Urine and Saliva: Relevant Specimens for Malaria Diagnosis?
Abstract
:1. Introduction
2. Nucleic Acid-Based Diagnostic Methods
2.1. Nested PCR
2.2. Loop-Mediated Isothermal Amplification
2.3. Other Nucleic Acid-Based Methods
2.4. Conclusion
3. Antigen-Based Diagnostic Methods
3.1. PfHRP2 and pLDH
3.2. Other Antigens/Antibodies Approach
3.3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Loo, J.A.; Yan, W.; Ramachandran, P.; Wong, D.T. Comparative human salivary and plasma proteomes. J. Dent. Res. 2010, 89, 1016–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauri, A.M.; Armstrong, G.L.; Hutin, Y.J. The global burden of disease attributable to contaminated injections given in health care settings. Int. J. STD AIDS 2004, 15, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Galena, H.J. Complications occurring from diagnostic venipuncture. J. Fam. Pract. 1992, 34, 582–584. [Google Scholar] [PubMed]
- Apinjoh, T.O.; Ntasin, V.N.; Tataw, P.C.C.; Ntui, V.N.; Njimoh, D.L.; Cho-Ngwa, F.; Achidi, E.A. Comparison of conventional and non-invasive diagnostic tools for detecting Plasmodium falciparum infection in southwestern Cameroon: A cross-sectional study. Infect. Dis. Poverty 2021, 10, 75. [Google Scholar] [CrossRef]
- Sutherland, C.J.; Hallett, R. Detecting malaria parasites outside the blood. J. Infect. Dis. 2009, 199, 1561–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Matary, W.; Deora, V.; Grover, K. Barriers to clinical research in children with inflammatory bowel disease: The patients' perspective. PLoS ONE 2018, 13, e0206965. [Google Scholar] [CrossRef] [Green Version]
- Wilson, N.O.; Adjei, A.A.; Anderson, W.; Baidoo, S.; Stiles, J.K. Detection of Plasmodium falciparum histidine-rich protein II in saliva of malaria patients. Am. J. Trop. Med. Hyg. 2008, 78, 733–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalantari, S.; Jafari, A.; Moradpoor, R.; Ghasemi, E.; Khalkhal, E. Human Urine Proteomics: Analytical Techniques and Clinical Applications in Renal Diseases. Int. J. Proteom. 2015, 2015, 782798. [Google Scholar] [CrossRef]
- Christensen, E.I.; Gburek, J. Protein reabsorption in renal proximal tubule-function and dysfunction in kidney pathophysiology. Pediatr. Nephrol. 2004, 19, 714–721. [Google Scholar] [CrossRef]
- Zhao, M.; Li, M.; Yang, Y.; Guo, Z.; Sun, Y.; Shao, C.; Li, M.; Sun, W.; Gao, Y. A comprehensive analysis and annotation of human normal urinary proteome. Sci. Rep. 2017, 7, 3024. [Google Scholar] [CrossRef]
- Pieper, R.; Gatlin, C.L.; McGrath, A.M.; Makusky, A.J.; Mondal, M.; Seonarain, M.; Field, E.; Schatz, C.R.; Estock, M.A.; Ahmed, N.; et al. Characterization of the human urinary proteome: A method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics 2004, 4, 1159–1174. [Google Scholar] [CrossRef] [PubMed]
- Alemohammad, M.M.; Foley, T.J.; Cohen, H. Detection of immunoglobulin G antibodies to Helicobacter pylori in urine by an enzyme immunoassay method. J. Clin. Microbiol. 1993, 31, 2174–2177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazquez, S.; Cabezas, S.; Perez, A.B.; Pupo, M.; Ruiz, D.; Calzada, N.; Bernardo, L.; Castro, O.; Gonzalez, D.; Serrano, T.; et al. Kinetics of antibodies in sera, saliva, and urine samples from adult patients with primary or secondary dengue 3 virus infections. Int. J. Infect. Dis. 2007, 11, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, J.; Gali, N.; Blanco, S.; Pedroso, P.; Prat, C.; Matas, L.; Ausina, V. Detection of Streptococcus pneumoniae antigen by a rapid immunochromatographic assay in urine samples. Chest 2001, 119, 243–249. [Google Scholar] [CrossRef]
