y.; Yuan, J. Reliability of radiomics features due to image reconstruction using a standardized T 2 -weighted pulse sequence for MR-guided radiotherapy: An anthropomorphic phantom study. Magn. Reson. Med. 2021, 85, 3434–3446. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessler, A.T.; Bhatt, A. Review of the Major and Minor Salivary Glands, Part 1: Anatomy, Infectious, and Inflammatory Processes. J. Clin. Imag. Sci. 2018, 8, 47. [Google Scholar] [CrossRef]
- Kordzińska-Cisek, I.; Grzybowska-Szatkowska, L. Salivary gland cancer—Epidemiology. Nowotwory. J. Oncol. 2018, 68, 22–27. [Google Scholar] [CrossRef] [Green Version]
- To, V.S.H.; Chan, J.Y.W.; Tsang, R.K.Y.; Wei, W.I. Review of Salivary Gland Neoplasms. ISRN Otolaryngol. 2012, 2012, 872982. [Google Scholar] [CrossRef] [Green Version]
- Razek, A.A.K.A.; Mukherji, S. Imaging of sialadenitis. Neuroradiol. J. 2017, 30, 205–215. [Google Scholar] [CrossRef]
- León, J.E.; Mauad, T.; Saldiva, P.H.; Almeida, O.P.; Vargas, P.A. Submandibular and sublingual glands involvement in advanced acquired immunodeficiency syndrome (AIDS): An autopsy-based study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009, 108, 216–226. [Google Scholar] [CrossRef]
- Baer, A.N.; Gourin, C.G.; Westra, W.H.; Cox, D.P.; Greenspan, J.S.; Daniels, T.E. Rare diagnosis of IgG4-related systemic disease by lip biopsy in an international Sjögren syndrome registry. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 115, e34–e39. [Google Scholar] [CrossRef] [Green Version]
- Fragoulis, G.E.; Zampeli, E.; Moutsopoulos, H.M. IgG4-related sialadenitis and Sjögren’s syndrome. Oral Dis. 2016, 23, 152–156. [Google Scholar] [CrossRef]
- Benito, D.A.; Badger, C.; Hoffman, H.T.; Joshi, A. Recommended Imaging for Salivary Gland Disorders. Curr. Otorhinolaryngol. Rep. 2020, 8, 311–320. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vukicevic, A.M.; Milic, V.; Zabotti, A.; Hocevar, A.; De Lucia, O.; Filippou, G.; Frangi, A.F.; Tzioufas, A.; De Vita, S.; Filipovic, N. Radiomics-Based Assessment of Primary Sjögren’s Syndrome From Salivary Gland Ultrasonography Images. IEEE J. Biomed. Heal. Inform. 2019, 24, 835–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vernuccio, F.; Arnone, F.; Cannella, R.; Verro, B.; Comelli, A.; Agnello, F.; Stefano, A.; Gargano, R.; Rodolico, V.; Salvaggio, G.; et al. Diagnostic performance of qualitative and radiomics approach to parotid gland tumors: Which is the added benefit of texture analysis? Br. J. Radiol. 2021, 94, 20210340. [Google Scholar] [CrossRef]
- Xu, Y.; Shu, Z.; Song, G.; Liu, Y.; Pang, P.; Wen, X.; Gong, X. The Role of Preoperative Computed Tomography Radiomics in Distinguishing Benign and Malignant Tumors of the Parotid Gland. Front. Oncol. 2021, 11, 634452. [Google Scholar] [CrossRef]
- Xu, Z.; Jin, Y.; Wu, W.; Wu, J.; Luo, B.; Zeng, C.; Guo, X.; Gao, M.; Guo, S.; Pan, A. Machine learning-based multiparametric traditional multislice computed tomography radiomics for improving the discrimination of parotid neoplasms. Mol. Clin. Oncol. 2021, 15, 245. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Jiang, T.; Zhang, C.; Zhang, Y.; Huang, Z.; Zhou, H.; Huang, P. A nomogram based on clinical information, conventional ultrasound and radiomics improves prediction of malignant parotid gland lesions. Cancer Lett. 2022, 527, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Muraoka, H.; Hirahara, N.; Sawada, E.; Okada, S.; Kaneda, T. Quantitative assessment of normal submandibular glands and submandibular sialadenitis using CT texture analysis: A retrospective study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 132, 112–117. [Google Scholar] [CrossRef]
