Venous Thromboembolism in Cancer Patients Undergoing Chemotherapy: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
- (1)
- what is the prevalence of VTE in cancer patients receiving chemotherapy?
- (2)
- what is the prevalence of VTE stratified by cancer phenotype in patients undergoing chemotherapy?
2. Materials and Methods
2.1. Literature Search: Identification and Selection of Studies
2.2. Inclusion and Exclusion Criteria
3. Data Extraction
Quality Assessment of Included Studies
4. Statistical Analysis
5. Results
5.1. Description of Included Studies
5.2. Overall Prevalence of VTE in Cancer Patients Undergoing Chemotherapy
5.3. Prevalence of VTE in Cancer Patients Stratified by Cancer Phenotype
5.3.1. Prevalence of VTE in Bladder Cancer Patients
5.3.2. Prevalence of VTE in Blood Cancer Patients
5.3.3. Prevalence of VTE in Brain Cancer Patients
5.3.4. Prevalence of VTE in Breast Cancer Patients
5.3.5. Prevalence of VTE in Cervical Cancer Patients
5.3.6. Prevalence of VTE in Colorectal Cancer Patients
5.3.7. Prevalence of VTE in Endometrial Cancer Patients
5.3.8. Prevalence of VTE in Gastric Cancer Patients
5.3.9. Prevalence of VTE in Germ Cell Cancer Patients
5.3.10. Prevalence of VTE in Head and Neck Cancer Patients
5.3.11. Prevalence of VTE in Liver Cancer Patients
5.3.12. Prevalence of VTE in Lung Cancer Patients
5.3.13. Prevalence of VTE in Lymph Cancer Patients
5.3.14. Prevalence of VTE in Mesothelial Cancer Patients
5.3.15. Prevalence of VTE in Neuroendocrine Cancer Patients
5.3.16. Prevalence of VTE in Oesophageal Cancer Patients
5.3.17. Prevalence of VTE in Ovarian Cancer Patients
5.3.18. Prevalence of VTE in Pancreatic Cancer Patients
5.3.19. Prevalence of VTE in Prostate Cancer Patients
5.3.20. Prevalence of VTE in Renal Cancer Patients
5.3.21. Prevalence of VTE in Skin Cancer Patients
6. Discussion
6.1. Pathophysiology of VTE in Cancer Patients
6.2. Chemotherapy and VTE
7. Limitations
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Nisio, M.; van Es, N.; Büller, H.R. Deep vein thrombosis and pulmonary embolism. Lancet 2016, 388, 3060–3073. [Google Scholar] [CrossRef] [PubMed]
- Gregson, J.; Kaptoge, S.; Bolton, T.; Pennells, L.; Willeit, P.; Burgess, S.; Bell, S.; Sweeting, M.; Rimm, E.B.; Kabrhel, C.; et al. Cardiovascular Risk Factors Associated With Venous Thromboembolism. JAMA Cardiol. 2019, 4, 163–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldhaber, S.Z.; Bounameaux, H. Pulmonary embolism and deep vein thrombosis. Lancet 2012, 379, 1835–1846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinde, L.B.; Småbrekke, B.; Mathiesen, E.B.; Løchen, M.L.; Njølstad, I.; Hald, E.M.; Wilsgaard, T.; Brækkan, S.K.; Hansen, J.B. Ischemic Stroke and Risk of Venous Thromboembolism in the General Population: The Tromsø Study. J. Am. Heart Assoc. 2016, 5, e004311. [Google Scholar] [CrossRef] [Green Version]
- Lowe, G.D. Common risk factors for both arterial and venous thrombosis. Br. J. Haematol. 2008, 140, 488–495. [Google Scholar] [CrossRef]
- Lindström, S.; Germain, M.; Crous-Bou, M.; Smith, E.N.; Morange, P.E.; van Hylckama Vlieg, A.; de Haan, H.G.; Chasman, D.; Ridker, P.; Brody, J.; et al. Assessing the causal relationship between obesity and venous thromboembolism through a Mendelian Randomization study. Hum. Genet. 2017, 136, 897–902. [Google Scholar] [CrossRef]
- World Health Organization. Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 25 August 2022).
- Tran, K.B.; Lang, J.J.; Compton, K.; Xu, R.; Acheson, A.R.; Henrikson, H.J.; Kocarnik, J.M.; Penberthy, L.; Aali, A.; Abbas, Q.; et al. The global burden of cancer attributable to risk factors, 2010–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 563–591. [Google Scholar] [CrossRef] [PubMed]
- Sandén, P.; Svensson, P.J.; Själander, A. Venous thromboembolism and cancer risk. J. Thromb Thrombolysis 2017, 43, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Heit, J.A.; O’Fallon, W.M.; Petterson, T.M.; Lohse, C.M.; Silverstein, M.D.; Mohr, D.N.; Melton, L.J., 3rd. Relative impact of risk factors for deep vein thrombosis and pulmonary embolism: A population-based study. Arch. Intern. Med. 2002, 162, 1245–1248. [Google Scholar] [CrossRef] [Green Version]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Lyman, G.H. Risk factors for chemotherapy-associated venous thromboembolism in a prospective observational study. Cancer 2005, 104, 2822–2829. [Google Scholar] [CrossRef]
- Mulder, F.I.; Horváth-Puhó, E.; van Es, N.; van Laarhoven, H.W.M.; Pedersen, L.; Moik, F.; Ay, C.; Büller, H.R.; Sørensen, H.T. Venous thromboembolism in cancer patients: A population-based cohort study. Blood 2021, 137, 1959–1969. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, B.; Skrickova, J.; Merta, Z.; Dusek, L.; Jarkovsky, J. The incidence and predictors of thromboembolic events in patients with lung cancer. Sci. World J. 2014, 2014, 125706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, U.T.; Walker, A.J.; Baig, S.; Card, T.R.; Kirwan, C.C.; Grainge, M.J. Venous thromboembolism and mortality in breast cancer: Cohort study with systematic review and meta-analysis. BMC Cancer 2017, 17, 747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hohaus, S.; Bartolomei, F.; Cuccaro, A.; Maiolo, E.; Alma, E.; D’Alò, F.; Bellesi, S.; Rossi, E.; De Stefano, V. Venous Thromboembolism in Lymphoma: Risk Stratification and Antithrombotic Prophylaxis. Cancers 2020, 12, 1291. [Google Scholar] [CrossRef] [PubMed]
- Thaler, J.; Ay, C.; Mackman, N.; Bertina, R.M.; Kaider, A.; Marosi, C.; Key, N.S.; Barcel, D.A.; Scheithauer, W.; Kornek, G.; et al. Microparticle-associated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients. J. Thromb. Haemost. 2012, 10, 1363–1370. [Google Scholar] [CrossRef]
- Londero, A.P.; Bertozzi, S.; Cedolini, C.; Neri, S.; Bulfoni, M.; Orsaria, M.; Mariuzzi, L.; Uzzau, A.; Risaliti, A.; Barillari, G. Incidence and Risk Factors for Venous Thromboembolism in Female Patients Undergoing Breast Surgery. Cancers 2022, 14, 988. [Google Scholar] [CrossRef]
- Moore, R.A.; Adel, N.; Riedel, E.; Bhutani, M.; Feldman, D.R.; Tabbara, N.E.; Soff, G.; Parameswaran, R.; Hassoun, H. High incidence of thromboembolic events in patients treated with cisplatin-based chemotherapy: A large retrospective analysis. J. Clin. Oncol. 2011, 29, 3466–3473. [Google Scholar] [CrossRef]
- Lyman, G.H.; Carrier, M.; Ay, C.; Di Nisio, M.; Hicks, L.K.; Khorana, A.A.; Leavitt, A.D.; Lee, A.Y.Y.; Macbeth, F.; Morgan, R.L.; et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: Prevention and treatment in patients with cancer. Blood Adv. 2021, 5, 927–974. [Google Scholar] [CrossRef]
- Carrier, M.; Abou-Nassar, K.; Mallick, R.; Tagalakis, V.; Shivakumar, S.; Schattner, A.; Kuruvilla, P.; Hill, D.; Spadafora, S.; Marquis, K.; et al. Apixaban to Prevent Venous Thromboembolism in Patients with Cancer. N. Engl. J. Med. 2018, 380, 711–719. [Google Scholar] [CrossRef]
- Khorana, A.A.; Soff, G.A.; Kakkar, A.K.; Vadhan-Raj, S.; Riess, H.; Wun, T.; Streiff, M.B.; Garcia, D.A.; Liebman, H.A.; Belani, C.P.; et al. Rivaroxaban for Thromboprophylaxis in High-Risk Ambulatory Patients with Cancer. N. Engl. J. Med. 2019, 380, 720–728. [Google Scholar] [CrossRef]
- D’Ambrosio, L.; Aglietta, M.; Grignani, G. Preventing Venous Thromboembolism in Patients with Cancer. N. Engl. J. Med. 2019, 380, 2180–2181. [Google Scholar]
- Brenner, B.; Hull, R.; Arya, R.; Beyer-Westendorf, J.; Douketis, J.; Elalamy, I.; Imberti, D.; Zhai, Z. Evaluation of unmet clinical needs in prophylaxis and treatment of venous thromboembolism in high-risk patient groups: Cancer and critically ill. Thromb. J. 2019, 17, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suh, J.; Desai, A.; Desai, A.; Cruz, J.D.; Mariampillai, A.; Hindenburg, A. Adherence to thromboprophylaxis guidelines in elderly patients with hospital acquired venous thromboembolism: A case control study. J. Thromb. Thrombolysis 2017, 43, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Oremus, M.; Wolfson, C.; Perrault, A.; Demers, L.; Momoli, F.; Moride, Y. Interrater reliability of the modified Jadad quality scale for systematic reviews of Alzheimer’s disease drug trials. Dement. Geriatr. Cogn. Disord. 2001, 12, 232–236. [Google Scholar] [CrossRef]
- Katyal, A.; Calic, Z.; Killingsworth, M.; Bhaskar, S.M.M. Diagnostic and prognostic utility of computed tomography perfusion imaging in posterior circulation acute ischemic stroke: A systematic review and meta-analysis. Eur. J. Neurol. 2021, 28, 2657–2668. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.Z.; Baskar, P.S.; Bhaskar, S. Effect of prehospital workflow optimization on treatment delays and clinical outcomes in acute ischemic stroke: A systematic review and meta-analysis. Acad. Emerg. Med. 2021, 28, 781–801. [Google Scholar] [CrossRef] [PubMed]
- Bradley, S.A.; Banach, M.; Alvarado, N.; Smokovski, I.; Bhaskar, S.M.M. Prevalence and impact of diabetes in hospitalized COVID-19 patients: A systematic review and meta-analysis. J. Diabetes 2022, 14, 144–157. [Google Scholar] [CrossRef]
- Affronti, M.L.; Jackman, J.G.; McSherry, F.; Herndon, J.E., 2nd; Massey, E.C., Jr.; Lipp, E.; Desjardins, A.; Friedman, H.S.; Vlahovic, G.; Vredenburgh, J.; et al. Phase II Study to Evaluate the Efficacy and Safety of Rilotumumab and Bevacizumab in Subjects with Recurrent Malignant Glioma. Oncologist 2018, 23, 889-e898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, B.M.; Wang, M.; Yung, W.K.; Fine, H.A.; Donahue, B.A.; Tremont, I.W.; Richards, R.S.; Kerlin, K.J.; Hartford, A.C.; Curran, W.J.; et al. A phase II study of conventional radiation therapy and thalidomide for supratentorial, newly-diagnosed glioblastoma (RTOG 9806). J. NeuroOncol. 2013, 111, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, E.A.; Brady, W.E.; Walker, J.L.; Rotmensch, J.; Zhou, X.C.; Kendrick, J.E.; Yamada, S.D.; Schilder, J.M.; Cohn, D.E.; Harrison, C.R.; et al. Phase II trial of combination bevacizumab and temsirolimus in the treatment of recurrent or persistent endometrial carcinoma: A Gynecologic Oncology Group study. Gynecol. Oncol. 2013, 129, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Assenat, E.; de la Fouchardière, C.; Portales, F.; Ychou, M.; Debourdeau, A.; Desseigne, F.; Iltache, S.; Fiess, C.; Mollevi, C.; Mazard, T. Sequential first-line treatment with nab-paclitaxel/gemcitabine and FOLFIRINOX in metastatic pancreatic adenocarcinoma: GABRINOX phase Ib-II controlled clinical trial. ESMO Open 2021, 6, 100318. [Google Scholar] [CrossRef] [PubMed]
- Assenat, E.; Mineur, L.; Mollevi, C.; Lopez-Crapez, E.; Lombard-Bohas, C.; Samalin, E.; Portales, F.; Walter, T.; de Forges, H.; Dupuy, M.; et al. Phase II study evaluating the association of gemcitabine, trastuzumab and erlotinib as first-line treatment in patients with metastatic pancreatic adenocarcinoma (GATE 1). Int. J. Cancer 2021, 148, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Zhang, D.S.; Wu, W.J.; Ren, C.; Wang, D.S.; Wang, F.; Qiu, M.Z.; Xu, R.H. Clinical outcomes of Chinese patients with metastatic colorectal cancer receiving first-line bevacizumab-containing treatment. Med. Oncol. 2015, 32, 469. [Google Scholar] [CrossRef]
- Balar, A.V.; Apolo, A.B.; Ostrovnaya, I.; Mironov, S.; Iasonos, A.; Trout, A.; Regazzi, A.M.; Garcia-Grossman, I.R.; Gallagher, D.J.; Milowsky, M.I.; et al. Phase II study of gemcitabine, carboplatin, and bevacizumab in patients with advanced unresectable or metastatic urothelial cancer. J. Clin. Oncol. 2013, 31, 724–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basso, U.; Roma, A.; Brunello, A.; Falci, C.; Fiduccia, P.; Banzato, A.; Bononi, A.; Gusella, M.; Vamvakas, L.; Zagonel, V.; et al. Bi-weekly liposomal doxorubicin for advanced breast cancer in elderly women (≥70 years). J. Geriatr. Oncol. 2013, 4, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Bear, H.D.; Tang, G.; Rastogi, P.; Geyer, C.E., Jr.; Liu, Q.; Robidoux, A.; Baez-Diaz, L.; Brufsky, A.M.; Mehta, R.S.; Fehrenbacher, L.; et al. Neoadjuvant plus adjuvant bevacizumab in early breast cancer (NSABP B-40 [NRG Oncology]): Secondary outcomes of a phase 3, randomised controlled trial. Lancet Oncol. 2015, 16, 1037–1048. [Google Scholar] [CrossRef] [Green Version]