- Green, C.; Huggett, J.F.; Talbot, E.; Mwaba, P.; Reither, K.; Zumla, A.I. Rapid diagnosis of tuberculosis through the detection of mycobacterial DNA in urine by nucleic acid amplification methods. Lancet Infect. Dis. 2009, 9, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Bryzgunova, O.E.; Skvortsova, T.E.; Kolesnikova, E.V.; Starikov, A.V.; Rykova, E.Y.; Vlassov, V.V.; Laktionov, P.P. Isolation and comparative study of cell-free nucleic acids from human urine. Ann. N. Y. Acad. Sci. 2006, 1075, 334–340. [Google Scholar] [CrossRef]
- Turner, R.J. Mechanisms of fluid secretion by salivary glands. Ann. N. Y. Acad. Sci. 1993, 694, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Katsani, K.R.; Sakellari, D. Saliva proteomics updates in biomedicine. J. Biol. Res. 2019, 26, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteves, C.V.; Campos, W.G.; Souza, M.M.; Lourenço, S.V.; Siqueira, W.L.; Lemos-Júnior, C.A. Diagnostic potential of saliva proteome analysis: A review and guide to clinical practice. Braz. Oral Res. 2019, 33, e043. [Google Scholar] [CrossRef] [Green Version]
- Chiang, S.H.; Tu, M.; Cheng, J.; Wei, F.; Li, F.; Chia, D.; Garner, O.; Chandrasekaran, S.; Bender, R.; Strom, C.M.; et al. Development and validation of a quantitative, non-invasive, highly sensitive and specific, electrochemical assay for anti-SARS-CoV-2 IgG antibodies in saliva. PLoS ONE 2021, 16, e0251342. [Google Scholar] [CrossRef]
- Vohra, P.; Belkhode, V.; Nimonkar, S.; Potdar, S.; Bhanot, R.; Tiwari, R.V.C. Evaluation and diagnostic usefulness of saliva for detection of HIV antibodies: A cross-sectional study. J. Fam. Med. Prim. Care 2020, 9, 2437–2441. [Google Scholar] [CrossRef]
- Cruz, H.M.; de Paula, V.S.; Da Silva, E.F.; Do, O.K.; Milagres, F.A.P.; Cruz, M.S.; Bastos, F.I.; Da Mota, J.C.; Pollo-Flores, P.; Leal, E.; et al. Utility of oral fluid samples for hepatitis B antibody detection in real life conditions. BMC Infect. Dis. 2019, 19, 632. [Google Scholar] [CrossRef] [Green Version]
- Pink, R.; Simek, J.; Vondrakova, J.; Faber, E.; Michl, P.; Pazdera, J.; Indrak, K. Saliva as a diagnostic medium. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub. 2009, 153, 103–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mharakurwa, S.; Simoloka, C.; Thuma, P.E.; Shiff, C.J.; Sullivan, D.J. PCR detection of Plasmodium falciparum in human urine and saliva samples. Malar. J. 2006, 5, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nwakanma, D.C.; Gomez-Escobar, N.; Walther, M.; Crozier, S.; Dubovsky, F.; Malkin, E.; Locke, E.; Conway, D.J. Quantitative detection of Plasmodium falciparum DNA in saliva, blood, and urine. J. Infect. Dis. 2009, 199, 1567–1574. [Google Scholar] [CrossRef] [Green Version]
- Buppan, P.; Putaporntip, C.; Pattanawong, U.; Seethamchai, S.; Jongwutiwes, S. Comparative detection of Plasmodium vivax and Plasmodium falciparum DNA in saliva and urine samples from symptomatic malaria patients in a low endemic area. Malar. J. 2010, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Putaporntip, C.; Buppan, P.; Jongwutiwes, S. Improved performance with saliva and urine as alternative DNA sources for malaria diagnosis by mitochondrial DNA-based PCR assays. Clin. Microbiol. Infect. 2011, 17, 1484–1491. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Singh, D.P.; Gupta, R.; Savargaonkar, D.; Singh, O.P.; Nanda, N.; Bhatt, R.M.; Valecha, N. Comparison of three PCR-based assays for the non-invasive diagnosis of malaria: Detection of Plasmodium parasites in blood and saliva. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1631–1639. [Google Scholar] [CrossRef]