- Zheng, Y.M.; Xu, W.J.; Hao, D.P.; Liu, X.J.; Gao, C.P.; Tang, G.Z.; Li, J.; Wang, H.X.; Dong, C. A CT-based radiomics nomogram for differentiation of lympho-associated benign and malignant lesions of the parotid gland. Eur. Radiol. 2020, 31, 2886–2895. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, J.; Lu, X.; Wang, Y.; Meng, F.; Zhao, J.; Guo, C.; Yu, L.; Zhu, Z.; Zhang, T. Radiomics-based comparison of MRI and CT for differentiating pleomorphic adenomas and Warthin tumors of the parotid gland: A retrospective study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2021, 131, 591–599. [Google Scholar] [CrossRef]
- Wada, T.; Yokota, H.; Horikoshi, T.; Starkey, J.; Hattori, S.; Hashiba, J.; Uno, T. Diagnostic performance and inter-operator variability of apparent diffusion coefficient analysis for differentiating pleomorphic adenoma and carcinoma ex pleomorphic adenoma: Comparing one-point measurement and whole-tumor measurement including radiomics approach. Jpn. J. Radiol. 2019, 38, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Gabelloni, M.; Faggioni, L.; Attanasio, S.; Vani, V.; Goddi, A.; Colantonio, S.; Germanese, D.; Caudai, C.; Bruschini, L.; Scarano, M.; et al. Can magnetic resonance radiomics analysis discriminate parotid gland tumors? A Pilot. Study. Diagn. 2020, 10, 900. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Mao, N.; Liu, W.; Cui, J.; Xue, X.; Cheng, J.; Zheng, N.; Wang, B. Epithelial salivary gland tumors: Utility of radiomics analysis based on diffusion-weighted imaging for differentiation of benign from malignant tumors. J. X-ray Sci. Technol. 2020, 28, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.-M.; Li, J.; Liu, S.; Cui, J.-F.; Zhan, J.-F.; Pang, J.; Zhou, R.-Z.; Li, X.-L.; Dong, C. MRI-Based radiomics nomogram for differentiation of benign and malignant lesions of the parotid gland. Eur. Radiol. 2020, 31, 4042–4052. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Zheng, N.; Mao, N.; Xue, X.; Cui, J.; Gao, P.; Wang, B. A triple-classification radiomics model for the differentiation of pleomorphic adenoma, Warthin tumour, and malignant salivary gland tumours on the basis of diffusion-weighted imaging. Clin. Radiol. 2021, 76, 472.e11–472.e18. [Google Scholar] [CrossRef] [PubMed]
- Song, L.-L.; Chen, S.-J.; Chen, W.; Shi, Z.; Wang, X.-D.; Song, L.-N.; Chen, D.-S. Radiomic model for differentiating parotid pleomorphic adenoma from parotid adenolymphoma based on MRI images. BMC Med. Imag. 2021, 21, 54. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, J.; Zhao, J.; Yu, L.; Lu, X.; Zhu, Z.; Guo, C.; Zhang, T. Magnetic resonance image biomarkers improve differentiation of benign and malignant parotid tumors through diagnostic model analysis. Oral Radiol. 2021, 37, 658–668. [Google Scholar] [CrossRef]