- Buxó, E.; Sosa, A.; Reig, O.; Victoria, I.; Caballero, M.; Grau, J.J.; Garcia-Morillo, M. Intravenous 5-Fluorouracil in Patients With Advanced Squamous Cell Carcinoma: A Retrospective Study. Ann. Otol. Rhinol. Laryngol. 2018, 127, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Campbell, N.P.; Kunnavakkam, R.; Leighl, N.; Vincent, M.D.; Gandara, D.R.; Koczywas, M.; Gitlitz, B.J.; Agamah, E.; Thomas, S.P.; Stadler, W.M.; et al. Cediranib in patients with malignant mesothelioma: A phase II trial of the University of Chicago Phase II Consortium. Lung Cancer 2012, 78, 76–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chekerov, R.; Hilpert, F.; Mahner, S.; El-Balat, A.; Harter, P.; De Gregorio, N.; Fridrich, C.; Markmann, S.; Potenberg, J.; Lorenz, R.; et al. Sorafenib plus topotecan versus placebo plus topotecan for platinum-resistant ovarian cancer (TRIAS): A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2018, 19, 1247–1258. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Frankel, P.; Popplewell, L.; Siddiqi, T.; Ruel, N.; Rotter, A.; Thomas, S.H.; Mott, M.; Nathwani, N.; Htut, M.; et al. A phase II study of vorinostat and rituximab for treatment of newly diagnosed and relapsed/refractory indolent non-Hodgkin lymphoma. Haematologica 2015, 100, 357–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chibaudel, B.; Bachet, J.B.; André, T.; Auby, D.; Desramé, J.; Deplanque, G.; Lecaille, C.; Louvet, C.; Tournigand, C.; Lebrun-Ly, V.; et al. Efficacy of aflibercept with FOLFOX and maintenance with fluoropyrimidine as first-line therapy for metastatic colorectal cancer: GERCOR VELVET phase II study. Int. J. Oncol. 2019, 54, 1433–1445. [Google Scholar] [CrossRef]
- Ciombor, K.K.; Feng, Y.; Benson, A.B., 3rd; Su, Y.; Horton, L.; Short, S.P.; Kauh, J.S.; Staley, C.; Mulcahy, M.; Powell, M.; et al. Phase II trial of bortezomib plus doxorubicin in hepatocellular carcinoma (E6202): A trial of the Eastern Cooperative Oncology Group. Investig. New Drugs 2014, 32, 1017–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cremolini, C.; Antoniotti, C.; Rossini, D.; Lonardi, S.; Loupakis, F.; Pietrantonio, F.; Bordonaro, R.; Latiano, T.P.; Tamburini, E.; Santini, D.; et al. Upfront FOLFOXIRI plus bevacizumab and reintroduction after progression versus mFOLFOX6 plus bevacizumab followed by FOLFIRI plus bevacizumab in the treatment of patients with metastatic colorectal cancer (TRIBE2): A multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 2020, 21, 497–507. [Google Scholar]
- de Vos, S.; Forero-Torres, A.; Ansell, S.M.; Kahl, B.; Cheson, B.D.; Bartlett, N.L.; Furman, R.R.; Winter, J.N.; Kaplan, H.; Timmerman, J.; et al. A phase II study of dacetuzumab (SGN-40) in patients with relapsed diffuse large B-cell lymphoma (DLBCL) and correlative analyses of patient-specific factors. J. Hematol. Oncol. 2014, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- DeCensi, A.; Puntoni, M.; Guerrieri-Gonzaga, A.; Caviglia, S.; Avino, F.; Cortesi, L.; Taverniti, C.; Pacquola, M.G.; Falcini, F.; Gulisano, M.; et al. Randomized Placebo Controlled Trial of Low-Dose Tamoxifen to Prevent Local and Contralateral Recurrence in Breast Intraepithelial Neoplasia. J. Clin. Oncol. 2019, 37, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- Deschênes-Simard, X.; Richard, C.; Galland, L.; Blais, F.; Desilets, A.; Malo, J.; Cvetkovic, L.; Belkaid, W.; Elkrief, A.; Gagné, A.; et al. Venous thrombotic events in patients treated with immune checkpoint inhibitors for non-small cell lung cancer: A retrospective multicentric cohort study. Thromb. Res. 2021, 205, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Donskov, F.; Jensen, N.V.; Smidt-Hansen, T.; Brøndum, L.; Geertsen, P. A randomized phase II trial of interleukin-2 and interferon-α plus bevacizumab versus interleukin-2 and interferon-α in metastatic renal-cell carcinoma (mRCC): Results from the Danish Renal Cancer Group (DaRenCa) study-1. Acta Oncol. 2018, 57, 589–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowell, J.E.; Dunphy, F.R.; Taub, R.N.; Gerber, D.E.; Ngov, L.; Yan, J.; Xie, Y.; Kindler, H.L. A multicenter phase II study of cisplatin, pemetrexed, and bevacizumab in patients with advanced malignant mesothelioma. Lung Cancer 2012, 77, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Dummer, R.; Quaglino, P.; Becker, J.C.; Hasan, B.; Karrasch, M.; Whittaker, S.; Morris, S.; Weichenthal, M.; Stadler, R.; Bagot, M.; et al. Prospective international multicenter phase II trial of intravenous pegylated liposomal doxorubicin monochemotherapy in patients with stage IIB, IVA, or IVB advanced mycosis fungoides: Final results from EORTC 21012. J. Clin. Oncol. 2012, 30, 4091–4097. [Google Scholar] [CrossRef]
- Duvic, M.; Tetzlaff, M.T.; Gangar, P.; Clos, A.L.; Sui, D.; Talpur, R. Results of a Phase II Trial of Brentuximab Vedotin for CD30+ Cutaneous T-Cell Lymphoma and Lymphomatoid Papulosis. J. Clin. Oncol. 2015, 33, 3759–3765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fehr, M.; Hawle, H.; Hayoz, S.; Thuss-Patience, P.; Schacher, S.; Riera Knorrenschild, J.; Dürr, D.; Knoefel, W.T.; Rumpold, H.; Bitzer, M.; et al. High thromboembolic event rate in patients with locally advanced oesophageal cancer during neoadjuvant therapy. An exploratory analysis of the prospective, randomised intergroup phase III trial SAKK 75/08. BMC Cancer 2020, 20, 166. [Google Scholar] [CrossRef] [Green Version]
- Feliu, J.; Salud, A.; Safont, M.J.; García-Girón, C.; Aparicio, J.; Vera, R.; Serra, O.; Casado, E.; Jorge, M.; Escudero, P.; et al. First-line bevacizumab and capecitabine-oxaliplatin in elderly patients with mCRC: GEMCAD phase II BECOX study. Br. J. Cancer 2014, 111, 241–248. [Google Scholar] [CrossRef]
- Fleming, G.F.; Filiaci, V.L.; Marzullo, B.; Zaino, R.J.; Davidson, S.A.; Pearl, M.; Makker, V.; Burke, J.J., 2nd; Zweizig, S.L.; Van Le, L.; et al. Temsirolimus with or without megestrol acetate and tamoxifen for endometrial cancer: A gynecologic oncology group study. Gynecol. Oncol. 2014, 132, 585–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folprecht, G.; Pericay, C.; Saunders, M.P.; Thomas, A.; Lopez Lopez, R.; Roh, J.K.; Chistyakov, V.; Höhler, T.; Kim, J.S.; Hofheinz, R.D.; et al. Oxaliplatin and 5-FU/folinic acid (modified FOLFOX6) with or without aflibercept in first-line treatment of patients with metastatic colorectal cancer: The AFFIRM study. Ann. Oncol. 2016, 27, 1273–1279. [Google Scholar] [CrossRef]
- Frizziero, M.; Spada, F.; Lamarca, A.; Kordatou, Z.; Barriuso, J.; Nuttall, C.; McNamara, M.G.; Hubner, R.A.; Mansoor, W.; Manoharan, P.; et al. Carboplatin in Combination with Oral or Intravenous Etoposide for Extra-Pulmonary, Poorly-Differentiated Neuroendocrine Carcinomas. Neuroendocrinology 2019, 109, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, C.S.; Shitara, K.; Di Bartolomeo, M.; Lonardi, S.; Al-Batran, S.E.; Van Cutsem, E.; Ilson, D.H.; Alsina, M.; Chau, I.; Lacy, J.; et al. Ramucirumab with cisplatin and fluoropyrimidine as first-line therapy in patients with metastatic gastric or junctional adenocarcinoma (RAINFALL): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 420–435. [Google Scholar] [CrossRef] [PubMed]
- Ghiaseddin, A.; Reardon, D.; Massey, W.; Mannerino, A.; Lipp, E.S.; Herndon, J.E., 2nd; McSherry, F.; Desjardins, A.; Randazzo, D.; Friedman, H.S.; et al. Phase II Study of Bevacizumab and Vorinostat for Patients with Recurrent World Health Organization Grade 4 Malignant Glioma. Oncologist 2018, 23, 157-e121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghiringhelli, F.; Vincent, J.; Guiu, B.; Chauffert, B.; Ladoire, S. Bevacizumab plus FOLFIRI-3 in chemotherapy-refractory patients with metastatic colorectal cancer in the era of biotherapies. Investig. New Drugs 2012, 30, 758–764. [Google Scholar] [CrossRef] [PubMed]
- Goss, G.; Tsai, C.M.; Shepherd, F.A.; Bazhenova, L.; Lee, J.S.; Chang, G.C.; Crino, L.; Satouchi, M.; Chu, Q.; Hida, T.; et al. Osimertinib for pretreated EGFR Thr790Met-positive advanced non-small-cell lung cancer (AURA2): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2016, 17, 1643–1652. [Google Scholar] [CrossRef]
- Grønberg, B.H.; Ciuleanu, T.; Fløtten, Ø.; Knuuttila, A.; Abel, E.; Langer, S.W.; Krejcy, K.; Liepa, A.M.; Munoz, M.; Hahka-Kemppinen, M.; et al. A placebo-controlled, randomized phase II study of maintenance enzastaurin following whole brain radiation therapy in the treatment of brain metastases from lung cancer. Lung Cancer 2012, 78, 63–69. [Google Scholar] [CrossRef]
- Guigay, J.; Fayette, J.; Dillies, A.F.; Sire, C.; Kerger, J.N.; Tennevet, I.; Machiels, J.P.; Zanetta, S.; Pointreau, Y.; Bozec Le Moal, L.; et al. Cetuximab, docetaxel, and cisplatin as first-line treatment in patients with recurrent or metastatic head and neck squamous cell carcinoma: A multicenter, phase II GORTEC study. Ann. Oncol. 2015, 26, 1941–1947. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Liu, J.; Xiao, L.; Zhao, M.; Su, T.; Liu, T.; Han, G.; Wang, Y. Cisplatin-based chemotherapy with or without bevacizumab for Chinese postmenopausal women with advanced cervical cancer: A retrospective observational study. BMC Cancer 2020, 20, 381. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, F.R.; Govindan, R.; Zvirbule, Z.; Braiteh, F.; Rittmeyer, A.; Belda-Iniesta, C.; Isla, D.; Cosgriff, T.; Boyer, M.; Ueda, M.; et al. Efficacy and Safety Results From a Phase II, Placebo-Controlled Study of Onartuzumab Plus First-Line Platinum-Doublet Chemotherapy for Advanced Squamous Cell Non-Small-Cell Lung Cancer. Clin. Lung Cancer 2017, 18, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Honecker, F.; Koychev, D.; Luhmann, A.D.; Langer, F.; Dieckmann, K.P.; Bokemeyer, C.; Oechsle, K. Venous thromboembolic events in germ cell cancer patients undergoing platinum-based chemotherapy. Onkologie 2013, 36, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhang, Z. A phase II clinical study of using nab-paclitaxel as second-line chemotherapy for Chinese patients with advanced non-small cell lung cancer. Med. Oncol. 2015, 32, 498. [Google Scholar] [CrossRef]
- Idelevich, E.; Kashtan, H.; Klein, Y.; Buevich, V.; Baruch, N.B.; Dinerman, M.; Tokar, M.; Kundel, Y.; Brenner, B. Prospective phase II study of neoadjuvant therapy with cisplatin, 5-fluorouracil, and bevacizumab for locally advanced resectable esophageal cancer. Onkologie 2012, 35, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Ikemura, S.; Naoki, K.; Yasuda, H.; Kawada, I.; Yoda, S.; Terai, H.; Sato, T.; Ishioka, K.; Arai, D.; Ohgino, K.; et al. A Phase II study of S-1 and irinotecan combination therapy in previously treated patients with advanced non-small cell lung cancer. JPN J. Clin. Oncol. 2015, 45, 356–361. [Google Scholar] [CrossRef] [Green Version]
- Ishida, N.; Araki, K.; Sakai, T.; Kobayashi, K.; Kobayashi, T.; Fukada, I.; Hosoda, M.; Yamamoto, M.; Ichinokawa, K.; Takahashi, S.; et al. Fulvestrant 500 mg in postmenopausal patients with metastatic breast cancer: The initial clinical experience. Breast Cancer 2016, 23, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Kakkos, S.K.; Arnaoutoglou, E.; Tsolakis, I.A.; Giannoukas, A.; Papadimitriou, C.A.; Kentepozidis, N.; Boukovinas, I.; Kalofonos, H.P.; Labropoulos, N.; Matsagkas, M. Frequency and predictors of chemotherapy-associated venous thromboembolism: The prospective PREVENT study. Int. Angiol. 2020, 39, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Karavasilis, V.; Kosmidis, P.; Syrigos, K.N.; Mavropoulou, P.; Dimopoulos, M.A.; Kotoula, V.; Pectasides, D.; Boukovinas, I.; Klouvas, G.; Kalogera-Fountzila, A.; et al. Docetaxel and intermittent erlotinib in patients with metastatic Non-Small Cell Lung Cancer; a phase II study from the Hellenic Cooperative Oncology Group. Anticancer Res. 2014, 34, 5649–5655. [Google Scholar] [PubMed]
- Kim, Y.H.; Bagot, M.; Pinter-Brown, L.; Rook, A.H.; Porcu, P.; Horwitz, S.M.; Whittaker, S.; Tokura, Y.; Vermeer, M.; Zinzani, P.L.; et al. Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): An international, open-label, randomised, controlled phase 3 trial. Lancet Oncol. 2018, 19, 1192–1204. [Google Scholar] [CrossRef] [PubMed]
- Kitayama, H.; Kondo, T.; Sugiyama, J.; Kurimoto, K.; Nishino, Y.; Hirayama, M.; Tsuji, Y. Venous thromboembolism in hospitalized patients receiving chemotherapy for malignancies at Japanese community hospital: Prospective observational study. BMC Cancer 2017, 17, 351. [Google Scholar] [CrossRef] [PubMed]
- Konecny, G.E.; Finkler, N.; Garcia, A.A.; Lorusso, D.; Lee, P.S.; Rocconi, R.P.; Fong, P.C.; Squires, M.; Mishra, K.; Upalawanna, A.; et al. Second-line dovitinib (TKI258) in patients with FGFR2-mutated or FGFR2-non-mutated advanced or metastatic endometrial cancer: A non-randomised, open-label, two-group, two-stage, phase 2 study. Lancet Oncol. 2015, 16, 686–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kottschade, L.A.; Suman, V.J.; Perez, D.G.; McWilliams, R.R.; Kaur, J.S.; Amatruda, T.T., 3rd; Geoffroy, F.J.; Gross, H.M.; Cohen, P.A.; Jaslowski, A.J.; et al. A randomized phase 2 study of temozolomide and bevacizumab or nab-paclitaxel, carboplatin, and bevacizumab in patients with unresectable stage IV melanoma: A North Central Cancer Treatment Group study, N0775. Cancer 2013, 119, 586–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, I.; Inbar, M.J.; Kahán, Z.; Greil, R.; Beslija, S.; Stemmer, S.M.; Kaufman, B.; Zvirbule, Z.; Steger, G.G.; Messinger, D.; et al. Safety results from a phase III study (TURANDOT trial by CECOG) of first-line bevacizumab in combination with capecitabine or paclitaxel for HER-2-negative locally recurrent or metastatic breast cancer. Eur. J. Cancer 2012, 48, 3140–3149. [Google Scholar] [CrossRef]