- Ghayour Najafabadi, Z.; Oormazdi, H.; Akhlaghi, L.; Meamar, A.R.; Raeisi, A.; Rampisheh, Z.; Nateghpour, M.; Razmjou, E. Mitochondrial PCR-based malaria detection in saliva and urine of symptomatic patients. Trans. R. Soc. Trop. Med. Hyg. 2014, 108, 358–362. [Google Scholar] [CrossRef]
- Mfuh, K.O.; Tassi Yunga, S.; Esemu, L.F.; Bekindaka, O.N.; Yonga, J.; Djontu, J.C.; Mbakop, C.D.; Taylor, D.W.; Nerurkar, V.R.; Leke, R.G.F. Detection of Plasmodium falciparum DNA in saliva samples stored at room temperature: Potential for a non-invasive saliva-based diagnostic test for malaria. Malar. J. 2017, 16, 434. [Google Scholar] [CrossRef]
- Dagnogo, O.; Ako, A.B.; Dago, N.D.; Coulibaly, B.; Ngazoa-Kakou, S.; Toure, A.O.; Djaman, J.A. Comparative analysis of genomic DNA amplification yield for Plasmodium falciparum extracted from urine, saliva and blood. J. Parasitol. Vector Biol. 2017, 9, 95–105. [Google Scholar]
- Gbotosho, G.O.; Happi, C.T.; Folarin, O.; Keyamo, O.; Sowunmi, A.; Oduola, A.M. Rapid detection of lactate dehydrogenase and genotyping of Plasmodium falciparum in saliva of children with acute uncomplicated malaria. Am. J. Trop. Med. Hyg. 2010, 83, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, Y.M.; Esemu, L.F.; Antallan, J.; Thomas, B.; Tassi Yunga, S.; Obase, B.; Christine, N.; Leke, R.G.F.; Culleton, R.; Mfuh, K.O.; et al. PCR-based detection of Plasmodium falciparum in saliva using mitochondrial cox3 and varATS primers. Trop. Med. Health 2018, 46, 22. [Google Scholar] [CrossRef] [PubMed]
- Kast, K.; Berens-Riha, N.; Zeynudin, A.; Abduselam, N.; Eshetu, T.; Loscher, T.; Wieser, A.; Shock, J.; Pritsch, M. Evaluation of Plasmodium falciparum gametocyte detection in different patient material. Malar. J. 2013, 12, 438. [Google Scholar] [CrossRef] [Green Version]
- Ghayour Najafabadi, Z.; Oormazdi, H.; Akhlaghi, L.; Meamar, A.R.; Nateghpour, M.; Farivar, L.; Razmjou, E. Detection of Plasmodium vivax and Plasmodium falciparum DNA in human saliva and urine: Loop-mediated isothermal amplification for malaria diagnosis. Acta Trop. 2014, 136, 44–49. [Google Scholar] [CrossRef]
- Modak, S.S.; Barber, C.A.; Geva, E.; Abrams, W.R.; Malamud, D.; Ongagna, Y.S. Rapid Point-of-Care Isothermal Amplification Assay for the Detection of Malaria without Nucleic Acid Purification. Infect. Dis. 2016, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Costa, G.L.; Alvarenga, D.A.M.; Aguiar, A.C.C.; Louzada, J.; Pereira, D.B.; De Oliveira, T.F.; Fonseca Junior, A.A.; Carvalho, L.H.; Ferreira Alves de Brito, C.; Nobrega de Sousa, T. Improving the Molecular Diagnosis of Malaria: Droplet Digital PCR-Based Method Using Saliva as a DNA Source. Front. Microbiol. 2022, 13, 882530. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Savargaonkar, D.; Bhatt, R.; Valecha, N. Rapid detection of Plasmodium vivax in saliva and blood using loop mediated isothermal amplification (LAMP) assay. J. Infect. 2013, 67, 245–247. [Google Scholar] [CrossRef]
- Demas, A.; Oberstaller, J.; DeBarry, J.; Lucchi, N.W.; Srinivasamoorthy, G.; Sumari, D.; Kabanywanyi, A.M.; Villegas, L.; Escalante, A.A.; Kachur, S.P.; et al. Applied genomics: Data mining reveals species-specific malaria diagnostic targets more sensitive than 18S rRNA. J. Clin. Microbiol. 2011, 49, 2411–2418. [Google Scholar] [CrossRef] [Green Version]
- Poon, L.L.; Wong, B.W.; Ma, E.H.; Chan, K.H.; Chow, L.M.; Abeyewickreme, W.; Tangpukdee, N.; Yuen, K.Y.; Guan, Y.; Looareesuwan, S.; et al. Sensitive and inexpensive molecular test for falciparum malaria: Detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin. Chem. 2006, 52, 303–306. [Google Scholar] [CrossRef] [Green Version]