- Zheng, Y.-M.; Chen, J.; Xu, Q.; Zhao, W.-H.; Wang, X.-F.; Yuan, M.-G.; Liu, Z.-J.; Wu, Z.-J.; Dong, C. Development and validation of an MRI-based radiomics nomogram for distinguishing Warthin’s tumour from pleomorphic adenomas of the parotid gland. Dentomaxillofacial Radiol. 2021, 50, 20210023. [Google Scholar] [CrossRef]
- Cheng, N.-M.; Hsieh, C.-E.; Fang, Y.-H.D.; Liao, C.-T.; Ng, S.-H.; Wang, H.-M.; Chou, W.-C.; Lin, C.-Y.; Yen, T.-C. Development and validation of a prognostic model incorporating [18F]FDG PET/CT radiomics for patients with minor salivary gland carcinoma. EJNMMI Res. 2020, 10, 74. [Google Scholar] [CrossRef]
- Zhang, M.H.; Hasse, A.; Carroll, T.; Pearson, A.T.; Cipriani, N.A.; Ginat, D.T. Differentiating low and high grade mucoepidermoid carcinoma of the salivary glands using CT radiomics. Gland Surg. 2021, 10, 1646–1654. [Google Scholar] [CrossRef]
- Pota, M.; Scalco, E.; Sanguineti, G.; Farneti, A.; Cattaneo, G.M.; Rizzo, G.; Esposito, M. Early prediction of radiotherapy-induced parotid shrinkage and toxicity based on CT radiomics and fuzzy classification. Artif. Intell. Med. 2017, 81, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, L.V.; Langendijk, J.A.; Zhai, T.-T.; Vedelaar, T.A.; Noordzij, W.; Steenbakkers, R.J.H.M.; Sijtsema, N.M. Delta-radiomics features during radiotherapy improve the prediction of late xerostomia. Sci. Rep. 2019, 9, 12483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheikh, K.; Lee, S.H.; Cheng, Z.; Lakshminarayanan, P.; Peng, L.; Han, P.; McNutt, T.R.; Quon, H.; Lee, J. Predicting acute radiation induced xerostomia in head and neck Cancer using MR and CT Radiomics of parotid and submandibular glands. Radiat. Oncol. 2019, 14, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Dijk, L.V.; Thor, M.; Steenbakkers, R.J.; Apte, A.; Zhai, T.-T.; Borra, R.; Noordzij, W.; Estilo, C.; Lee, N.; Langendijk, J.A.; et al. Parotid gland fat related Magnetic Resonance image biomarkers improve prediction of late radiation-induced xerostomia. Radiother. Oncol. 2018, 128, 459–466. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, H.; Huang, S.; Chen, X.; Zhou, H.; Chang, H.; Xia, Y.; Wang, G.; Yang, X. Early prediction of acute xerostomia during radiation therapy for nasopharyngeal cancer based on delta radiomics from CT images. Quant. Imag. Med. Surg. 2019, 9, 1288–1302. [Google Scholar] [CrossRef]
- Tartaglione, T.; Botto, A.; Sciandra, M.; Gaudino, S.; Danieli, L.; Parrilla, C.; Paludetti, G.; Colosimo, C. Diagnosi differenziale dei tumori parotidei: Quali caratteristiche di risonanza magnetica considerare? Acta Otorhinolaryngol. Ital. 2015, 35, 314–320. [Google Scholar] [CrossRef]
- Colella, G.; Cannavale, R.; Flamminio, F.; Foschini, M.P. Fine-needle aspiration cytology of salivary gland lesions: A systematic review. J. Oral Maxillofac. Surg. 2010, 68, 2146–2153. [Google Scholar] [CrossRef]
- Vukicevic, A.M.; Radovic, M.; Zabotti, A.; Milic, V.; Hocevar, A.; Callegher, S.Z.; De Lucia, O.; De Vita, S.; Filipovic, N. Deep learning segmentation of Primary Sjögren’s syndrome affected salivary glands from ultrasonography images. Comput. Biol. Med. 2020, 129, 104154. [Google Scholar] [CrossRef]