- Lara, P.N., Jr.; Moon, J.; Hesketh, P.J.; Redman, M.W.; Williamson, S.K.; Akerley, W.L., 3rd; Hirsch, F.R.; Mack, P.C.; Gandara, D.D.R. SWOG S0709: Randomized Phase II Trial of Erlotinib versus Erlotinib Plus Carboplatin/Paclitaxel in Patients with Advanced Non-Small Cell Lung Cancer and Impaired Performance Status as Selected by a Serum Proteomics Assay. J. Thorac. Oncol. 2016, 11, 420–425. [Google Scholar] [CrossRef] [Green Version]
- Larsen, A.C.; Frøkjær, J.B.; Fisker, R.V.; Iyer, V.; Mortensen, P.B.; Yilmaz, M.K.; Møller, B.; Kristensen, S.R.; Thorlacius-Ussing, O. Treatment-related frequency of venous thrombosis in lower esophageal, gastro-esophageal and gastric cancer--a clinical prospective study of outcome and prognostic factors. Thromb. Res. 2015, 135, 802–808. [Google Scholar] [CrossRef]
- Lee, J.M.; Annunziata, C.M.; Hays, J.L.; Cao, L.; Choyke, P.; Yu, M.; An, D.; Turkbey, I.B.; Minasian, L.M.; Steinberg, S.M.; et al. Phase II trial of bevacizumab and sorafenib in recurrent ovarian cancer patients with or without prior-bevacizumab treatment. Gynecol. Oncol. 2020, 159, 88–94. [Google Scholar] [CrossRef]
- Maio, M.; Scherpereel, A.; Calabrò, L.; Aerts, J.; Perez, S.C.; Bearz, A.; Nackaerts, K.; Fennell, D.A.; Kowalski, D.; Tsao, A.S.; et al. Tremelimumab as second-line or third-line treatment in relapsed malignant mesothelioma (DETERMINE): A multicentre, international, randomised, double-blind, placebo-controlled phase 2b trial. Lancet Oncol. 2017, 18, 1261–1273. [Google Scholar] [CrossRef]
- Makielski, R.J.; Lubner, S.J.; Mulkerin, D.L.; Traynor, A.M.; Groteluschen, D.; Eickhoff, J.; LoConte, N.K. A phase II study of sorafenib, oxaliplatin, and 2 days of high-dose capecitabine in advanced pancreas cancer. Cancer Chemother. Pharmacol. 2015, 76, 317–323. [Google Scholar] [CrossRef]
- Matsumoto, K.; Katsumata, N.; Shibata, T.; Satoh, T.; Saitou, M.; Yunokawa, M.; Takano, T.; Nakamura, K.; Kamura, T.; Konishi, I. Phase II trial of oral etoposide plus intravenous irinotecan in patients with platinum-resistant and taxane-pretreated ovarian cancer (JCOG0503). Gynecol. Oncol. 2015, 136, 218–223. [Google Scholar] [CrossRef]
- Michelsen, L.; Sørensen, J.B. Platinum-Vinorelbine Induction Chemotherapy plus Bevacizumab With and Without Pemetrexed Switch Maintenance in Advanced NSCLC. Anticancer Res. 2015, 35, 6255–6259. [Google Scholar] [PubMed]
- Mountzios, G.; Emmanouilidis, C.; Vardakis, N.; Kontopodis, E.; Hatzidaki, D.; Popis, E.; Karachaliou, N.; Kotsakis, A.; Agelidou, M.; Georgoulias, V. Paclitaxel plus bevacizumab in patients with chemoresistant relapsed small cell lung cancer as salvage treatment: A phase II multicenter study of the Hellenic Oncology Research Group. Lung Cancer 2012, 77, 146–150. [Google Scholar] [CrossRef]
- Martella, F.; Cerrano, M.; Di Cuonzo, D.; Secreto, C.; Olivi, M.; Apolito, V.; D’Ardia, S.; Frairia, C.; Giai, V.; Lanzarone, G.; et al. Frequency and risk factors for thrombosis in acute myeloid leukemia and high-risk myelodysplastic syndromes treated with intensive chemotherapy: A two centers observational study. Ann. Hematol. 2022, 101, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Okines, A.F.; Langley, R.E.; Thompson, L.C.; Stenning, S.P.; Stevenson, L.; Falk, S.; Seymour, M.; Coxon, F.; Middleton, G.W.; Smith, D.; et al. Bevacizumab with peri-operative epirubicin, cisplatin and capecitabine (ECX) in localised gastro-oesophageal adenocarcinoma: A safety report. Ann. Oncol. 2013, 24, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Ottosson, K.; Pelander, S.; Johansson, M.; Huge, Y.; Aljabery, F.; Sherif, A. The increased risk for thromboembolism pre-cystectomy in patients undergoing neoadjuvant chemotherapy for muscle-invasive urinary bladder cancer is mainly due to central venous access: A multicenter evaluation. Int. Urol. Nephrol. 2020, 52, 661–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peeters, M.; Strickland, A.H.; Lichinitser, M.; Suresh, A.V.; Manikhas, G.; Shapiro, J.; Rogowski, W.; Huang, X.; Wu, B.; Warner, D.; et al. A randomised, double-blind, placebo-controlled phase 2 study of trebananib (AMG 386) in combination with FOLFIRI in patients with previously treated metastatic colorectal carcinoma. Br. J. Cancer 2013, 108, 503–511. [Google Scholar] [CrossRef]
- Pitz, M.W.; Eisenhauer, E.A.; MacNeil, M.V.; Thiessen, B.; Easaw, J.C.; Macdonald, D.R.; Eisenstat, D.D.; Kakumanu, A.S.; Salim, M.; Chalchal, H.; et al. Phase II study of PX-866 in recurrent glioblastoma. Neuro Oncol. 2015, 17, 1270–1274. [Google Scholar] [CrossRef] [Green Version]
- Powell, S.F.; Beitinjaneh, A.; Tessema, M.; Bliss, R.L.; Kratzke, R.A.; Leach, J.; Dudek, A.Z. Phase II study of topotecan and bevacizumab in advanced, refractory non--small-cell lung cancer. Clin. Lung Cancer 2013, 14, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Ramos, J.D.; Casey, M.F.; Crabb, S.J.; Bamias, A.; Harshman, L.C.; Wong, Y.N.; Bellmunt, J.; De Giorgi, U.; Ladoire, S.; Powles, T.; et al. Venous thromboembolism in metastatic urothelial carcinoma or variant histologies: Incidence, associative factors, and effect on survival. Cancer Med. 2017, 6, 186–194. [Google Scholar] [CrossRef]
- Reck, M.; Kaiser, R.; Mellemgaard, A.; Douillard, J.Y.; Orlov, S.; Krzakowski, M.; von Pawel, J.; Gottfried, M.; Bondarenko, I.; Liao, M.; et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): A phase 3, double-blind, randomised controlled trial. Lancet Oncol. 2014, 15, 143–155. [Google Scholar] [CrossRef]
- Reyes-Botero, G.; Cartalat-Carel, S.; Chinot, O.L.; Barrie, M.; Taillandier, L.; Beauchesne, P.; Catry-Thomas, I.; Barrière, J.; Guillamo, J.S.; Fabbro, M.; et al. Temozolomide Plus Bevacizumab in Elderly Patients with Newly Diagnosed Glioblastoma and Poor Performance Status: An ANOCEF Phase II Trial (ATAG). Oncologist 2018, 23, 524-e544. [Google Scholar] [CrossRef]
- Rivera, F.; Massutí, B.; Salcedo, M.; Sastre, J.; Martínez Galán, J.; Valladares-Ayerbes, M.; Serrano, R.; García de Paredes, M.L.; Manzano, J.L.; Galán, M.; et al. Phase II trial of miniDOX (reduced dose docetaxel-oxaliplatin-capecitabine) in “suboptimal” patients with advanced gastric cancer (AGC). TTD 08-02. Cancer Chemother Pharm. 2015, 75, 319–324. [Google Scholar] [CrossRef]
- Saad, F.; Efstathiou, E.; Attard, G.; Flaig, T.W.; Franke, F.; Goodman, O.B., Jr.; Oudard, S.; Steuber, T.; Suzuki, H.; Wu, D.; et al. Apalutamide plus abiraterone acetate and prednisone versus placebo plus abiraterone and prednisone in metastatic, castration-resistant prostate cancer (ACIS): A randomised, placebo-controlled, double-blind, multinational, phase 3 study. Lancet Oncol. 2021, 22, 1541–1559. [Google Scholar] [CrossRef] [PubMed]
- Salinaro, J.R.; McQuillen, K.; Stemple, M.; Boccaccio, R.; Ehrisman, J.; Lorenzo, A.M.; Havrilesky, L.; Secord, A.A.; Galvan Turner, V.; Moore, K.N.; et al. Incidence of venous thromboembolism among patients receiving neoadjuvant chemotherapy for advanced epithelial ovarian cancer. Int. J. Gynecol. Cancer 2020, 30, 491–497. [Google Scholar] [CrossRef]
- Salles, G.; Duell, J.; González Barca, E.; Tournilhac, O.; Jurczak, W.; Liberati, A.M.; Nagy, Z.; Obr, A.; Gaidano, G.; André, M.; et al. Tafasitamab plus lenalidomide in relapsed or refractory diffuse large B-cell lymphoma (L-MIND): A multicentre, prospective, single-arm, phase 2 study. Lancet Oncol. 2020, 21, 978–988. [Google Scholar] [CrossRef] [PubMed]
- Seidel, C.; Hentschel, B.; Simon, M.; Schnell, O.; Heese, O.; Tatagiba, M.; Krex, D.; Reithmeier, T.; Kowoll, A.; Weller, M.; et al. A comprehensive analysis of vascular complications in 3,889 glioma patients from the German Glioma Network. J. Neurol. 2013, 260, 847–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slagter, A.E.; Sikorska, K.; Grootscholten, C.; van Laarhoven, H.W.M.; Lind, P.; Nordsmark, M.; Meershoek-Klein Kranenbarg, E.; van de Velde, C.J.H.; van Grieken, N.C.T.; van Sandick, J.W.; et al. Venous thromboembolism during preoperative chemotherapy in the CRITICS gastric cancer trial. Cancer Med. 2020, 9, 6609–6616. [Google Scholar] [CrossRef]
- Sonpavde, G.; Matveev, V.; Burke, J.M.; Caton, J.R.; Fleming, M.T.; Hutson, T.E.; Galsky, M.D.; Berry, W.R.; Karlov, P.; Holmlund, J.T.; et al. Randomized phase II trial of docetaxel plus prednisone in combination with placebo or AT-101, an oral small molecule Bcl-2 family antagonist, as first-line therapy for metastatic castration-resistant prostate cancer. Ann. Oncol. 2012, 23, 1803–1808. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, J.P.; Langer, C.J.; Somer, R.A.; Evans, T.L.; Rajagopalan, K.; Krieger, K.; Jacobs-Small, M.; Dyanick, N.; Milcarek, B.; Coakley, S.; et al. Phase 2 trial of maintenance bevacizumab alone after bevacizumab plus pemetrexed and carboplatin in advanced, nonsquamous nonsmall cell lung cancer. Cancer 2012, 118, 5580–5587. [Google Scholar] [CrossRef] [PubMed]
- Tahover, E.; Hubert, A.; Temper, M.; Salah, A.; Peretz, T.; Hamburger, T.; Uziely, B. An observational cohort study of bevacizumab and chemotherapy in metastatic colorectal cancer patients: Safety and efficacy with analysis by age group. Target Oncol. 2015, 10, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.R.; Im, S.A.; Mattar, A.; Colomer, R.; Stroyakovskii, D.; Nowecki, Z.; De Laurentiis, M.; Pierga, J.Y.; Jung, K.H.; Schem, C.; et al. Fixed-dose combination of pertuzumab and trastuzumab for subcutaneous injection plus chemotherapy in HER2-positive early breast cancer (FeDeriCa): A randomised, open-label, multicentre, non-inferiority, phase 3 study. Lancet Oncol. 2021, 22, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Tryfonidis, K.; Boukovinas, I.; Xenidis, N.; Christophyllakis, C.; Papakotoulas, P.; Politaki, E.; Malamos, N.; Polyzos, A.; Kakolyris, S.; Georgoulias, V.; et al. A multicenter phase I-II study of docetaxel plus epirubicin plus bevacizumab as first-line treatment in women with HER2-negative metastatic breast cancer. Breast 2013, 22, 1171–1177. [Google Scholar] [CrossRef] [PubMed]
- Tunio, M.A.; Hashmi, A.; Qayyum, A.; Naimatullah, N.; Masood, R. Low-dose thalidomide in patients with metastatic renal cell carcinoma. J. Pak. Med. Assoc. 2012, 62, 876–879. [Google Scholar] [PubMed]
- Uetake, H.; Yasuno, M.; Ishiguro, M.; Kameoka, S.; Shimada, Y.; Takahashi, K.; Watanabe, T.; Muro, K.; Baba, H.; Yamamoto, J.; et al. A multicenter phase II trial of mFOLFOX6 plus bevacizumab to treat liver-only metastases of colorectal cancer that are unsuitable for upfront resection (TRICC0808). Ann. Surg. Oncol. 2015, 22, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Usmani, S.Z.; Schjesvold, F.; Oriol, A.; Karlin, L.; Cavo, M.; Rifkin, R.M.; Yimer, H.A.; LeBlanc, R.; Takezako, N.; McCroskey, R.D.; et al. Pembrolizumab plus lenalidomide and dexamethasone for patients with treatment-naive multiple myeloma (KEYNOTE-185): A randomised, open-label, phase 3 trial. Lancet Haematol. 2019, 6, e448–e458. [Google Scholar] [CrossRef] [PubMed]
- Vaishampayan, U.N.; Fontana, J.; Heilbrun, L.K.; Smith, D.; Heath, E.; Dickow, B.; Figg, W.D. Phase II trial of bevacizumab and satraplatin in docetaxel-pretreated metastatic castrate-resistant prostate cancer. Urol. Oncol. 2014, 32, e25–e33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valle, J.W.; Vogel, A.; Denlinger, C.S.; He, A.R.; Bai, L.Y.; Orlova, R.; Van Cutsem, E.; Adeva, J.; Chen, L.T.; Obermannova, R.; et al. Addition of ramucirumab or merestinib to standard first-line chemotherapy for locally advanced or metastatic biliary tract cancer: A randomised, double-blind, multicentre, phase 2 study. Lancet Oncol. 2021, 22, 1468–1482. [Google Scholar] [CrossRef] [PubMed]
- Wolff, R.A.; Fuchs, M.; Di Bartolomeo, M.; Hossain, A.M.; Stoffregen, C.; Nicol, S.; Heinemann, V. A double-blind, randomized, placebo-controlled, phase 2 study of maintenance enzastaurin with 5-fluorouracil/leucovorin plus bevacizumab after first-line therapy for metastatic colorectal cancer. Cancer 2012, 118, 4132–4138. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, K.; Nagase, M.; Tamagawa, H.; Ueda, S.; Tamura, T.; Murata, K.; Eguchi Nakajima, T.; Baba, E.; Tsuda, M.; Moriwaki, T.; et al. Randomized phase III study of bevacizumab plus FOLFIRI and bevacizumab plus mFOLFOX6 as first-line treatment for patients with metastatic colorectal cancer (WJOG4407G). Ann. Oncol. 2016, 27, 1539–1546. [Google Scholar] [CrossRef]