- Schoone, G.J.; Oskam, L.; Kroon, N.C.; Schallig, H.D.; Omar, S.A. Detection and quantification of Plasmodium falciparum in blood samples using quantitative nucleic acid sequence-based amplification. J. Clin. Microbiol. 2000, 38, 4072–4075. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.; Wolters, L.; Schoone, G.; Schallig, H.; Sillekens, P.; Hermsen, R.; Sauerwein, R. Real-time nucleic acid sequence-based amplification is more convenient than real-time PCR for quantification of Plasmodium falciparum. J. Clin. Microbiol. 2005, 43, 402–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pritsch, M.; Wieser, A.; Soederstroem, V.; Poluda, D.; Eshetu, T.; Hoelscher, M.; Schubert, S.; Shock, J.; Loescher, T.; Berens-Riha, N. Stability of gametocyte-specific Pfs25-mRNA in dried blood spots on filter paper subjected to different storage conditions. Malar. J. 2012, 11, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowling, M.A.; Shute, G.T. A comparative study of thick and thin blood films in the diagnosis of scanty malaria parasitaemia. Bull. World Health Organ. 1966, 34, 249–267. [Google Scholar] [PubMed]
- Berry, A.; Benoit-Vical, F.; Fabre, R.; Cassaing, S.; Magnaval, J.F. PCR-based methods to the diagnosis of imported malaria. Parasite 2008, 15, 484–488. [Google Scholar] [CrossRef] [Green Version]
- Williams, E.; Bond, K.; Zhang, B.; Putland, M.; Williamson, D.A. Saliva as a Noninvasive Specimen for Detection of SARS-CoV-2. J. Clin. Microbiol. 2020, 58, e00776-20. [Google Scholar] [CrossRef] [Green Version]
- Granade, T.C.; Phillips, S.K.; Parekh, B.; Gomez, P.; Kitson-Piggott, W.; Oleander, H.; Mahabir, B.; Charles, W.; Lee-Thomas, S. Detection of antibodies to human immunodeficiency virus type 1 in oral fluids: A large-scale evaluation of immunoassay performance. Clin. Diagn. Lab. Immunol. 1998, 5, 171–175. [Google Scholar] [CrossRef] [Green Version]
- Nokes, D.J.; Enquselassie, F.; Nigatu, W.; Vyse, A.J.; Cohen, B.J.; Brown, D.W.; Cutts, F.T. Has oral fluid the potential to replace serum for the evaluation of population immunity levels? A study of measles, rubella and hepatitis B in rural Ethiopia. Bull. World Health Organ. 2001, 79, 588–595. [Google Scholar]
- Thieme, T.; Piacentini, S.; Davidson, S.; Steingart, K. Determination of measles, mumps, and rubella immunization status using oral fluid samples. JAMA 1994, 272, 219–221. [Google Scholar] [CrossRef]
- Oguonu, T.; Shu, E.; Ezeonwu, B.U.; Lige, B.; Derrick, A.; Umeh, R.E.; Agbo, E. The performance evaluation of a urine malaria test (UMT) kit for the diagnosis of malaria in individuals with fever in south-east Nigeria: Cross-sectional analytical study. Malar. J. 2014, 13, 403. [Google Scholar] [CrossRef] [Green Version]
- Genton, B.; Paget, S.; Beck, H.P.; Gibson, N.; Alpers, M.P.; Hii, J. Diagnosis of Plasmodium falciparum infection using ParaSight(R)-F test in blood and urine of Papua New Guinean children. Southeast Asian J. Trop. Med. Public Health 1998, 29, 35–40. [Google Scholar] [PubMed]
- Estevez, P.T.; Satoguina, J.; Nwakanma, D.C.; West, S.; Conway, D.J.; Drakeley, C.J. Human saliva as a source of anti-malarial antibodies to examine population exposure to Plasmodium falciparum. Malar. J. 2011, 10, 104. [Google Scholar] [CrossRef] [PubMed]