- Spadarella, G.; Stanzione, A.; D’Antonoli, T.A.; Andreychenko, A.; Fanni, S.C.; Ugga, L.; Kotter, E.; Cuocolo, R. Systematic review of the radiomics quality score applications: An EuSoMII Radiomics Auditing Group Initiative. Eur. Radiol. 2022; Online ahead of print. [Google Scholar] [CrossRef]
- Stanzione, A.; Gambardella, M.; Cuocolo, R.; Ponsiglione, A.; Romeo, V.; Imbriaco, M. Prostate MRI radiomics: A systematic review and radiomic quality score assessment. Eur. J. Radiol. 2020, 129, 109095. [Google Scholar] [CrossRef]
- Ugga, L.; Perillo, T.; Cuocolo, R.; Stanzione, A.; Romeo, V.; Green, R.; Brunetti, A. Meningioma MRI radiomics and machine learning: Systematic review, quality score assessment, and meta-analysis. Neuroradiology 2021, 63, 1293–1304. [Google Scholar] [CrossRef]
- Ponsiglione, A.; Stanzione, A.; Cuocolo, R.; Ascione, R.; Gambardella, M.; De Giorgi, M.; Nappi, C.; Cuocolo, A.; Imbriaco, M. Cardiac CT and MRI radiomics: Systematic review of the literature and radiomics quality score assessment. Eur. Radiol. 2021, 32, 2629–2638. [Google Scholar] [CrossRef] [PubMed]
- Stanzione, A.; Galatola, R.; Cuocolo, R.; Romeo, V.; Verde, F.; Mainenti, P.P.; Brunetti, A.; Maurea, S. Radiomics in Cross-Sectional Adrenal Imaging: A Systematic Review and Quality Assessment Study. Diagnostics 2022, 12, 578. [Google Scholar] [CrossRef] [PubMed]
- Stanzione, A.; Verde, F.; Cuocolo, R.; Romeo, V.; Mainenti, P.P.; Brunetti, A.; Maurea, S. Placenta Accreta Spectrum Disorders and Radiomics: Systematic Review and Quality Appraisal. Eur. J. Radiol. 2022, 155, 110497. [Google Scholar] [CrossRef] [PubMed]
Items | Criteria | Points |
---|---|---|
Item1 | Image protocol quality—well-documented image protocols. | +1 (protocols well-documented) +1 (public protocol) |
Item2 | Multiple segmentations—possible actions are segmentation by different physicians/algorithms/software, perturbing segmentations by (random) noise, segmentation at different breathing cycles. Analyze feature robustness to segmentation variabilities. | +1 |
Item3 | Phantom study on all scanners—detect inter-scanner differences and vendor-dependent features. Analyze feature robustness to these sources of variability. | +1 |
Item4 | Imaging at multiple time points—collect individuals’ images at additional time points. Analyze feature robustness to temporal variabilities (e.g., organ movement, organ expansion/shrinkage). | +1 |
Item5 | Feature reduction or adjustment for multiple testing—decreases the risk of overfitting. Overfitting is inevitable if the number of features exceeds the number of samples. Consider feature robustness when selecting features. | −3 (not implemented) +3 (implemented) |
Item6 | Multivariable analysis with non-radiomic features (e.g., EGFR mutation)—expected to provide a more holistic model. Permits correlating/inferencing between radiomics and non-radiomics features. | +1 |
Item7 | Detect and discuss biological correlates—demonstration of phenotypic differences (possibly associated with underlying gene–protein expression patterns) deepens understanding of radiomics and biology. | +1 |
Item8 | Cut-off analyses—determine risk groups by either the median or a previously published cut-off or report a continuous risk variable. Reduces the risk of reporting overly optimistic results. | +1 |