- Yardley, D.A.; Dees, E.C.; Myers, S.D.; Li, S.; Healey, P.; Wang, Z.; Brickman, M.J.; Paolini, J.; Kern, K.A.; Citrin, D.L. Phase II open-label study of sunitinib in patients with advanced breast cancer. Breast Cancer Res. Treat. 2012, 136, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Zalcman, G.; Mazieres, J.; Margery, J.; Greillier, L.; Audigier-Valette, C.; Moro-Sibilot, D.; Molinier, O.; Corre, R.; Monnet, I.; Gounant, V.; et al. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): A randomised, controlled, open-label, phase 3 trial. Lancet 2016, 387, 1405–1414. [Google Scholar] [CrossRef] [PubMed]
- Baggstrom, M.Q.; Socinski, M.A.; Wang, X.F.; Gu, L.; Stinchcombe, T.E.; Edelman, M.J.; Baker, S., Jr.; Feliciano, J.; Novotny, P.; Hahn, O.; et al. Maintenance Sunitinib following Initial Platinum-Based Combination Chemotherapy in Advanced-Stage IIIB/IV Non-Small Cell Lung Cancer: A Randomized, Double-Blind, Placebo-Controlled Phase III Study-CALGB 30607 (Alliance). J. Thorac. Oncol. 2017, 12, 843–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavan, D.M.; Huang, Z.; Song, K.; Parimi, L.R.H.; Yang, X.S.; Zhang, X.; Liu, P.; Jiang, J.; Zhang, Y.; Kong, B.; et al. Incidence of venous thromboembolism following the neoadjuvant chemotherapy regimen for epithelial type of ovarian cancer. Medicine 2017, 96, e7935. [Google Scholar] [CrossRef] [PubMed]
- Duivenvoorden, W.C.; Daneshmand, S.; Canter, D.; Lotan, Y.; Black, P.C.; Abdi, H.; van Rhijn, B.W.; Fransen van de Putte, E.E.; Zareba, P.; Koskinen, I.; et al. Incidence, Characteristics and Implications of Thromboembolic Events in Patients with Muscle Invasive Urothelial Carcinoma of the Bladder Undergoing Neoadjuvant Chemotherapy. J. Urol. 2016, 196, 1627–1633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gay, F.; Hayman, S.R.; Lacy, M.Q.; Buadi, F.; Gertz, M.A.; Kumar, S.; Dispenzieri, A.; Mikhael, J.R.; Bergsagel, P.L.; Dingli, D.; et al. Lenalidomide plus dexamethasone versus thalidomide plus dexamethasone in newly diagnosed multiple myeloma: A comparative analysis of 411 patients. Blood 2010, 115, 1343–1350. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.S.; Lee, J.; Kim, K.P.; Lee, J.L.; Park, Y.S.; Park, J.O.; Park, S.H.; Kim, S.Y.; Baek, J.Y.; Kim, J.H.; et al. Multicenter phase II study of second-line bevacizumab plus doublet combination chemotherapy in patients with metastatic colorectal cancer progressed after upfront bevacizumab plus doublet combination chemotherapy. Investig. New Drugs 2013, 31, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yao, X.; Kortmansky, J.S.; Fischbach, N.A.; Stein, S.; Deng, Y.; Zhang, Y.; Doddamane, I.; Karimeddini, D.; Hochster, H.S.; et al. Phase II Study of Modified FOLFOX6 With Bevacizumab in Metastatic Gastroesophageal Adenocarcinoma. Am. J. Clin. Oncol. 2017, 40, 146–151. [Google Scholar] [CrossRef]
- Matikas, A.; Kentepozidis, Ν.; Ardavanis, A.; Vaslamatzis, M.; Polyzos, A.; Emmanouilides, C.; Katsaounis, P.; Koinis, F.; Xynogalos, S.; Christopoulou, A.; et al. Efficacy and tolerance of frontline bevacizumab-based chemotherapy for advanced non-small cell lung cancer patients: A multicenter, phase IV study of the Hellenic Oncology Research Group (HORG). Cancer Chemother. Pharmacol. 2016, 78, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Monk, B.J.; Kauderer, J.T.; Moxley, K.M.; Bonebrake, A.J.; Dewdney, S.B.; Secord, A.A.; Ueland, F.R.; Johnston, C.M.; Aghajanian, C. A phase II evaluation of elesclomol sodium and weekly paclitaxel in the treatment of recurrent or persistent platinum-resistant ovarian, fallopian tube or primary peritoneal cancer: An NRG oncology/gynecolo.ogic oncology group study. Gynecol. Oncol. 2018, 151, 422–427. [Google Scholar] [CrossRef]
- Slavicek, L.; Pavlik, T.; Tomasek, J.; Bortlicek, Z.; Buchler, T.; Melichar, B.; Vyzula, R.; Prausova, J.; Finek, J.; Majek, O.; et al. Efficacy and safety of bevacizumab in elderly patients with metastatic colorectal cancer: Results from the Czech population-based registry. BMC Gastroenterol. 2014, 14, 53. [Google Scholar] [CrossRef] [Green Version]
- Tachihara, M.; Dokuni, R.; Okuno, K.; Tokunaga, S.; Nakata, K.; Katsurada, N.; Yamamoto, M.; Nagano, T.; Kobayashi, K.; Tanaka, Y.; et al. Phase II study of adjuvant chemotherapy with pemetrexed and cisplatin with a short hydration method for completely resected nonsquamous non-small cell lung cancer. Thorac. Cancer 2020, 11, 2536–2541. [Google Scholar] [CrossRef] [PubMed]
- Tewari, K.S.; Sill, M.W.; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; Michael, H.E.; et al. Bevacizumab for advanced cervical cancer: Final overall survival and adverse event analysis of a randomised, controlled, open-label, phase 3 trial (Gynecologic Oncology Group 240). Lancet 2017, 390, 1654–1663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yildiz, R.; Benekli, M.; Ozkan, M.; Alkis, N.; Berk, V.; Kaplan, M.A.; Ciltas, A.; Karaca, H.; Durnali, A.G.; Coskun, U.; et al. Bevacizumab every 4 weeks is as effective as every 2 weeks in combination with biweekly FOLFIRI in metastatic colorectal cancer. J. Cancer Res. Clin. Oncol. 2012, 138, 1845–1852. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.D.; Chen, H.H.; Wang, H.M.; Tsao, C.J.; Hsu, T.C.; Chiu, C.F.; Su, W.C.; Wang, J.Y. An open-label safety study of first-line bevacizumab in combination with standard chemotherapy in Chinese patients with metastatic colorectal cancer treated in an expanded access program in Taiwan. Oncology 2013, 84, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Reynés, G.; Martínez-Sales, V.; Vila, V.; Balañá, C.; Pérez-Segura, P.; Vaz, M.A.; Benavides, M.; Gallego, O.; Palomero, I.; Gil-Gil, M.; et al. Phase II trial of irinotecan and metronomic temozolomide in patients with recurrent glioblastoma. Anticancer Drugs 2016, 27, 133–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, C.; Zucali, P.A.; Pagano, M.; Grosso, F.; Pasello, G.; Garassino, M.C.; Tiseo, M.; Soto Parra, H.; Grossi, F.; Cappuzzo, F.; et al. Gemcitabine with or without ramucirumab as second-line treatment for malignant pleural mesothelioma (RAMES): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2021, 22, 1438–1447. [Google Scholar] [CrossRef]
- Nagane, M.; Nishikawa, R.; Narita, Y.; Kobayashi, H.; Takano, S.; Shinoura, N.; Aoki, T.; Sugiyama, K.; Kuratsu, J.; Muragaki, Y.; et al. Phase II study of single-agent bevacizumab in Japanese patients with recurrent malignant glioma. JPN J. Clin. Oncol. 2012, 42, 887–895. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.J.; Ryoo, B.Y.; Ryu, M.H.; Koo, D.H.; Chang, H.M.; Lee, J.L.; Kim, T.W.; Kang, Y.K. Venous thromboembolism (VTE) in patients with advanced gastric cancer: An Asian experience. Eur. J. Cancer 2012, 48, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Langer, F.; Bokemeyer, C. Crosstalk between cancer and haemostasis. Implications for cancer biology and cancer-associated thrombosis with focus on tissue factor. Hamostaseologie 2012, 32, 95–104. [Google Scholar] [PubMed]
- Epstein, A.S.; Soff, G.A.; Capanu, M.; Crosbie, C.; Shah, M.A.; Kelsen, D.P.; Denton, B.; Gardos, S.; O’Reilly, E.M. Analysis of incidence and clinical outcomes in patients with thromboembolic events and invasive exocrine pancreatic cancer. Cancer 2012, 118, 3053–3061. [Google Scholar] [CrossRef]
- Prandoni, P.; Falanga, A.; Piccioli, A. Cancer and venous thromboembolism. Lancet Oncol. 2005, 6, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, H.T.; Sværke, C.; Farkas, D.K.; Christiansen, C.F.; Pedersen, L.; Lash, T.L.; Prandoni, P.; Baron, J.A. Superficial and deep venous thrombosis, pulmonary embolism and subsequent risk of cancer. Eur. J. Cancer 2012, 48, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Abdol Razak, N.B.; Jones, G.; Bhandari, M.; Berndt, M.C.; Metharom, P. Cancer-Associated Thrombosis: An Overview of Mechanisms, Risk Factors, and Treatment. Cancers 2018, 10, 380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowkes, F.J.; Price, J.F.; Fowkes, F.G. Incidence of diagnosed deep vein thrombosis in the general population: Systematic review. Eur. J. Vasc. Endovasc. Surg. 2003, 25, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, P.D.; Beemath, A.; Meyers, F.A.; Skaf, E.; Sanchez, J.; Olson, R.E. Incidence of venous thromboembolism in patients hospitalized with cancer. Am. J. Med. 2006, 119, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Goldhaber, S.Z. Risk factors for venous thromboembolism. J. Am. Coll. Cardiol. 2010, 56, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamza, M.S.; Mousa, S.A. Cancer-Associated Thrombosis: Risk Factors, Molecular Mechanisms, Future Management. Clin. Appl. Thromb. Hemost. 2020, 26, 1076029620954282. [Google Scholar] [CrossRef] [PubMed]
- Piazza, G. Venous Thromboembolism and Cancer. Circulation 2013, 128, 2614–2618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardiner, C.; Harrison, P.; Belting, M.; Böing, A.; Campello, E.; Carter, B.S.; Collier, M.E.; Coumans, F.; Ettelaie, C.; van Es, N.; et al. Extracellular vesicles, tissue factor, cancer and thrombosis—Discussion themes of the ISEV 2014 Educational Day. J. Extracell. Vesicles 2015, 4, 26901. [Google Scholar] [CrossRef] [Green Version]
- Westrick, R.J.; Eitzman, D.T. Plasminogen activator inhibitor-1 in vascular thrombosis. Curr. Drug Targets 2007, 8, 966–1002. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.G.; Franks, J.J.; Lewis, B. Cancer procoagulant A: A factor X activating procoagulant from malignant tissue. Thromb. Res. 1975, 6, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Grignani, G.; Jamieson, G.A. Platelets in Tumor Metastasis: Generation of Adenosine Diphosphate by Tumor Cells Is Specific but Unrelated to Metastatic Potential. Blood 1988, 71, 844–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gidaro, A.; Manetti, R.; Delitala, A.P.; Soloski, M.J.; Lambertenghi Deliliers, G.; Castro, D.; Soldini, D.; Castelli, R. Incidence of Venous Thromboembolism in Multiple Myeloma Patients across Different Regimens: Role of Procoagulant Microparticles and Cytokine Release. J. Clin. Med. 2022, 11, 2720. [Google Scholar] [CrossRef] [PubMed]
- Noble, S.; Pasi, J. Epidemiology and pathophysiology of cancer-associated thrombosis. Br. J. Cancer 2010, 102, S2–S9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, A.J.; Card, T.R.; West, J.; Crooks, C.; Grainge, M.J. Incidence of venous thromboembolism in patients with cancer—A cohort study using linked United Kingdom databases. Eur. J. Cancer 2013, 49, 1404–1413. [Google Scholar] [CrossRef]
- Herrmann, J.; Yang, E.H.; Iliescu, C.A.; Cilingiroglu, M.; Charitakis, K.; Hakeem, A.; Toutouzas, K.; Leesar, M.A.; Grines, C.L.; Marmagkiolis, K. Vascular Toxicities of Cancer Therapies: The Old and the New—An Evolving Avenue. Circulation 2016, 133, 1272–1289. [Google Scholar] [CrossRef] [PubMed]
Study ID | Author | Year | Study Design | Study Phase | Country | Cancer Phenotype | Cancer Phenotype, Body | Age (Median) | Age (Range) | Number of Males (%) | C | N | P |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Affronti et al. [29] | 2018 | Prospective, single centre | II | USA | Recurrent grade IV malignant glioma | Brain | 55.5 | 27–74 | 61.11 | 36 | 4 | 11.11 |
2 | Alexander et al. [30] | 2012 | Prospective, single centre | II | USA | Newly diagnosed glioblastoma | Brain | N/A | N/A | 62 | 89 | 8 | 8.99 |
3 | Alvarez et al. [31] | 2014 | Prospective, single centre | II | USA | Recurrent or persistent endometrial carcinoma | Endometrial | 63 | 35–80 | 0 | 49 | 1 | 2.04 |
4 | Assenat et al. [32] | 2021a | Prospective, multicentre | II | USA | Metastatic pancreatic cancer | Pancreas | 60 | 34–72 | 50 | 58 | 18 | 31.03 |
5 | Assenat et al. [33] | 2021b | Prospective, multicentre | II | France | Metastatic pancreatic cancer | Pancreas | 62 | 35–77 | 59.7 | 62 | 22 | 35.48 |
6 | Bai et al. [34] | 2015 | Prospective, single centre | Unspecified | China | Metastatic colorectal cancer | Colorectal | 55 | 20–79 | 63.4 | 175 | 1 | 0.57 |
7 | Balar et al. [35] | 2013 | Prospective, single centre | II | USA | Advanced unresectable/metastatic urothelial cancer | Bladder | 67 | 42–83 | 72.5 | 51 | 10 | 19.61 |
8 | Basso et al. [36] | 2013 | Prospective, multicentre | Unspecified | Italy | Locally advanced/metastatic breast cancer | Breast | 78 | 70–93 | 0 | 32 | 3 | 9.38 |
9 | Bear et al. [37] | 2015 | Prospective, multicentre | III | USA | Early HER2-negative breast cancer | Breast | N/A | N/A | 0 | 1206 | 37 | 3.07 |