- Oyibo, W.A.; Ezeigwe, N.; Ntadom, G.; Oladosu, O.O.; Rainwater-Loveth, K.; O´Meara, W.; Okpokoro, E.; Brieger, W. Multicenter pivotal clinical trial of urine malaria test for rapid diagnosis of plasmodium falciparum Malaria. J. Clin. Microbiol. 2017, 55, 253–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samal, A.G.; Behera, P.K.; Mohanty, A.K.; Satpathi, S.; Kumar, A.; Panda, R.R.; Minz, A.M.; Mohanty, S.; Samal, A.; Van Der Pluijm, R.W. The Sensitivity and specificity of a urine based rapid diagnostic test for the diagnosis of Plasmodium Falciparum in a malaria endemic area in odisha, india. Pathog. Glob. Health 2017, 111, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Abiodun, A.; Olugbenga, A.; Kazeem, A.; Olusola, G.G. Detection of malaria parasite protein in urine of patients with acute uncomplicated malaria using rapid diagnostic test kits. J. Microbiol. Infect. Dis. 2022, 12, 97–107. [Google Scholar] [CrossRef]
- Oyeniyi, J.A.; Bello, I.S.; Oyegbade, O.O.; Ibrahim, A.O.; Okunromade, O.F.; Fakoya, O.O. Agreement among rapid diagnostic tests, urine malaria tests, and microscopy in malaria diagnosis of adult patients in southwestern Nigeria. J. Int. Med. Res. 2022, 50, 3000605221122740. [Google Scholar] [CrossRef] [PubMed]
- Tao, D.; McGill, B.; Hamerly, T.; Kobayashi, T.; Khare, P.; Dziedzic, A.; Leski, T.; Holtz, A.; Shull, B.; Jedlicka, A.E.; et al. A Saliva-based rapid test to quantify the infectious subclinical malaria parasite reservoir. Sci. Transl. Med. 2019, 11, eaan4479. [Google Scholar] [CrossRef] [Green Version]
- Aninagyei, E.; Abraham, J.; Atiiga, P.; Antwi, S.D.; Bamfo, S.; Acheampong, D.O. Evaluating the potential of using urine and saliva specimens for malaria diagnosis in suspected patients in Ghana. Malar. J. 2020, 19, 349. [Google Scholar] [CrossRef]
- Rodriguez-del Valle, M.; Quakyi, I.A.; Amuesi, J.; Quaye, J.T.; Nkrumah, F.K.; Taylor, D.W. Detection of antigens and antibodies in the urine of humans with Plasmodium falciparum malaria. J. Clin. Microbiol. 1991, 29, 1236–1242. [Google Scholar] [CrossRef] [Green Version]
- Juul, S.; Nielsen, C.J.; Labouriau, R.; Roy, A.; Tesauro, C.; Jensen, P.W.; Harmsen, C.; Kristoffersen, E.L.; Chiu, Y.L.; Frohlich, R.; et al. Droplet microfluidics platform for highly sensitive and quantitative detection of malaria-causing Plasmodium parasites based on enzyme activity measurement. ACS Nano 2012, 6, 10676–10683. [Google Scholar] [CrossRef] [Green Version]
- Lizardi, P.M.; Huang, X.; Zhu, Z.; Bray-Ward, P.; Thomas, D.C.; Ward, D.C. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat. Genet. 1998, 19, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Nallur, G.; Luo, C.; Fang, L.; Cooley, S.; Dave, V.; Lambert, J.; Kukanskis, K.; Kingsmore, S.; Lasken, R.; Schweitzer, B. Signal amplification by rolling circle amplification on DNA microarrays. Nucleic. Acids. Res. 2001, 29, E118. [Google Scholar] [CrossRef] [PubMed]
- Hede, M.S.; Fjelstrup, S.; Lotsch, F.; Zoleko, R.M.; Klicpera, A.; Groger, M.; Mischlinger, J.; Endame, L.; Veletzky, L.; Neher, R.; et al. Detection of the Malaria causing Plasmodium Parasite in Saliva from Infected Patients using Topoisomerase I Activity as a Biomarker. Sci. Rep. 2018, 8, 4122. [Google Scholar] [CrossRef] [Green Version]
- Soraya, G.V.; Abeyrathne, C.D.; Buffet, C.; Huynh, D.H.; Uddin, S.M.; Chan, J.; Skafidas, E.; Kwan, P.; Rogerson, S.J. Ultrasensitive and label-free biosensor for the detection of Plasmodium falciparum histidine-rich protein II in saliva. Sci. Rep. 2019, 9, 17495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, G.; Lillehoj, P.B. An ultrasensitive enzyme-free electrochemical immunosensor based on redox cycling amplification using methylene blue. Analyst 2017, 142, 3492–3499. [Google Scholar] [CrossRef]