Item9 | Discrimination statistics—report discrimination statistics (e.g., C-statistic, ROC curve, AUC) and their statistical significance (e.g., p-values, confidence intervals). One can also apply resampling methods (e.g., bootstrapping, cross-validation). | +1 (discrimination statistic with statistical significance) |
Item10 | Calibration statistics—report calibration statistics (e.g., calibration-in-the-large/slope, calibration plots) and their statistical significance (e.g., p-values, confidence intervals). One can also apply resampling methods (e.g., bootstrapping, cross-validation). | +1 (calibration statistics with statistical significance) +1 (and resampling method) |
Item11 | Prospective study registered in a trial database—provides the highest level of evidence supporting the clinical validity and usefulness of the radiomics biomarker. | +7 (prospective validation) |
Item12 | Validation—validation is performed without retraining and without adaptation of the cut-off value, provides crucial information with regard to credible clinical performance. | −5 (if validation is missing) +2 (validation with same) + 3 (with another institute) + 4 (with 2 datasets from two distinct institutes) +4 (validates a published signature) +5 (validation with dataset from ≥3 institutes) |
Item13 | Comparison to “gold standard”—assess the extent to which the model agrees with/is superior to the current “gold standard” method (e.g., TNM-staging for survival prediction). This comparison shows the added value of radiomics. | +2 |
Item14 | Potential clinical utility—report on the current and potential application of the model in a clinical setting (e.g., decision curve analysis). | +2 |
Item15 | Cost-effectiveness analysis—report on the cost-effectiveness of the clinical application (e.g., quality-adjusted life-years generated). | +1 |
Item16 | Open science and data—make code and data publicly available. Open science facilitates knowledge transfer and reproducibility of the study. | +1 (open-source scans) +1 (open-source ROI) +1 (open-source code) +1 (open-source calculated features) |
Total points (36 = 100%) |
Patient Number | 159 (mean, range 18–626) | |
Journal type | Radiological journal | 15 (65%) |
Other | 8 (35%) | |
Imaging modality * | US | 2 |
CT | 10 | |
MRI | 12 | |
[18F] FDG PET-CT | 1 | |
Study aim | Diagnosis and staging | 3 (14%) |
Differential diagnosis | 14 (60%) | |
Assessment of therapy complications | 5 (22%) | |
Prognosis | 1 (4%) | |
Clinical scenario | Oncology | 16 (70%) |
Inflammatory disease | 2 (9%) | |
Radiation-induced xerostomia | 5 (21%) | |
Employment of Machine Learning technique | To select features | 1 (4%) |
To build predictive models | 10 (43%) | |
Nature of the study | Retrospective | 23 (100%) |
First Author (Years) | Item1 | Item2 | Item3 | Item4 | Item5 | Item6 | Item7 | Item8 | Item9 | Item10 | Item11 | Item12 | Item13 | Item14 | Item15 | Item16 | RQS (Total) | RQS (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vukicevic 2020 (1) [13] | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 10 | 27.78 |
Vernuccio 2021 [14] | 1 | 0 | 0 | 0 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | −5 | 2 | 2 | 0 | 0 | 5 | 13.89 |
Yuyun Xu 2021 [15] | 1 | 1 | 0 | 0 | 3 | 1 | 1 | 0 | 1 | 1 | 0 | 3 | 2 | 2 | 0 | 0 | 16 | 44.44 |
Zhifen Xu 2021 [16] | 0 | 1 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 2 | 0 | 0 | 0 | 12 | 33.33 |