10 | Buxo et al. [38] | 2018 | Retrospective, single centre | Unspecified | Spain | Recurrent or metastatic head and neck squamous cell carcinoma | Head and Neck | N/A | N/A | N/A | 104 | 1 | 0.96 |
11 | Campbell et al. [39] | 2012 | Prospective, multicentre | II | USA | Malignant mesothelioma | Mesothelium | N/A | N/A | 84 | 50 | 3 | 6.00 |
12 | Chekerov et al. [40] | 2018 | Prospective, multicentre | II | Germany | Platinum-resistant ovarian cancer | Ovary | N/A | N/A | 0 | 174 | 10 | 5.75 |
13 | Chen et al. [41] | 2015 | Prospective, single centre | II | USA | Relapsed/refractory indolent non-Hodgkin lymphoma | Lymph | 62 | 44–85 | 54 | 28 | 4 | 14.29 |
14 | Chibaudel et al. [42] | 2019 | Prospective, multicentre | II | France | Metastatic colorectal cancer | Colorectal | 62.9 | 32–86 | 53.1 | 48 | 1 | 2.08 |
15 | Ciombor et al. [43] | 2014 | Prospective, multicentre | II | USA | Hepatocellular carcinoma | Liver | 59 | 23–76.5 | 71.1 | 38 | 1 | 2.63 |
16 | Cremolini et al. [44] | 2020 | Prospective, multicentre | III | Italy | Unresectable metastatic colorectal cancer | Colorectal | N/A | N/A | N/A | 672 | 63 | 9.38 |
17 | de Vos et al. [45] | 2014 | Prospective, multicentre | II | USA | Diffuse large B-cell lymphoma | Lymph | 72 | 18–85 | 61 | 46 | 3 | 6.52 |
18 | DeCensi et al. [46] | 2019 | Prospective, multicentre | III | Italy | Ductal carcinoma in situ | Breast | N/A | N/A | 0 | 500 | 2 | 0.40 |
19 | Deschenes-Simard et al. [47] | 2021 | Retrospective, multicentre | Unspecified | Canada | Non-small-cell lung cancer | Lung | 66.7 | N/A | 54.3 | 593 | 64 | 10.79 |
20 | Donskov et al. [48] | 2018 | Prospective, multicentre | IIIb | Denmark | Metastatic renal cell carcinoma | Renal | N/A | N/A | N/A | 118 | 15 | 12.71 |
21 | Dowell et al. [49] | 2012 | Prospective, multicentre | II | USA | Advanced malignant mesothelioma | Mesothelium | 66 | 24–81 | 85 | 52 | 7 | 13.46 |
22 | Dummer et al. [50] | 2012 | Prospective, multicentre | II | Switzerland | Primary cutaneous T-cell lymphoma, mycosis fungoides | Lymph | N/A | N/A | N/A | 49 | 2 | 4.08 |
23 | Duvic et al. [51] | 2015 | Prospective, single centre | II | USA | Cutaneous T-cell lymphoma and lymphomatoid papulosis | Lymph | 59.5 | 31–77 | 54 | 48 | 2 | 4.17 |
24 | Fehr et al. [52] | 2020 | Prospective, multicentre | III | Switzerland | Locally advanced oesophageal cancer | Oesophageal | 61 | 36–75 | 88 | 300 | 29 | 9.67 |
25 | Feliu et al. [53] | 2014 | Prospective, multicentre | II | Spain | Metastatic colorectal cancer | Colorectal | 75.6 | 70.5–85.4 | 65 | 68 | 10 | 14.71 |
26 | Fleming et al. [54] | 2014 | Prospective, multicentre | II | USA | Endometrial cancer | Endometrial | N/A | N/A | 0 | 71 | 10 | 14.08 |
27 | Folprecht et al. [55] | 2016 | Prospective, multicentre | II | Germany | Metastatic colorectal cancer | Colorectal | 62.5 | 29–87 | 61 | 235 | 22 | 9.36 |
28 | Frizziero et al. [56] | 2019 | Retrospective, multicentre | Unspecified | UK | Poorly differentiated neuroendocrine carcinomas | Neuroendocrine | 65.8 | 24–88 | 63.7 | 113 | 7 | 6.19 |
29 | Fuchs et al. [57] | 2019 | Prospective, multicentre | III | USA | Metastatic, HER2-negative gastric or gastrooesophageal junction adenocarcinoma | Gastric | N/A | N/A | N/A | 645 | 99 | 15.35 |
30 | Ghiaseddin et al. [58] | 2018 | Prospective, single centre | II | USA | Recurrent, grade 4 malignant glioma | Brain | 52.4 | 32–74 | 60 | 40 | 3 | 7.50 |
31 | Ghiringhelli et al. [59] | 2012 | Prospective, single centre | II | France | Metastatic colorectal cancer | Colorectal | 63 | 25–79 | 53 | 49 | 1 | 2.04 |
32 | Goss et al. [60] | 2016 | Prospective, multicentre | II | Canada | EGFR Thr790Met-positive advanced non-small-cell lung cancer | Lung | 64 | 35–88 | 31 | 210 | 1 | 0.48 |
33 | Gronberg et al. [61] | 2012 | Prospective, multicentre | II | Norway | Brain metastases from lung cancer | Lung | N/A | N/A | N/A | 107 | 16 | 14.95 |
34 | Guigay et al. [62] | 2015 | Prospective, multicentre | II | France | Recurrent or metastatic head and neck squamous cell carcincoma | Head and Neck | N/A | N/A | 96.3 | 54 | 1 | 1.85 |
35 | He et al. [63] | 2020 | Retrospective, single centre | Unspecified | China | Advanced cervical cancer | Cervix | N/A | N/A | 0 | 264 | 24 | 9.09 |
36 | Hirsch et al. [64] | 2017 | Prospective, multicentre | II | USA | Advanced squamous cell non-small-cell lung cancer | Lung | N/A | N/A | N/A | 109 | 3 | 2.75 |
37 | Honecker et al. [65] | 2013 | Retrospective, multicentre | Unspecified | Germany | Germ cell tumour | Germ Cell | 35 | 18–83 | N/A | 193 | 4 | 2.07 |
38 | Hu et al. [66] | 2015 | Prospective, single centre | II | China | Advanced non-small-cell lung cancer | Lung | 59.6 | 32–83 | 55.4 | 56 | 12 | 21.43 |
39 | Idelevich et al. [67] | 2012 | Prospective, single centre | II | Israel | Locally advanced resectable esophageal cancer | Oesophageal | N/A | N/A | 82 | 28 | 3 | 10.71 |
40 | Ikemura et al. [68] | 2015 | Prospective, single centre | II | Japan | Advanced non-small-cell lung cancer | Lung | 59.5 | 35–74 | 80.6 | 31 | 1 | 3.23 |
41 | Ishida et al. [69] | 2015 | Prospective, multicentre | Unspecified | Japan | Metastatic breast cancer | Breast | 62 | 41–85 | 0 | 117 | 1 | 0.85 |
42 | Kakkos et al. [70] | 2020 | Prospective, multicentre | Unspecified | Greece | Various—lung, pancreatic, ovarian, prostate | Mixed | N/A | N/A | N/A | 231 | 17 | 7.36 |
43 | Karavasilis et al. [71] | 2014 | Prospective, multicentre | II | Greece | Metastatic non-small-cell lung cancer | Lung | 64 | N/A | N/A | 50 | 1 | 2.00 |
44 | Kim et al. [72] | 2018 | Prospective, multicentre | Unspecified | USA | Previously treated cutaneous T-cell lymphoma | Lymph | N/A | N/A | N/A | 372 | 7 | 1.88 |
45 | Kitayama et al. [73] | 2017 | Prospective, single centre | Unspecified | Japan | Mixed | Mixed | 65 | N/A | 48.5 | 97 | 29 | 29.90 |
46 | Konecny et al. [74] | 2015 | Prospective, multicentre | II | USA | Metastatic endometrial cancer | Endometrial | N/A | N/A | 0 | 53 | 9 | 16.98 |
47 | Kottschade et al. [75] | 2013 | Prospective, multicentre | II | USA | Unresectable metastatic melanoma | Skin | N/A | N/A | N/A | 93 | 7 | 7.53 |
48 | Lang et al. [76] | 2012 | Prospective, multicentre | III | Hungary | Locally recurrent/metastatic breast cancer | Breast | N/A | N/A | 0 | 561 | 8 | 1.43 |
49 | Lara et al. [77] | 2016 | Prospective, multicentre | II | USA | Advanced non-small-cell lung cancer | Lung | N/A | N/A | N/A | 59 | 1 | 1.69 |
50 | Larsen et al. [78] | 2015 | Prospective, single centre | Unspecified | Denmark | Gastric, esophageal, gastro-oesophageal | Gastric | 64 | 35–84 | 75.2 | 129 | 21 | 16.28 |
51 | Lee et al. [79] | 2020 | Prospective, multicentre | II | USA | Recurrent ovarian cancer | Ovary | N/A | 27–79 | 0 | 54 | 5 | 9.26 |
52 | Maio et al. [80] | 2017 | Prospective, multicentre | IIb | Italy | Relapsed malignant mesothelioma | Mesothelium | 66 | 60–72 | 74 | 571 | 17 | 2.98 |
53 | Makielski et al. [81] | 2015 | Prospective, multicentre | II | USA | Advanced pancreatic cancer | Pancreas | 63 | 48–83 | N/A | 24 | 1 | 4.17 |
54 | Matsumoto et al. [82] | 2015 | Prospective, multicentre | II | Japan | Platinum-resistant taxane-pretreated ovarian cancer | Ovary | 58 | 31–75 | 0 | 60 | 1 | 1.67 |
55 | Michelsen & Sorensen [83] | 2015 | Prospective, single centre | Unspecified | Denmark | Advanced non-small-cell lung cancer | Lung | N/A | N/A | N/A | 42 | 10 | 23.81 |
56 | Mountzios et al. [84] | 2012 | Prospective, multicentre | II | Greece | Chemoresistant relapsed small cell lung cancer | Lung | 64 | 43–82 | 90 | 30 | 1 | 3.33 |
57 | Nagane et al. [85] | 2012 | Prospective, single centre | II | Japan | Recurrent malignant glioma | Brain | 54 | 23–72 | 51.6 | 31 | 1 | 3.23 |
58 | Okines et al. [86] | 2013 | Prospective, multicentre | II/III | UK | Localised gastro-oesophageal adenocarcinoma | Gastric | 64 | 40–80 | 82 | 200 | 15 | 7.50 |
59 | Ottosson et al. [87] | 2020 | Prospective, multicentre | Unspecified | Sweden | Muscle-invasive urinary bladder cancer | Bladder | N/A | N/A | 80.6 | 126 | 45 | 35.71 |
60 | Peeters et al. [88] | 2013 | Prospective, multicentre | II | Belgium | Metastatic colorectal cancer | Colorectal | N/A | N/A | N/A | 144 | 10 | 6.94 |
61 | Pitz et al. [89] | 2015 | Prospective, multicentre | II | Canada | Glioblastoma | Brain | 56 | 35–78 | 63.6 | 33 | 2 | 6.06 |
62 | Powell et al. [90] | 2013 | Prospective, single centre | II | USA | Advanced, refractory non-small-cell lung cancer | Lung | 62.5 | 36–80 | 42.9 | 42 | 1 | 2.38 |
63 | Ramos et al. [91] | 2017 | Retrospective, multicentre | Unspecified | USA | Metastatic urothelial carcinoma | Bladder | N/A | N/A | 77.5 | 1762 | 144 | 8.17 |
64 | Reck et al. [92] | 2014 | Prospective, multicentre | III | Germany | Non-small-cell lung cancer | Lung | N/A | N/A | N/A | 1314 | 3 | 0.23 |
65 | Reyes-Botero et al. [93] | 2018 | Prospective, multicentre | II | France | Newly diagnosed glioblastoma | Brain | 76 | 70–87 | 36 | 66 | 3 | 4.55 |
66 | Rivera et al. [94] | 2015 | Prospective, multicentre | II | Spain | Advanced gastric cancer | Gastric | 73.3 | 40–87 | 74.41860465 | 43 | 4 | 9.30 |
67 | Saad et al. [95] | 2021 | Prospective, multicentre | III | Canada | Metastatic, castration-resistant prostate cancer | Prostate | N/A | N/A | 100 | 982 | 15 | 1.53 |
68 | Salinaro et al. [96] | 2020 | Prospective, multicentre | Unspecified | USA | Advanced epithelial ovarian cancer | Ovary | 64.8 | 34–84 | 0 | 230 | 16 | 6.96 |
69 | Salles et al. [97] | 2020 | Prospective, multicentre | II | France | Relapsed or refractory diffuse large B-cell lymphoma | Lymph | 72 | 62–76 | 54 | 156 | 7 | 4.49 |
70 | Seidel et al. [98] | 2012 | Prospective, multicentre | Unspecified | Germany | Glioma | Brain | N/A | N/A | N/A | 2855 | 143 | 5.01 |
71 | Slagter et al. [99,100] | 2020 | Prospective, multicentre | Unspecified | Netherlands | Gastric cancer | Gastric | N/A | N/A | N/A | 781 | 78 | 9.99 |
72 | Sonpavde et al. [100] | 2012 | Prospective, multicentre | II | USA | Metastatic castration-resistant prostate cancer | Prostate | N/A | N/A | 100 | 220 | 9 | 4.09 |
73 | Stevenson et al. [101] | 2012 | Prospective, single centre | II | USA | Advanced, non-squamous non-small-cell lung cancer | Lung | 65.3 | 35–80 | 46 | 40 | 3 | 7.50 |
74 | Tahover et al. [102] | 2015 | Prospective, single centre | Unspecified | Israel | Metastatic colorectal cancer | Colorectal | N/A | N/A | N/A | 308 | 20 | 6.49 |
75 | Tan et al. [103] | 2021 | Prospective, multicentre | III | USA | HER2-positive early breast cancer | Breast | N/A | N/A | 0 | 500 | 4 | 0.80 |
76 | Tryfonidis et al. [104] | 2013 | Prospective, multicentre | II | Greece | Metastatic breast cancer HER-2 negative | Breast | 62 | 23–75 | 0 | 83 | 1 | 1.20 |
77 | Tunio et al. [105] | 2012 | Prospective, single centre | II | Pakistan | Metastatic renal cell carcinoma | Renal | 51.11 | 23–73 | 73.8 | 80 | 7 | 8.75 |
78 | Uetake et al. [106] | 2015 | Prospective, multicentre | II | Japan | Metastatic colorectal cancer | Colorectal | 62.5 | 39–80 | 58.7 | 45 | 1 | 2.22 |
79 | Usmani et al. [107] | 2019 | Prospective, multicentre | III | USA | Multiple myeloma | Blood | N/A | N/A | N/A | 301 | 2 | 0.66 |
80 | Vaishampayan et al. [108] | 2014 | Prospective, single centre | II | USA | Metastatic castrate-resistant prostate cancer | Prostate | 67 | 50–85 | 100 | 31 | 2 | 6.45 |
81 | Valle et al. [109] | 2021 | Prospective, multicentre | II | UK | Locally advanced or metastatic biliary tract cancer | Liver | N/A | N/A | N/A | 309 | 17 | 5.50 |
82 | Wolff et al. [110] | 2012 | Prospective, multicentre | II | USA | Metastatic colorectal cancer | Colorectal | N/A | N/A | N/A | 117 | 10 | 8.55 |
83 | Yamazaki et al. [111] | 2016 | Prospective, multicentre | III | Japan | Metastatic colorectal cancer | Colorectal | N/A | N/A | N/A | 395 | 26 | 6.58 |
84 | Yardley et al. [112] | 2012 | Prospective, multicentre | II | USA | Advanced breast cancer | Breast | N/A | 35–83 | 0 | 83 | 2 | 2.41 |
85 | Zalcman et al. [113] | 2016 | Prospective, multicentre | III | France | Newly diagnosed pleural mesothelioma | Mesothelium | N/A | N/A | N/A | 448 | 15 | 3.35 |
86 | Baggstrom et al. [114] | 2017 | Prospective, multicentre | III | USA | Non-small cell lung cancer | Lung | 66 | 25–89 | 56 | 210 | 1 | 0.48 |
87 | Chavan et al. [115] | 2017 | Retrospective, single-centre | Unspecified | China | Epithelial ovarian cancer | Ovary | N/A | 26–75 | 0 | 144 | 20 | 13.89 |
88 | Duivenvoorden et al. [116] | 2016 | Retrospective, multicentre | Unspecified | USA | Muscle invasive bladder cancer | Bladder | N/A | N/A | 74.8 | 761 | 106 | 13.93 |
89 | Gay et al. [117] | 2010 | Retrospective, multicentre | Unspecified | USA | Newly diagnosed multiple myeloma | Blood | N/A | N/A | N/A | 411 | 49 | 11.92 |