- Cunningham, J.; Jones, S.; Gatton, M.L.; Barnwell, J.W.; Cheng, Q.; Chiodini, P.L.; Glenn, J.; Incardona, S.; Kosack, C.; Luchavez, J.; et al. A review of the WHO malaria rapid diagnostic test product testing programme (2008–2018): Performance, procurement and policy. Malar. J. 2019, 18, 387. [Google Scholar] [CrossRef] [Green Version]
- Gatton, M.L.; Rees-Channer, R.R.; Glenn, J.; Barnwell, J.W.; Cheng, Q.; Chiodini, P.L.; Incardona, S.; Gonzalez, I.J.; Cunningham, J. Pan-Plasmodium band sensitivity for Plasmodium falciparum detection in combination malaria rapid diagnostic tests and implications for clinical management. Malar. J. 2015, 14, 115. [Google Scholar] [CrossRef] [Green Version]
- Ho, M.F.; Baker, J.; Lee, N.; Luchavez, J.; Ariey, F.; Nhem, S.; Oyibo, W.; Bell, D.; Gonzalez, I.; Chiodini, P.; et al. Circulating antibodies against Plasmodium falciparum histidine-rich proteins 2 interfere with antigen detection by rapid diagnostic tests. Malar. J. 2014, 13, 480. [Google Scholar] [CrossRef] [Green Version]
- Markakpo, U.S.; Bosompem, K.M.; Dzodzomenyo, M.; Danso-Appiah, A.; Essuman, E.E.; Anyan, W.K.; Suzuki, M.; Stephens, J.K.; Anim-Baidoo, I.; Asmah, R.H.; et al. Minimising invasiveness in diagnostics: Developing a rapid urine-based monoclonal antibody dipstick test for malaria. Trop. Med. Int. Health 2016, 21, 1263–1271. [Google Scholar] [CrossRef]
- Ohrt, C.; Sutamihardja, M.A.; Tang, D.; Kain, K.C. Impact of microscopy error on estimates of protective efficacy in malaria-prevention trials. J. Infect. Dis. 2002, 186, 540–546. [Google Scholar] [CrossRef]
Nucleic-Acid Method (Target Genes) | Plasmodium Species Detected | Total Number of Saliva or Urine (Number of Microscopy-Positive Samples) | Geometric Mean Parasite Density in Blood (Range); Parasites/μL | Sensitivity | Specificity | Detection Limit | Correlation between Positive Detection Rates and Parasite Density | Reference |
---|---|---|---|---|---|---|---|---|
Nested PCR | Pf | 51 (47) | 775 (37 to 123,026) | NA | NA | NA | NA | [24] |
(MSP2, DHFR) | ||||||||
Nested PCR | Pf | 386 (49, 50) * | 1785 | Pf m | Pf m | NA | NA | [25] |
(18S rRNA) | Saliva: 73% | Saliva: 97% | ||||||
Urine: 32% | Urine: 98% | |||||||
Nested PCR | Pf, Pv | 120 | Overall: 13,920 | Pf m | Pf b | NA | Pf | [26] |
(18S rRNA) | (Pf: 50; | (35 to 311,395) § | Saliva: | Saliva: | Saliva (r = 0.797; | |||
Pv: 46; | Pf: 2761 (35 to 217,805) § | 74.1% | 100% | p = 0.055) t | ||||
Pf + Pv: 4) | Pv: 1248 (35 to 44,520) § | Urine: | Urine: | |||||
44.4% | 100% | |||||||
Pv m | Pvb | |||||||
Saliva: 84% | Saliva: | |||||||
Urine: 34% | 100% | |||||||
Urine: | ||||||||
100% | ||||||||
Nested PCR | Pf, Pv, Pm | 157 | Pf: 8948 | Pf b | Pf b | NA | NA | [27] |
(18S rRNA) | (Pf: 60; | (35 to 217,805) | Saliva: | Saliva: | ||||
Pv: 50; | Pv: 3888 (35 to 44,520) | 52.8% | 100% | |||||
Pm: 2; | Urine: | Urine: | ||||||
Pf + Pv: 5) | 25.8% | 100% | ||||||
Pvb | Pvb | |||||||
Saliva: | Saliva: | |||||||
61%b | 100% | |||||||
Urine: | Urine: | |||||||
14.3% b | 98.8% | |||||||
(Mitochondrial | Pf b | Pf b | 10 | Pf | [27] | |||
cytochrome b gene) | Saliva: | Saliva: | copies/μL | Urine (r = 0.95; | ||||
74.2% | 100% | (for each | p = 0.014) | |||||
Urine: | Urine: | species) | ||||||
55.1% | 98.7% | |||||||
Pvb | Pvb | |||||||
Saliva: | Saliva: | |||||||
79.2% | 100% | |||||||
Urine: | Urine: | |||||||
53.3% | 97.5% | |||||||
Nested PCR | Pf, Pv | 223 | Pf: 21,850 (200 to 496,000) | Overall m | Pfm | NA | No | [28] |
(18S rRNA) | (Pf: 7; | Pv: 4941 (320 to 61,600) | Saliva: | Saliva: | ||||
Pv: 88) | 87.36% | 100% | ||||||
Pfm | Pvm | |||||||