Qunying Li 2021 [17] | 0 | 0 | 0 | 0 | 3 | 1 | 1 | 0 | 1 | 1 | 0 | 2 | 2 | 2 | 0 | 0 | 13 | 36.11 |
Ito 2020 [18] | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | −5 | 2 | 2 | 0 | 0 | 3 | 8.33 |
Zheng 2021 (2) [19] | 1 | 1 | 0 | 0 | 3 | 1 | 0 | 0 | 1 | 1 | 0 | 2 | 2 | 2 | 0 | 0 | 14 | 38.89 |
Yebo Liu 2021 (1) [20] | 1 | 0 | 0 | 0 | 3 | 1 | 1 | 0 | 1 | 1 | 0 | 2 | 2 | 2 | 0 | 0 | 14 | 38.89 |
Wada 2019 [21] | 1 | 1 | 0 | 0 | 3 | 0 | 1 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 12 | 33.33 |
Gabelloni 2020 [22] | 1 | 0 | 0 | 0 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 12 | 33.33 |
Shao 2020 [23] | 1 | 1 | 0 | 0 | 3 | 0 | 1 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 12 | 33.33 |
Zheng 2021 (1) [24] | 1 | 1 | 0 | 0 | 3 | 1 | 1 | 0 | 1 | 1 | 0 | 3 | 2 | 2 | 0 | 0 | 16 | 44.44 |
Shao 2021 [25] | 1 | 1 | 0 | 0 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 11 | 30.56 |
Song 2021 [26] | 1 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 1 | 1 | 0 | 2 | 2 | 2 | 0 | 0 | 13 | 36.11 |
Yebo Liu 2021 (2) [27] | 1 | 0 | 0 | 0 | 3 | 1 | 1 | 0 | 1 | 1 | 0 | 2 | 2 | 2 | 0 | 0 | 14 | 38.89 |
Zheng 2021 (3) [28] | 1 | 1 | 0 | 0 | 3 | 1 | 0 | 0 | 1 | 1 | 0 | 3 | 2 | 2 | 0 | 0 | 15 | 41.67 |
Cheng 2020 [29] | 1 | 0 | 0 | 0 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 10 | 27.78 |
Zhang 2021 [30] | 1 | 0 | 0 | 0 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | −5 | 2 | 0 | 0 | 0 | 3 | 8.33 |
Pota 2017 [31] | 1 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 11 | 30.56 |
Van Dijk 2019 [32] | 0 | 0 | 0 | 1 | 3 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 10 | 27.78 |
Sheihk 2019 [33] | 1 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 9 | 25.00 |
Van Dijk 2018 [34] | 1 | 0 | 0 | 0 | 3 | 1 | 1 | 0 | 1 | 2 | 0 | 3 | 2 | 2 | 0 | 0 | 16 | 44.44 |
Yanxia Liu 2019 [35] | 1 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 8 | 22.22 |
Imaging Modality | RQS (Total) | RQS (%) |
---|---|---|
US (N = 2) | 11.50 ± 2.12 | 31.94 ± 5.89 |
CT (N = 10) | 10 ± 4.42 | 27.7 ± 12.28 |
MRI (N = 12) | 12.41 ± 3.11 | 34.49 ± 8.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aringhieri, G.; Fanni, S.C.; Febi, M.; Colligiani, L.; Cioni, D.; Neri, E. The Role of Radiomics in Salivary Gland Imaging: A Systematic Review and Radiomics Quality Assessment. Diagnostics 2022, 12, 3002. https://doi.org/10.3390/diagnostics12123002
Aringhieri G, Fanni SC, Febi M, Colligiani L, Cioni D, Neri E. The Role of Radiomics in Salivary Gland Imaging: A Systematic Review and Radiomics Quality Assessment. Diagnostics. 2022; 12(12):3002. https://doi.org/10.3390/diagnostics12123002
Chicago/Turabian StyleAringhieri, Giacomo, Salvatore Claudio Fanni, Maria Febi, Leonardo Colligiani, Dania Cioni, and Emanuele Neri. 2022. "The Role of Radiomics in Salivary Gland Imaging: A Systematic Review and Radiomics Quality Assessment" Diagnostics 12, no. 12: 3002. https://doi.org/10.3390/diagnostics12123002
APA StyleAringhieri, G., Fanni, S. C., Febi, M., Colligiani, L., Cioni, D., & Neri, E. (2022). The Role of Radiomics in Salivary Gland Imaging: A Systematic Review and Radiomics Quality Assessment. Diagnostics, 12(12), 3002. https://doi.org/10.3390/diagnostics12123002