90 | Hong et al. [118] | 2012 | Prospective, multicentre | II | South Korea | Metastatic colorectal cancer | Colorectal | 57 | 31–75 | 51.3 | 76 | 1 | 1.32 |
91 | Kang et al. [118] | 2012 | Retrospective, single-centre | Unspecified | South Korea | Advanced gastric cancer | Gastric | 57 | 18–88 | 66 | 3095 | 103 | 3.33 |
92 | Li et al. [119] | 2017 | Prospective, multicentre | II | USA | Metastatic gastroesophageal adenocarcinoma | Gastric | 62 | 27–79 | 79% | 39 | 3 | 7.69 |
93 | Martella et al. [85] | 2022 | Retrospective, multicentre | Unspecified | Italy | Newly diagnosed adult acute myeloid leukaemia | Blood | N/A | N/A | 52 | 222 | 50 | 22.52 |
94 | Matikas et al. [120] | 2016 | Prospective, multicentre | IV | Greece | Advanced non-small cell lung cancer | Lung | 63 | 38–84 | 74.8 | 314 | 9 | 2.87 |
95 | Monk et al. [121] | 2018 | Prospective, multicentre | II | USA | Recurrent or persistent platinum-resistant ovarian, fallopian tube or primary peritoneal cancer | Ovary | N/A | N/A | 0 | 56 | 7 | 12.50 |
96 | Slavicek et al. [122] | 2014 | Retrospective, multicentre | Unspecified | Czech Republic | Metastatic colorectal cancer | Colorectal | N/A | N/A | 62.6 | 3187 | 105 | 3.29 |
97 | Tachihara et al. [123] | 2020 | Prospective, multicentre | II | Japan | Resected nonsquamous non-small celll lung cancer | Lung | 66 | 57–75 | 57.1 | 21 | 1 | 4.76 |
98 | Tewari et al. [124] | 2018 | Prospective, multicentre | III | USA | Advanced cervical cancer | Cervix | N/A | N/A | 0 | 452 | 22 | 4.87 |
99 | Yildiz et al. [125] | 2012 | Retrospective, multicentre | Unspecified | Turkey | Metastatic colorectal cancer | Colorectal | 53 | 18–74 | 61.7 | 332 | 4 | 1.20 |
100 | Lee et al. [126] | 2013 | Prospective, multicentre | Unspecified | Taiwan | Metastatic colorectal cancer | Colorectal | 57 | 32–87 | 62.5 | 40 | 1 | 2.50 |
101 | Reynes et al. [127] | 2016 | Prospective, multicentre | II | UK | Recurrent glioblastoma | Brain | 56 | 42–77 | 70.4 | 27 | 1 | 3.70 |
102 | Pinto et al. [128] | 2021 | Prospective, multicentre | II | Italy | Malignant pleural mesothelioma | Mesothelium | 69 | 44–81 | 74 | 165 | 20 | 12.12 |
Study ID | Author | Year | Cancer Phenotype, Body | Treatment Agent | C | N | P | Grade 1/2 (n) | Grade 3/4/5 (n) |
---|---|---|---|---|---|---|---|---|---|
1 | Affronti et al. [29] | 2018 | Brain | Bevacizumab with rilotumumab | 36 | 4 | 11.11 | 0 | 4 |
2 | Alexander et al. [30] | 2012 | Brain | Thalidomide | 89 | 8 | 8.99 | 0 | 8 |
3 | Alvarez et al. [31] | 2014 | Endometrial | Bevacizumab + temsirolimus | 49 | 1 | 2.04 | 0 | 1 |
4 | Assenat et al. [32] | 2021a | Pancreas | Nab-paclitaxel/gemcitabine and FOLFIRINOX | 58 | 18 | 31.03 | 8 | 10 |
5 | Assenat et al. [33] | 2021b | Pancreas | Gemcitabine, trastuzumab plus erlotinib | 62 | 22 | 35.48 | 0 | 22 |
6 | Bai et al. [34] | 2015 | Colorectal | mFOLFOX-6 or XELOX or FOLFIRI with bevacizumab | 175 | 1 | 0.57 | 0 | 1 |
7 | Balar et al. [35] | 2013 | Bladder | Gemcitabine, carboplatin and bevacizumab | 51 | 10 | 19.61 | 0 | 10 |
8 | Basso et al. [36] | 2013 | Breast | Liposomal doxorubicin | 32 | 3 | 9.38 | 2 | 1 |
9 | Bear et al. [37] | 2015 | Breast | Various | 1206 | 37 | 3.07 | 0 | 37 |
10 | Buxo et al. [38] | 2018 | Head and Neck | Carboplatin, cetuximab and tegafur | 104 | 1 | 0.96 | 0 | 1 |
11 | Campbell et al. [39] | 2012 | Mesothelium | Cediranib | 50 | 3 | 6.00 | 0 | 3 |
12 | Chekerov et al. [40] | 2018 | Ovary | Sorafenib plus topotecan versus placebo plus topotecan | 174 | 10 | 5.75 | 5 | 5 |
13 | Chen et al. [41] | 2015 | Lymph | Vorinostat and rituximab | 28 | 4 | 14.29 | 0 | 4 |
14 | Chibaudel et al. [42] | 2019 | Colorectal | Aflibercept with FOLFOX (folinic acid, fluorouracil, oxaliplatin) followed by maintenance with fluoropyrimidine | 48 | 1 | 2.08 | 0 | 1 |
15 | Ciombor et al. [43] | 2014 | Liver | Bortezomib plus doxorubicin | 38 | 1 | 2.63 | 0 | 1 |
16 | Cremolini et al. [44] | 2020 | Colorectal | mFOLFOX6 and bevacizumab followed by FOLFIRI plus bevacizumab after disease progression, or FOLFOXIRI and bevacizumab, followed by the same regimen after disease progression | 672 | 63 | 9.38 | 32 | 31 |
17 | de Vos et al. [45] | 2014 | Lymph | Dacetuzumab | 46 | 3 | 6.52 | 0 | 3 |
18 | DeCensi et al. [46] | 2019 | Breast | Tamoxifen | 500 | 2 | 0.40 | 0 | 2 |
19 | Deschenes-Simard et al. [47] | 2021 | Lung | Various immune checkpoint inhibitors including nivolumab, pembrolizumab, atezolizumab, avelumab, durvalumab, ipilimumab, tremelimumab, and M7824. | 593 | 64 | 10.79 | 0 | 64 |
20 | Donskov et al. [48] | 2018 | Renal | Interleukin-2 and interferon-a with or without bevacizumab | 118 | 15 | 12.71 | 0 | 15 |
21 | Dowell et al. [49] | 2012 | Mesothelium | Cisplatin, pemetrexed and bevacizumab | 52 | 7 | 13.46 | 0 | 7 |
22 | Dummer et al. [50] | 2012 | Lymph | Pegylated liposomal doxorubicin | 49 | 2 | 4.08 | 0 | 2 |
23 | Duvic et al. [51] | 2015 | Lymph | Brentuximab Vedotin | 48 | 2 | 4.17 | 0 | 2 |
24 | Fehr et al. [52] | 2020 | Oesophageal | Docetaxel and cisplatin, | 300 | 29 | 9.67 | 13 | 16 |
25 | Feliu et al. [53] | 2014 | Colorectal | Bevacizumab, oxaliplatin and oral capecitabine | 68 | 10 | 14.71 | 3 | 7 |
26 | Fleming et al. [54] | 2014 | Endometrial | Temsirolimus plus megestrol acetate/tamoxifen | 71 | 10 | 14.08 | 0 | 10 |
27 | Folprecht et al. [55] | 2016 | Colorectal | mFOLFOX6 with or without aflibercept | 235 | 22 | 9.36 | 1 | 21 |
28 | Frizziero et al. [56] | 2019 | Neuroendocrine | Carboplatin and etoposide | 113 | 7 | 6.19 | 0 | 7 |
29 | Fuchs et al. [57] | 2019 | Gastric | Cisplatin and capecitabine, and either ramucirumab or placebo | 645 | 99 | 15.35 | 0 | 99 |
30 | Ghiaseddin et al. [58] | 2018 | Brain | Bevacizumab and vorinostat | 40 | 3 | 7.50 | 1 | 2 |
31 | Ghiringhelli et al. [59] | 2012 | Colorectal | Bevacizumab and FOLFIRI-3 regimen (irinotecan, leucovorin and 5-fluorouracil) | 49 | 1 | 2.04 | 0 | 1 |
32 | Goss et al. [60] | 2016 | Lung | Osimertinib | 210 | 1 | 0.48 | 0 | 1 |
33 | Gronberg et al. [61] | 2012 | Lung | Enzastaurin | 107 | 16 | 14.95 | 0 | 16 |
34 | Guigay et al. [62] | 2015 | Head and Neck | Cetuximab, docetaxel and cisplatin | 54 | 1 | 1.85 | 0 | 1 |
35 | He et al. [63] | 2020 | Cervix | Cisplatin and paclitaxel chemotherapy with or without bevacizumab | 264 | 24 | 9.09 | 0 | 24 |
36 | Hirsch et al. [64] | 2017 | Lung | Onartuzumab, paclitaxel and carboplatin/cisplatin or placebo plus paclitaxel and carboplatin/cisplatin | 109 | 3 | 2.75 | 0 | 3 |
37 | Honecker et al. [65] | 2013 | Germ Cell | Cisplatin-based chemotherapy | 193 | 4 | 2.07 | 0 | 4 |
38 | Hu et al. [66] | 2015 | Lung | Nab-paclitaxel | 56 | 12 | 21.43 | 4 | 8 |
39 | Idelevich et al. [67] | 2012 | Oesophageal | Cisplatin, 5-FU, bevacizumab | 28 | 3 | 10.71 | 0 | 3 |
40 | Ikemura et al. [68] | 2015 | Lung | S-1 and irinotecan | 31 | 1 | 3.23 | 0 | 1 |
41 | Ishida et al. [69] | 2015 | Breast | Fulvestrant and trastuzumab (if HER2-positive disease) | 117 | 1 | 0.85 | 0 | 1 |
42 | Kakkos et al. [70] | 2020 | Mixed | Various | 231 | 17 | 7.36 | 0 | 17 |
43 | Karavasilis et al. [71] | 2014 | Lung | Erlotonib and docetaxel | 50 | 1 | 2.00 | 0 | 1 |
44 | Kim et al. [72] | 2018 | Lymph | Mogamulizumab or vorinostat | 372 | 7 | 1.88 | 0 | 7 |
45 | Kitayama et al. [73] | 2017 | Mixed | Various | 97 | 29 | 29.90 | 0 | 29 |
46 | Konecny et al. [74] | 2015 | Endometrial | Dovitinib | 53 | 9 | 16.98 | 3 | 6 |
47 | Kottschade et al. [75] | 2013 | Skin | Temozolomide and bevacizumab or nab-paclitaxel, carboplatin and bevacizumab | 93 | 7 | 7.53 | 0 | 7 |
48 | Lang et al. [76] | 2012 | Breast | Bevacizumab and capecitabine or paclitaxel | 561 | 8 | 1.43 | 0 | 8 |
49 | Lara et al. [77] | 2016 | Lung | Erlotinib or erlotinib plus carboplatin/paclitaxel | 59 | 1 | 1.69 | 0 | 1 |
50 | Larsen et al. [78] | 2015 | Gastric | Varied | 129 | 21 | 16.28 | 0 | 21 |
51 | Lee et al. [79] | 2020 | Ovary | Bevacizumab and sorafenib | 54 | 5 | 9.26 | 0 | 5 |
52 | Maio et al. [80] | 2017 | Mesothelium | Tremelimumab | 571 | 17 | 2.98 | 0 | 17 |
53 | Makielski et al. [81] | 2015 | Pancreas | Sorafenib and oxaliplatin and capecitabine | 24 | 1 | 4.17 | 0 | 1 |
54 | Matsumoto et al. [82] | 2015 | Ovary | Etoposide plus irinotecan | 60 | 1 | 1.67 | 0 | 1 |
55 | Michelsen & Sorensen [83] | 2015 | Lung | Platinum-vinorelbine plus bevacizumab with/without pemetrexed | 42 | 10 | 23.81 | 0 | 10 |
56 | Mountzios et al. [84] | 2012 | Lung | Bevacizumab and paclitaxel | 30 | 1 | 3.33 | 0 | 1 |
57 | Nagane et al. [85] | 2012 | Brain | Bevacizumab | 31 | 1 | 3.23 | 0 | 1 |
58 | Okines et al. [86] | 2013 | Gastric | Epirubicin, cisplatin and capecitabine plus bevacizumab | 200 | 15 | 7.50 | 0 | 15 |
59 | Ottosson et al. [87] | 2020 | Bladder | Varied | 126 | 45 | 35.71 | 0 | 45 |
60 | Peeters et al. [88] | 2013 | Colorectal | Trebananib and FOLFIRI | 144 | 10 | 6.94 | 0 | 10 |
61 | Pitz et al. [89] | 2015 | Brain | PX-866 | 33 | 2 | 6.06 | 0 | 2 |
62 | Powell et al. [90] | 2013 | Lung | Topotecan | 42 | 1 | 2.38 | 0 | 1 |
63 | Ramos et al. [91] | 2017 | Bladder | Varied | 1762 | 144 | 8.17 | 0 | 144 |
64 | Reck et al. [92] | 2014 | Lung | Docetaxel plus nintedanib or docetaxel plus placebo | 1314 | 3 | 0.23 | 0 | 3 |
65 | Reyes-Botero et al. [93] | 2018 | Brain | Temozolomide plus bevacizumab | 66 | 3 | 4.55 | 0 | 3 |
66 | Rivera et al. [94] | 2015 | Gastric | Reduced dose docetaxel, oxaliplatin and capecitabine | 43 | 4 | 9.30 | 0 | 4 |
67 | Saad et al. [95] | 2021 | Prostate | 982 | 15 | 1.53 | 0 | 15 | |
68 | Salinaro et al. [96] | 2020 | Ovary | Neoadjuvant | 230 | 16 | 6.96 | 0 | 16 |
69 | Salles et al. [97] | 2020 | Lymph | Tafasitamab and lenalidomide | 156 | 7 | 4.49 | 2 | 5 |
70 | Seidel et al. [98] | 2012 | Brain | Bevacizumab | 2855 | 143 | 5.01 | 0 | 143 |
71 | Slagter et al. [99,100] | 2020 | Gastric | Epirubicin, cisplatin, oxaliplatin and capecitabine | 781 | 78 | 9.99 | 0 | 1 |
72 | Sonpavde et al. [100] | 2012 | Prostate | Docetaxel plus prednisone with placebo or AT-101 | 220 | 9 | 4.09 | 0 | 9 |
73 | Stevenson et al. [101] | 2012 | Lung | Bevacizumab plus pemetrexed and carboplatin followed by maintenance BVZ | 40 | 3 | 7.50 | 0 | 3 |
74 | Tahover et al. [102] | 2015 | Colorectal | Bevacizumab with other chemotherapies | 308 | 20 | 6.49 | 0 | 20 |
75 | Tan et al. [103] | 2021 | Breast | Pertuzumab and trastuzumab | 500 | 4 | 0.80 | 0 | 4 |
76 | Tryfonidis et al. [104] | 2013 | Breast | Docetaxel, epirubicin and bevacizumab | 83 | 1 | 1.20 | 0 | 1 |
77 | Tunio et al. [105] | 2012 | Renal | Thalidomide | 80 | 7 | 8.75 | 0 | 7 |
78 | Uetake et al. [106] | 2015 | Colorectal | mFOLFOX6 + bevacizumab | 45 | 1 | 2.22 | 0 | 1 |
79 | Usmani et al. [107] | 2019 | Blood | Pembrolizumab plus lenalidomide and dexamethasone | 301 | 2 | 0.66 | 0 | 2 |
80 | Vaishampayan et al. [108] | 2014 | Prostate | Bevacizumab and satraplatin in docetaxel-pretreated | 31 | 2 | 6.45 | 0 | 2 |
81 | Valle et al. [109] | 2021 | Liver | All patients received intravenous cisplatin 25 mg/m2 and gemcitabine 1000 mg/m2 (on days 1 and 8 in 21-day cycles), for a maximum of eight cycles + additional treatment | 309 | 17 | 5.50 | 0 | 17 |
82 | Wolff et al. [110] | 2012 | Colorectal | Enzastaurin with 5-FU/leucovorin plus bevacizumab | 117 | 10 | 8.55 | 0 | 10 |
83 | Yamazaki et al. [111] | 2016 | Colorectal | Bevacizumab + FOLFIRI or Bevacizumab + mFOLFOX6 | 395 | 26 | 6.58 | 0 | 26 |
84 | Yardley et al. [112] | 2012 | Breast | Sunitinib | 83 | 2 | 2.41 | 0 | 2 |
85 | Zalcman et al. [113] | 2016 | Mesothelium | Bevacizumab, pemetrexed and cisplatin | 448 | 15 | 3.35 | 0 | 15 |
86 | Baggstrom et al. [114] | 2017 | Lung | Sunitinib after platinum-based chemotherapy | 210 | 1 | 0.48 | 0 | 0 |
87 | Chavan et al. [115] | 2017 | Ovary | Various | 144 | 20 | 13.89 | 0 | 20 |
88 | Duivenvoorden et al. [116] | 2016 | Bladder | Various | 761 | 106 | 13.93 | 0 | 106 |
89 | Gay et al. [117] | 2012 | Blood | Thalidomide or lenalidomide, and dexamethasone | 411 | 49 | 11.92 | 0 | 49 |
90 | Hong et al. [118] | 2012 | Colorectal | Bevacizumab plus doublet combination chemotherapy | 76 | 1 | 1.32 | 0 | 1 |
91 | Kang et al. [118] | 2012 | Gastric | Various | 3095 | 103 | 3.33 | 0 | 103 |
92 | Li et al. [119] | 2017 | Gastric | Modified FOLFOX6 | 39 | 3 | 7.69 | 0 | 3 |
93 | Martella et al. [85] | 2022 | Blood | Various | 222 | 50 | 22.52 | 0 | 50 |
94 | Matikas et al. [120] | 2016 | Lung | Bevacizumab-containing chemotherapy treatments, in conjunction with paclitaxel/docetaxel/cisplatin/carboplatin | 314 | 9 | 2.87 | 0 | 9 |
95 | Monk et al. [121] | 2018 | Ovary | Paclitaxel and elesclomol sodium | 56 | 7 | 12.50 | 5 | 2 |
96 | Slavicek et al. [122] | 2014 | Colorectal | Various | 3187 | 105 | 3.29 | 0 | 105 |