Saliva: | Saliva: | |||||||
100% | 98.46% | |||||||
Pvm | ||||||||
Saliva: | ||||||||
86.36% | ||||||||
Singleplex PCR | Overall m | Pfm | ||||||
(Species-specific | Saliva: 81% | Saliva: | NA | Pv | ||||
consensus repeat | Pf m | 100% | Saliva (r = 0.731, | [28] | ||||
sequences) | Saliva: | Pvm | p = 0.039) | |||||
100% | Saliva: | |||||||
Pvm | 98.46% | |||||||
Saliva: | ||||||||
79.55% | ||||||||
Multiplex PCR | Overall m | Pfm | NA | Pv | [28] | |||
(Species-specific | Saliva: | Saliva: | Saliva (r = 0.774; | |||||
consensus repeat | 70.5% | 100% | p = 0.024) | |||||
sequences) | Pfm | Pvm | ||||||
Saliva: | Saliva: | |||||||
71.43% | 99.23% | |||||||
Pvm | ||||||||
Saliva: | ||||||||
70.45% | ||||||||
Nested PCR | Pf, Pv | 99 | Saliva: | Saliva: | NA | No | [29] | |
(Mitochondrial | (Pf: 14; | 91% b | 97% b | |||||
cytochrome b gene) | Pv:46) | Urine: | Urine: | |||||
70% b | 97% b | |||||||
Nested PCR | Pf | 222 (53) | NA | Saliva: | Saliva: | NA | No | [30] |
(18S rRNA) | 95% m; | 93% m; | ||||||
82% b | 99% b | |||||||
Nested PCR | Pf | (94) | 24,682 (1200 to 200,000) | Saliva: | Saliva: | NA | NA | [31] |
(PfK13 propeller) | 46% b | 20% b | ||||||
Urine: 45% b | Urine: 50% b | |||||||
(Pfdhfr-ts) | Saliva: | Saliva: | NA | NA | [31] | |||
64% b Urine: 38% b | 50% b Urine: 50% b | |||||||
(Pfcrt) | Saliva: | Saliva: | NA | NA | [31] | |||
5% b Urine: 0% b | 50% b Urine: 1% b | |||||||
Nested PCR | Pf | 37(33) | 59,179 (2463–551,614) | Saliva: | Saliva: | NA | NA | [32] |
(Pfcrt) | 91% m | 50% m | ||||||
Nested PCR | Pf | 60 (60) | NA | Saliva: | NA | 1 × 10−5 | NA | [33] |
(18S rRNA) | 62% s | ng/μL | ||||||
Nested PCR | Saliva: | NA | 4 × 10−7 | NA | [33] | |||
(Mitochondrial | 77% s | ng/μL | ||||||
cytochrome c | ||||||||
oxidase III gene) | ||||||||
Standard PCR | Saliva: | NA | 2 × 10−6 | NA | [33] | |||
(varATS) | 68% s | ng/μL | ||||||
LAMP | Pv | 126 | 4916 (360 to 61,600) § | Saliva: | Saliva: | NA | NA | [34] |
(18S rRNA) | (Pv: 82) | 76.3% m | 94.1% m | |||||
Nested | Pf, Pv | Saliva: 103 | Overall: 3970.7 (120– | Overall b | Overall b | 3.6 | No | [35] |
(18S rRNA) | Urine: 99 | 94,117) | Saliva: | Saliva: | parasites | |||
Pf: 5020.8 (120–85,925) | 89.4% | 97.3% | /μL | |||||
Pv: 3672.0 (135–94,117) | Urine: | Urine: | ||||||
71% Overall m Saliva: 92.2% Urine: 73.3% | 100% Overall m Saliva: 97.4% Urine: 100% | |||||||
LAMP | Overall b | Overall b | 35.9 | Considerable | [35] | |||
(18S rRNA) | Saliva: 47% | Saliva: | parasites | association | ||||
Urine: 29% | 100% Urine: 100% | /μL | ||||||
Overall m Saliva: 48.5% Urine: 30% | Overall m Saliva: 100% Urine: 100% | |||||||
LAMP | Pf | 1 | Pf-spiked saliva: 4255 | NA | NA | 1.5 | NA | [36] |
(Mitochondrial | parasites | |||||||
cytochrome oxidase subunit 1 gene) | /μL | |||||||
Quantitative PCR | Pf, Pv | 146 (146) | NA | Saliva | Saliva | NA | NA | [37] |
(Pf346 and Pvr47) | Overall: | Overall: | ||||||
77% q Pf: 82% q Pv: 71% q | 55% q | |||||||
Droplet digital PCR | Pf | NA | Saliva | Saliva | Pf: | NA | [37] | |
(Pf346 and Pvr47) | Overall: | Overall: | 0.1–0.9 | |||||
77%d Pf: 82% d Pv: 71% d | 100% d | parasites /μL Pv: 0.9–2.7 parasites /μL | ||||||
QT-NASBA | Pf | 15 (15) | 9320 | Saliva: | Saliva: | 143 RNA | NA | [38] |
(Pfs16-mRNA) | 20% Urine: 13.3% | 100% Urine: 100% | copy numbers | |||||
(Pfs25-mRNA) | Saliva: 0% Urine: 0% | Saliva: 0% Urine: 0% | 1710 RNA copy numbers | NA | [38] | |||
(18S rRNA) | Saliva: 66.7% Urine: 80% | Saliva: 100% Urine: 100% | NA | NA | [38] |