97 | Tachihara et al. [123] | 2020 | Lung | Cisplatin-based adjuvant chemotherapy and pemetrexed | 21 | 1 | 4.76 | 0 | 1 |
98 | Tewari et al. [124] | 2018 | Cervix | Various regimens involving cisplatin/paclitaxel/topotecan/bevacizumab | 452 | 22 | 4.87 | 0 | 22 |
99 | Yildiz et al. [125] | 2012 | Colorectal | FOLFIRI and bevacizumab | 332 | 4 | 1.20 | 0 | 4 |
100 | Lee et al. [126] | 2013 | Colorectal | Bevacizumab and standard chemotherapy combinations | 40 | 1 | 2.50 | 0 | 1 |
101 | Reynes et al. [127] | 2016 | Brain | Temozolomide and irinotecan | 27 | 1 | 3.70 | 0 | 1 |
102 | Pinto et al. [128] | 2021 | Mesothelium | Gemcitabine with/without ramucirumab | 165 | 20 | 12.12 | 15 | 5 |
Study ID | Author | Year | Treatment Dose | Treatment Duration | Treatment Cycle Frequency |
---|---|---|---|---|---|
1 | Affronti et al. [29] | 2018 | Bevacizumab (10 mg/kg IV) and Rilotumumab (20 mg/kg IV) | Bevacizumab (every 2 weeks for up to 12 cycles, with three infusions of Avastin every 2 weeks). Rilotumumab (every 2 weeks following the administration of Avastin for up to 12 cycles. Three infusions of Avastin at 10 mg/kg followed by rilotumumab at 20 mg/kg) | 6 weeks |
2 | Alexander et al. [30] | 2012 | Thalidomide (200 mg daily drom Day 1 of radiation therapy, increasing by 100–200 to 1200 mg every 1–2 weeks until tumour progression or unacceptable toxicity) | N/R | N/R |
3 | Alvarez et al. [31] | 2014 | Bevacizumab (10 mg/kg IV every other week, e.g., day 1 and 15) plus temsirolimus (25 mg IV weekly, e.g., day 1, 8, 15 and 22) or a 4 week cycle | Until disease progression or adverse event prohibits further therapy | 4 weeks |
4 | Assenat et al. [32] | 2021a | Patients received AG [IV injection of nab-paclitaxel over 30 min followed by gemcitabine] at day 1, 8 and 15, while FFX was delivered at day 29 and 43 (IV injection of oxaliplatin for 2 h, irinotecan for 90 min and leucovorin for 2 h after 1 h rest, followed by fluorouracil bolus injection and then continuous 46 h infusion). | Median of 4 (1–9) cycles in 8.5 months (0.5–19.8 months) | N/R |
5 | Assenat et al. [33] | 2021b | Patients received 1000 mg/m2 IV gemcitabine, 30 minutes infusion, on days 1, 8, 15, 22, 29, 36 and 43, during the first 8 weeks of treatment, then on days 1, 8 and 15, 3 weeks out of a 4-week cycle. They also received weekly IV trastuzumab, 4 mg/kg 90 min infusion on Day 1, 2 mg/kg on Days 8 and 15, 30 min infusion, and 100 mg/day erlotinib per os. | Median duration of 16.1 weeks | N/R |
6 | Bai et al. [34] | 2015 | mFOLFOX-6 (oxaliplatin 85 mg/m2 dL 5-FU bolus 400 mg/m2 d1, 5-FU 2400 mg/m2 continuous infusion for 46 h, every 2 weeks), XELOX (oxaliplatin 130 mg/m2 d1, capecitabine 2000 mg/m2 d1–14 every 3 weeks), or modified FOLFIRI (irinotecan 180 mg/m2 d1, 5-FU bolus 400 mg/m2 d1, 5FU 2400 mg/m2 continuous infusion for 46 h every 2 weeks), in combination with bevacizumab 5 mg/kg every 2 weeks (5-FU-based regimens) or 7.5 mg/kg every 3 weeks (capecitabine-based regimens). | N/R | N/R |
7 | Balar et al. [35] | 2013 | Patients initially received bevacizumab 10 mg/kg intravenously (IV) followed 2 weeks later with combination therapy. Gemcitabine 1000 mg/m2 on days 1 and 8 and carboplatin IV at area under the [concentration-time] curve (AUC) 5.0 on day 1 were administered every 21 days. Bevacizumab 15 mg/kg IV was administered on day 1 of each 21-day cycle | Median of 6 cycles administered | 3 weeks |
8 | Basso et al. [36] | 2013 | PLD was administered at 20 mg/mq every two weeks for a maximum of 12 cycles. | Mean of 7.8 cycles | 2 weeks |
9 | Bear et al. [37] | 2015 | Patients received one of three docetaxel-based neoadjuvant regimens for four cycles: docetaxel alone (100 mg/m2) with addition of capecitabine (825 mg/m2) oral twice daily days 1–14, 75 mg/m2) docetaxel) or with addition of gemcitabine (1000 mg/m2) days 1 and 8 intravenously, 75 mg/m2 docetaxel), all followed by neoadjuvant doxorubicin and cyclophosphamide (60 mg/m2) and 600 mg/m2) intravenously) every 3 weeks for four cycles. Those randomly assigned to bevacizumab groups were to receive bevacizumab (15 mg/kg, every 3 weeks for six cycles) with neoadjuvant chemotherapy and postoperatively for ten doses. | Various | Various |
10 | Buxo et al. [38] | 2018 | Carboplatin IV at an area under the curve of 5 mg/mL/min on day 1; cetuximab at an initial dose of 400 mg/m2 IV as a 2 h intravenous infusion, followed by 250 mg/m2 IV weekly as a 1 h infusion; and oral tegafur 500 mg/m2 every 12 h for 21 consecutive days | Median of 4.5 cycles, for 13.5 weeks | N/R |
11 | Campbell et al. [39] | 2012 | Administered orally once daily on days 1 through 28 of a 28-day cycle. Cediranib was initially dosed at 45 mg daily, but due to substantial rates of toxicity the protocol was amended in June 2007 to decrease the starting dose to 30 mg daily. | Median of 2 cycles, range 1–14 | N/R |
12 | Chekerov et al. [40] | 2018 | Topotecan (1.25 mg/m2 on days 1–5) plus either oral sorafenib 400 mg or placebo twice daily on days 6–15 | 6 cycles | 3 weeks |
13 | Chen et al. [41] | 2015 | One cycle of therapy consisted of oral vorinostat 200 mg twice daily for 14 days followed by a 7-day break, and intravenous rituximab 375 mg/m2 on day 1 of a 21-day cycle. | Median of 11.5 cycles, range 1–69, median duration is 17.8 months | N/R |
14 | Chibaudel et al. [42] | 2019 | Modified FOLFOX7 (5-FU/folinic acid and oxaliplatin) with aflibercept at 4 mg/kg every 2 weeks followed by maintenance therapy with fluoropyrimidine with aflibercept until disease progression or limiting toxicity. | 6 cycles | 2 weeks |
15 | Ciombor et al. [43] | 2014 | Bortezomib was administered at a dose of 1.3 mg/m2 IV push over 3–5 s on days 1, 4, 8, 11 of a 21-day cycle. Doxorubicin was administered at a dose of 15 mg/m2 IV over 5–15 min on days 1, 8 of each 21-day cycle. The first dose of doxorubicin was administered on day 8 of cycle 1 after the first two doses of bortezomib (cycle 1, day 8). On days when both bortezomib and doxorubicin were administered (days 1 and 8), doxorubicin was administered before bortezomib. Patients continued to receive chemotherapy until progression. Doxorubicin discontinued after receiving 12 cycles, regardless of response. | 12 cycles maximum, median 3.8 | 3 weeks |
16 | Cremolini et al. [44] | 2020 | In the control group, patients received first-line mFOLFOX6 (85 mg/m2 of intravenous oxaliplatin concurrently with 200 mg/m2 of leucovorin over 120 min; 400 mg/m2 intravenous bolus of fluorouracil; 2400 mg/m2 continuous infusion of fluorouracil for 48 h) plus bevacizumab (5 mg/kg intravenously over 30 min) followed by FOLFIRI (180 mg/m2 of intravenous irinotecan over 120 min concurrently with 200 mg/m2 of leucovorin; 400 mg/m2 intravenous bolus of fluorouracil; 2400 mg/m2 continuous infusion of fluorouracil for 48 h) plus bevacizumab after disease progression. In the experimental group, patients received FOLFOXIRI (165 mg/m2 of intravenous irinotecan over 60 min; 85 mg/m2 intravenous oxaliplatin concurrently with 200 mg/m2 of leucovorin over 120 min; 3200 mg/m2 continuous infusion of fluorouracil for 48 h) plus bevacizumab followed by the reintroduction of the same regimen after disease progression. | Maximum 8 cycles | 2 weeks |
17 | de Vos et al. [45] | 2014 | For Cycle 1, all patients were treated using an intra-patient dose-escalation schedule. 1 mg/kg Day 1, 2 mg/kg Day 4, 4 mg/kg Day 8, 8 thereafter. Subsequent cycles consisted of 4 doses of 8 mg/kg on Days 1, 8, 15, and 22. Patients were treated with 2 cycles after a complete remission (CR) or until disease progression for a maximum of 12 cycles. | up to 12 cycles | 6 weeks |
18 | DeCensi et al. [46] | 2019 | 5 mg/daily | 3 years | Daily |
19 | Deschenes-Simard et al. [47] | 2021 | Various | N/R | N/R |
20 | Donskov et al. [48] | 2018 | IFN 3 MIU subcutaneously (SC) daily and IL2 2.4 MIU/m2 sc twice daily, 5 days per week for two consecutive weeks every 28-day-cycle, for 9 months; or supplemented with BEV 10 mg/kg, every 2 weeks intravenously (IV) until progression, unacceptable toxicity, or 1 year following no evidence of disease (NED) | 9 months | 4 weeks |
21 | Dowell et al. [49] | 2012 | Previously untreated MM patients with advanced, unresectable disease received cisplatin (75 mg/m2), pemetrexed (500 mg/m2), and bevacizumab (15 mg/kg) intravenously every 21 days for a maximum of 6 cycles. Patients with responsive or stable disease received bevacizumab (15 mg/kg) intravenously every 21 days until progression or intolerance. | Median of 6 cycles of chemotherapy | 3 weeks |
22 | Dummer et al. [50] | 2012 | PLD 20 mg/m2 on days 1 and 15 | Maximum 6 cycles | 4 weeks |
23 | Duvic et al. [51] | 2015 | Brentuximab vedotin was administered intravenously at 1.8 mg/kg every 21 days for a maximum of eight doses. Patients with partial or stable response were eligible to receive up to eight additional doses. Patients with complete response could receive two additional doses. Patients with breakthrough lesions could receive 1.2 mg/kg every 2 weeks at the discretion of the principal investigator. | Maximum 8 cycles | 3 weeks |
24 | Fehr et al. [52] | 2020 | Docetaxel 75 mg/m2 and cisplatin 75 mg/m2 (duration of cycle 3 weeks) | 2 cycles | N/R |
25 | Feliu et al. [53] | 2014 | Intravenous bevacizumab 7.5 mg kg−1 and oxaliplatin 130 mg m−2 on day 1 of each cycle, plus oral capecitabine 1000 mg m−2 twice daily (BID) on days 1–14 of each cycle (patients with a baseline creatinine clearance of 30–50 mL min−1 had a 25% reduction in their initial capecitabine dose to 750 mg/m2 BID). Treatment was repeated every 3 weeks for 6 cycles. After 6 cycles, oxaliplatin was discontinued and patients continued to receive bevacizumab and capecitabine following the same regimen until progression or study discontinuation | Median of 6.8 months, range 0.2–25.2 | 3 weeks |
26 | Fleming et al. [54] | 2014 | Temsirolimus 25 mg IV weekly plus megestrol acetate 80 mg orally twice a day for 3 weeks alternating with tamoxifen 20 mg orally twice a day for 3 weeks | 3 weeks | Twice a day |
27 | Folprecht et al. [55] | 2016 | MFOLFOX6 (5 mg/m2 oxaliplatin [2 (h) IV)] together with 350 mg/m2 leucovorin (2 h IV) followed by 5-FU (400 mg/m2 as bolus and 2400 mg/m2 IV over 46 h). Patients in the experimental arm received 4 mg/kg aflibercept (1 h IV) before chemotherapy. | The median number of aflibercept cycles was 7.0 (range 1–43). In the mFOLFOX6 and the aflibercept/mFOLFOX6 arms, the median number of oxaliplatin cycles was 10.0 (1–31) and 9.0 (1–40), and the median number of 5-FU cycles was 11.0 (1–43) and 10.0 (1–44), respectively. The median duration of exposure to aflibercept was 17.1 weeks (range 2–94). In the mFOLFOX6 and the aflibercept/mFOLFOX6 arms, the median duration of exposure to oxaliplatin was 23.2 (2–77) and 22.0 (2–84), and to 5-FU was 25.9 (2–95) and 24.1 (2–106) weeks, respectively. | N/R |
28 | Frizziero et al. [56] | 2019 | CarboEtop-1; etoposide 50 mg twice daily orally from day 1 to day 7 (inclusive) followed by carboplatin area under the curve (AUC) 5, intravenously on day 8, every 28 days; CarboEtop-2; etoposide 120 mg/m2 intravenously on days 1, 2, and 3, and carboplatin AUC 5 or 6 intravenously on day 1, every 21 days; CarboEtop-3; etoposide 100 mg/m2 intravenously on days 1, 2, and 3, and carboplatin AUC 4 or 5 intravenously on day 1, every 21 days; A higher proportion of patients received intravenous etoposide compared to oral etoposide, both in first-line (54.7% versus 45.3%) and second/third-line (58.8% versus 41.2%). | Median of 3.6 months, range 0.4–9.9 | Various |
29 | Fuchs et al. [57] | 2019 | Temsirolimus 25 mg IV weekly plus megestrol acetate 80 mg orally twice a day for 3 weeks alternating with tamoxifen 20 mg orally twice a day for 3 weeks | 3 weeks | Twice daily |
30 | Ghiaseddin et al. [58] | 2018 | Bevacizumab, 10 mg/kg IV every 2 weeks combined with VOR 400 mg PO daily for 7 days, then 7 days off in a 28-day cycle, vorinostat VOR 400 mg PO daily for 7 days, then 7 days off, in a 28-day cycle | N/R | 4 weeks |
31 | Ghiringhelli et al. [59] | 2012 | Bevacizumab given at a dose of 5 mg/kg on day 1 every 2 weeks. FOLFIRI-3 regimen was given every 14 days as follows: on day 1, irinotecan 100 mg/m2 as a 1 h infusion, running concurrently with leucovorin 200 mg/m2 as a 2 h infusion via a Y-connector, followed by 5-FU 2000 mg/m2 as a 46 h infusion using an electric pump. On day 3, irinotecan 100 mg/m2 as a 1 h infusion was repeated, at the end of 5-FU infusion. | N/R | 2 weeks |
32 | Goss et al. [60] | 2016 | Osimertinib 80 mg orally once daily | N/R | Daily |
33 | Gronberg et al. [61] | 2012 | Oral maintenance enzastaurin (1125 mg on Day 1 followed by 500 mg daily) or placebo | N/R | Daily |