Antigen-Based Diagnostic Methods (Target Antigen) | Plasmodium Species Detected | Total Number of Saliva or Urine (Number of Microscopy-Positive Samples) | Geometric Mean Parasite Density in Blood (Range); Parasites/μL | Sensitivity | Specificity | Detection Limit | Correlation between Positive Detection Rates and Parasite Density | Reference |
---|---|---|---|---|---|---|---|---|
ParaSightR-F Test Dipstick (PfHRP-2) | Pf | 112 (Pf: 73) | NA | Urine: 80.8% m 81.8% b | Urine: 25.6% m 26.1% b | NA | NA | [51] |
Malaria Antigen ELISA kit (Cellabs) (PfHRP-2) | Pf | 40 (30) | NA | Saliva: 43% m | Saliva: 100% m | 0.001% | NA | [7] |
Optimal-IT dipsticks (pLDH) | Pf | 144 (130) | 59,179 (2463–551,614) | Saliva: 77.6% m | Saliva: 100% m | NA | NA | [32] |
ELISA (IgG to AMA-1) | Pf | Tanzania: 53 The Gambia: 200 | NA | Tanzania Saliva (Oracol): 76.7% p Saliva (Orasure): 64% p The Gambia Saliva: 68% p | Tanzania Saliva (Oracol): 100% p Saliva (Orasure): 92.9% p The Gambia Saliva: 91% p | NA | Oracol-finger-prick: r2 = 0.89; p = < 0.001 Orasure-fingerprick: r2 = 0.93; p = < 0.001 | [52] |
(IgG to MSP-119) | Tanzania Saliva (Oracol): 46.7% p Saliva (Orasure): 66.7% p The Gambia Saliva: 53% p | Tanzania Saliva (Oracol): 97.4% p Saliva (Orasure): 90% p The Gambia Saliva: 94.2% p | NA | Oracol-finger-prick: r2 = 0.75; p = < 0.001 Orasure-fingerprick: r2 = 0.94; p = < 0.001 | [52] | |||
UMT dipstick (PfHRP-2) | Pf | 195 (80) | 62,778.9 (60 to 792,600) | Urine: 83.75% m | Urine: 83.48%m | 120 parasites /μL | NA | [50] |
UMT dipstick (PfHRP-2) | Pf | 1691 (341) | NA | Urine: 79% m | Urine: 89% m | NA | Yes r2 and p value: NA | [53] |
BinaxNOW Malaria Test kit (PfHRP-2) | Pf | 111 (60) | NA | Urine: 86.67% m | Urine: 94.12% m | NA | NA | [54] |
CareStartTM Malaria kit (Accessbio, USA) (PfHRP-2) | Pf | 125(100) | 3575 (24 to 471,556) | Urine: 67.1% m | Urine: 95.2% m | NA | NA | [55] |
Global Devices Malaria (USA) (PfHRP-2) | Urine: 80% m | Urine: 100% m | NA | NA | [55] | |||
Malaria kit (Accessbio, USA) and Global Devices Malaria (USA) (PfHRP-2) | Urine: 71% m | Urine: 96% m | NA | No | [55] | |||
UMT dipstick (PfHRP-2) | Pf | 384 (224) | (40 to 38,280) | Urine: 55.4% m | Urine: 47.5% m | NA | NA | [56] |
LFIA (PSSP17) | Pf | 364 (364) | NA | Saliva: 100% (gametocyte) m; 92% (trophozoite) m; 92% *; 91% # | NA | 0.7 gametocytes /μL | NA | [57] |
SD Bioline RDT kit (PfHRP-2 and pLDH) | Pf | 706 (312) | NA | With blood contamination Urine: 35.2% p Saliva: 57% p Without blood contamination Urine: 7.6% p Saliva: 13.3% p | With blood contamination Urine: 100% p Saliva: 100% p Without blood contamination Urine: 100% p Saliva: 100% p | Urine: 63,150 parasites/μL Saliva: 57,335 parasites/μL | Urine: r = 0.91, p = 0.004 Saliva: r = 0.95, p = 0.001 | [58] |
SD Bioline RDT kit (PfHRP-2 & pLDH) | Pf | 301 (84) | 849 (105–7200) | Saliva: 74.5% b 75% m Urine: 70.7% b 67.1% m | Saliva: 93.1% b 88.9% m Urine: 81.8% b 77.1% m | NA | NA | [4] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, H.C.; Chua, K.H. Urine and Saliva: Relevant Specimens for Malaria Diagnosis? Diagnostics 2022, 12, 2989. https://doi.org/10.3390/diagnostics12122989
Chai HC, Chua KH. Urine and Saliva: Relevant Specimens for Malaria Diagnosis? Diagnostics. 2022; 12(12):2989. https://doi.org/10.3390/diagnostics12122989
Chicago/Turabian StyleChai, Hwa Chia, and Kek Heng Chua. 2022. "Urine and Saliva: Relevant Specimens for Malaria Diagnosis?" Diagnostics 12, no. 12: 2989. https://doi.org/10.3390/diagnostics12122989
APA StyleChai, H. C., & Chua, K. H. (2022). Urine and Saliva: Relevant Specimens for Malaria Diagnosis? Diagnostics, 12(12), 2989. https://doi.org/10.3390/diagnostics12122989