34 | Guigay et al. [62] | 2015 | docetaxel 75 mg/m2 IV day 1, cisplatin 75 mg/m2 IV day 1, and cetuximab on days 1, 8, and 15 (400 mg/m2 IV day 1 of cycle 1 and 250 mg/m2 IV weekly on subsequent administrations) | 4 weeks | |
35 | He et al. [63] | 2020 | Intravenous chemotherapy regimen consisted of cisplatin (at a dose of 50 mg per square metre of body surface area) plus paclitaxel (at a dose of 175 mg/m2 on day 1); the intravenous BEV regimen was a dose of 15 mg/kg on day 1 | N/R | 3 weeks |
36 | Hirsch et al. [64] | 2017 | N/R | N/R | N/R |
37 | Honecker et al. [65] | 2013 | Carboplatin was applied either as single-agent adjuvant treatment for pure seminoma or combined with etoposide as high-dose first-salvage treatment after cisplatin-based chemotherapy. Cisplatin-based combination chemotherapy consisted of 2 cycles with etoposide and bleomycin (PEB) as adjuvant therapy in nonseminoma or of 3–4 cycles combined with etoposide plus bleomycin (PEB), etoposide plus ifosfamide (VIP), or ifosfamide plus paclitaxel (TIP) for metastatic disease. | N/R | N/R |
38 | Hu et al. [66] | 2015 | Nab-paclitaxel 100 mg/m2 (IV) on days 1, 8 and 15 of a 28-day cycle | up to 6 cycles | 4 weeks |
39 | Idelevich et al. [67] | 2012 | Bevacizumab 7.5 mg/kg followed by cisplatin 80 mg/m2 infusion on day 1 followed by 5-FU 1000 mg/m2 as a 96 h continuous infusion on days 1–4, separated by a 3-week interval. | 4 days per cycle | 3 weeks |
40 | Ikemura et al. [68] | 2015 | Irinotecan was administered at 60 mg/m2 on Days 1 and 8. Oral S-1 was administered on Days 1–14 every 3 weeks at 80 mg/day for patients with a body surface area of <1.25 m2, 100 mg/day for patients with a body surface area of 1.25–1.5 m2 and 120 mg/day for patients with a body surface area of >1.5 m2 | N/R | 3 weeks |
41 | Ishida et al. [69] | 2015 | fulvestrant 500 mg as two 5-mL intramuscular injections, one in each buttock, on days 0, 14, and 28 and every 28 days thereafter. | 4 weeks | |
42 | Kakkos et al. [70] | 2020 | Various | N/R | N/R |
43 | Karavasilis et al. [71] | 2014 | Erlotinib for 12 consecutive days prior to docetaxel (Arm A) or after docetaxel (Arm B). Erlotinib was taken orally at a dose of 150 mg every day for 12 consecutive days and docetaxel was administered intravenously at a dose of 75 mg/m2. | N/R | 3 weeks |
44 | Kim et al. [72] | 2018 | Mogamulizumab (1 mg/kg intravenously on a weekly basis for the first 28-day cycle, then on days 1 and 15 of subsequent cycles) or vorinostat (400 mg daily) | N/R | 4 weeks |
45 | Kitayama et al. [73] | 2017 | Various | N/R | N/R |
46 | Konecny et al. [74] | 2015 | Dovitinib (500 mg per day, orally, on a 5 days-on and 2 days-off schedule | N/R | N/R |
47 | Kottschade et al. [75] | 2013 | Temozolomide (200 mg/m2 on d. 1–5) and bevacizumab (10 mg/kg IV d. 1 and 15) every 28 days (Regimen temozolomide/bevacizumab [TB]) or nab-paclitaxel (100 mg/m2 [80 mg/m2 post addendum 5-secondary to toxicity] days 1, 8 and 15), bevacizumab (10 mg/kg on days 1 and 15), and carboplatin (AUC 6 day 1 [AUC 5 post addendum 5]) every 28 days (Regimen ABC) | N/R | 4 weeks |
48 | Lang et al. [76] | 2012 | Arm A: bevacizumab 10 mg/kg days 1 and 15; paclitaxel 90 mg/m2 days 1, 8, and 15, every 4 weeks; or Arm B: bevacizumab 15 mg/kg day 1; capecitabine 1000 mg/m2 BID, days 1–14, every 3 weeks, until disease progression, unacceptable toxicity or consent withdrawal. | Various | Various |
49 | Lara et al. [77] | 2016 | Erlotinib 150 mg orally daily (Arm 1) or erlotinib 150 mg orally daily on days 2–16 plus 4 cycles of carboplatin (AUC 5 day 1) and paclitaxel (200 mg/m2 IV day 1), followed by erlotinib 150 mg orally (Arm 2) | N/R | N/R |
50 | Larsen et al. [78] | 2015 | Various | N/R | N/R |
51 | Lee et al. [79] | 2020 | Bevacizumab (5 mg/kg IV every 2 weeks) was given with sorafenib 200 mg bid 5 days-on/2 days-off. | N/R | N/R |
52 | Maio et al. [80] | 2017 | Intravenous tremelimumab (10 mg/kg) or placebo every 4 weeks for 7 doses and every 12 weeks thereafter until a treatment discontinuation criterion was met. | N/R | Various |
53 | Makielski et al. [81] | 2015 | Sorafenib 200 mg orally twice daily along with oxaliplatin 85 mg/m2 IV on days 1 and 15, followed by capecitabine 2250 mg/m2 orally every 8 h for six doses starting on days 1 and 15 of a 28-day cycle | N/R | 4 weeks |
54 | Matsumoto et al. [82] | 2015 | Oral etoposide (50 mg/m2 once a day) from day 1 to day 21 and IV irinotecan (70 mg/m2) on days 1 and 15 | up to 6 cycles | 4 weeks |
55 | Michelsen & Sorensen [83] | 2015 | Various | N/R | N/R |
56 | Mountzios et al. [84] | 2012 | Aclitaxel (90 mg/m2, days 1, 8 and 15) along with bevacizumab (10 mg per kg of body weight, days 1 and 15) in cycles of 28 days. | N/R | 4 weeks |
57 | Nagane et al. [85] | 2012 | 10 mg/kg bevacizumab as an intravenous infusion administered over 90 (±15) min on Day 1 of each cycle, which could be reduced to 30 min by Cycle 3 if no infusion reactions occurred. | N/R | N/R |
58 | Okines et al. [86] | 2013 | ECX comprises 3-weekly epirubicin 50 mg/m2 and cisplatin 60 mg/m2 IV (day 1), with capecitabine 1250 mg/m2/day (divided doses days 1–21), plus bevacizumab 7.5 mg/kg IV (day 1) added in the ECX-B arm. Surgery was scheduled 5 to 6 weeks after the last capecitabine dose of the third cycle and postoperative chemotherapy (three cycles) restarted 6–10 weeks after surgery. ECX-B patients then received six 3-weekly cycles of maintenance bevacizumab 7.5 mg/kg IV | N/R | N/R |
59 | Ottosson et al. [87] | 2020 | Various | N/R | N/R |
60 | Peeters et al. [88] | 2013 | Intravenous trebananib 10 mg kg−1 once weekly (QW) (Arm A) or placebo QW (Arm B) | N/R | Weekly |
61 | Pitz et al. [89] | 2015 | 8 mg daily | N/R | 8 weeks |
62 | Powell et al. [90] | 2013 | topotecan (4.0 mg/m2) on days 1, 8, and 15, and bevacizumab (10 mg/kg) on days 1 and 15 as intravenous infusions on a 28-day treatment cycle | N/R | 4 weeks |
63 | Ramos et al. [91] | 2017 | Gemcitabine, cisplatin, nonplatinum regimens, etc. | N/R | N/R |
64 | Reck et al. [92] | 2014 | Nintedanib 200 mg orally twice daily or matching placebo on days 2–21 | N/R | 3 weeks |
65 | Reyes-Botero et al. [93] | 2018 | TMZ administered at 130–150 mg/m2 per day for 5 days every 4 weeks plus Bev administered at 10 mg/kg every 2 weeks | N/R | N/R |
66 | Rivera et al. [94] | 2015 | “miniDOX” regimen (D: 40 mg/m2 IV, day 1; O: 80 mg/m2 IV, day 1; C: 625 mg/m2 PO BID, day 1 to day 21, every 21 days; after six courses, only C was maintained) | N/R | 3 weeks |
67 | Saad et al. [95] | 2021 | Oral apalutamide 240 mg once daily plus oral abiraterone acetate 1000 mg once daily and oral prednisone 5 mg twice daily (apalutamide plus abiraterone-prednisone group) or placebo plus abiraterone acetate and prednisone (abiraterone-prednisone group) | N/R | 4 weeks |
68 | Salinaro et al. [96] | 2020 | Various | N/R | N/R |
69 | Salles et al. [97] | 2020 | Afasitamab was administered intravenously at a dose of 12 mg/kg, over approximately 2 h. For cycles 1–3, tafasitamab was administered weekly on days 1, 8, 15, and 22; an additional loading dose was administered on day 4 of cycle 1. From cycle 4, tafasitamab was administered every 14 days,17 on days 1 and 15 of each cycle. Patients self-administered lenalidomide capsules orally, starting with 25 mg daily on days 1–21 of each 28-day cycle. A stepwise dose reduction (decrease by 5 mg per day in each step, only once per cycle, without re-escalation) of lenalidomide was done in cases of protocol-defined toxicities. | N/R | 4 weeks |
70 | Seidel et al. [98] | 2012 | Bevacizumab 5 mg/kg (n = 12) or 10 mg/kg (n = 34) every 2 weeks until disease progression or treatment-limiting toxicity | N/R | 2 weeks |
71 | Slagter et al. [99,100] | 2020 | Epirubicin (50 mg/m2 on day 1), cisplatin (60 mg/m2 on day 1), or oxaliplatin (130 mg/m2 on day 1), and capecitabine (either 1000 mg/m2 twice daily on day 1–14 in combination with epirubicin and cisplatin or 625 mg/m2 twice daily on day 1–21 in combination with epirubicin and oxaliplatin) (ECC/EOC) | 3 cycles | 3 weeks |
72 | Sonpavde et al. [100] | 2012 | Docetaxel (75 mg/m2 day 1) and prednisone 5 mg orally twice daily every 21 days with either AT-101 (40 mg) or placebo twice daily orally on days 1–3 | N/R | 3 weeks |
73 | Stevenson et al. [101] | 2012 | Bevacizumab 15 mg/kg, pemetrexed 500 mg/m2 and carboplatin at an area under the concentration-time curve of 6 intravenously on day 1 every 21 days. Responding or stable patients who completed 6 cycles then received bevacizumab maintenance every 21 days until disease progression. | N/R | 3 weeks |
74 | Tahover et al. [102] | 2015 | Bevacizumab was administered in combination with FOLFOX (modified FOLFOX6–oxaliplatin, leucovorin, 5-fluorouracil [5-FU]) in 40.3%, FOLFIRI (leucovorin, 5-FU, irinotecan) in 19.8%, FOLFOX-FOLFIRI/FOLFIRI-FOLFOX in sequence in 24.0%, CapeOx (oxaliplatin, capecitabine) in 6.5%, and 5-FU/LV or capecitabine monotherapy in 9.4%. | N/R | N/R |
75 | Tan et al. [103] | 2021 | Intravenous pertuzumab (840 mg loading dose, followed by 420 mg maintenance doses) plus intravenous trastuzumab (8 mg/kg loading dose, followed by 6 mg/kg maintenance doses) or the fixed-dose combination of pertuzumab and trastuzumab for subcutaneous injection (1200 mg pertuzumab plus 600 mg trastuzumab loading dose in 15 mL, followed by 600 mg pertuzumab plus 600 mg trastuzumab maintenance doses in 10 mL) | N/R | 3 weeks |
76 | Tryfonidis et al. [104] | 2013 | received B (15 mg/kg), E (75 mg/m2) and D (75 mg/m2) with prophylactic G-CSF support every 3 weeks (q3w) for up to 9 cycles followed by B (15 mg/kg q3w) until disease progression | up to 9 cycles | 3 weeks |
77 | Tunio et al. [105] | 2012 | Treatment consisted of gemcitabine in a 6 h infusion on days 1 and 8, and cisplatin at 75 mg/m on day 2 of a 3-week cycle. During phase I of the trial, the dose of gemcitabine was escalated from 130 to 170, 210 and 250 mg/m. In phase I of the trial, groups of six, seven, eight and eight patients were treated at the four dose levels of gemcitabine. In phase II, the remaining 32 patients all received gemcitabine at 250 mg/m. | N/R | Daily |
78 | Uetake et al. [106] | 2015 | On day 1, bevacizumab (5 mg/kg), levohorinate (200 mg/m2), 5-fluorouracil ([5-FU]; 400 mg/m2), and oxaliplatin (85 mg/m2) were rapidly injected intravenously, followed by a 46 h continuous intravenous infusion of 5-FU (2400 mg/m2). Each cycle of the treatment steps was repeated every 2 weeks. | N/R | 2 weeks |
79 | Usmani et al. [107] | 2019 | Oral lenalidomide 25 mg on days 1–21 and oral dexamethasone 40 mg on days 1, 8, 15, and 22 every 4 weeks, with or without intravenous pembrolizumab 200 mg every 3 weeks | N/R | 4 weeks |
80 | Vaishampayan et al. [108] | 2014 | Bevacizumab treatment was administered at 10 mg/kg intravenously on day 1, and 15 mg/kg on day 15, of each 35-day cycle. Premedications were allowed at the treating physician’s discretion. Satraplatin 80 mg/m2 was taken orally with fasting for 1 h prior, and 2 h after dosing. Prednisone 5 mg twice daily was taken with meal. | N/R | 35 days |
81 | Valle et al. [109] | 2021 | Intravenous ramucirumab 8 mg/kg or placebo (on days 1 and 8 in 21-day cycles) or oral merestinib 80 mg or placebo (once daily) until disease progression, unacceptable toxicity, death, or patient or investigator request for discontinuation. All participants received intravenous cisplatin 25 mg/m2 and gemcitabine 1000 mg/m2 (on days 1 and 8 in 21-day cycles), for a maximum of eight cycles | Maximum 8 cycles | 3 weeks |
82 | Wolff et al. [110] | 2012 | Both arms received LV5FU2 plus bevacizumab (Genentech/Roche, South San Francisco, CA, USA) on day 1 of each cycle (2 weeks): leucovorin 400 mg/m2 intravenously (IV), then 5-fluorouracil 400-mg/m2 bolus followed by 2400 mg/m2 IV over 46 h, and bevacizumab 5 mg/kg IV. | N/R | 2 weeks |
83 | Yamazaki et al. [111] | 2016 | Bevacizumab (5 mg/kg) followed by FOLFIRI (irinotecan 150 mg/m2; l-leucovorin 200 mg/m2; intravenous bolus of fluorouracil 400 mg/m2, continuous infusion of fluorouracil 2400 mg/m2), or bevacizumab followed by mFOLFOX6 (oxaliplatin 85 mg/m2 instead of irinotecan) | N/R | 2 weeks |
84 | Yardley et al. [112] | 2012 | Sunitinib monotherapy at a starting dose of 37.5 mg orally on a continuous daily dosing schedule; one treatment cycle was considered to be 4 weeks. | N/R | 4 weeks |
85 | Zalcman et al. [113] | 2016 | Intravenously 500 mg/m2 pemetrexed plus 75 mg/m2 cisplatin with (PCB) or without (PC) 15 mg/kg bevacizumab | Maximum 6 cycles | 3 weeks |
86 | Baggstrom et al. [114] | 2017 | Patients received maintenance sunitinib, 37.5 mg/d continuously, or placebo until disease progression or intolerable toxicity. | N/R | N/R |
87 | Chavan et al. [115] | 2017 | Various | Various | Various |
88 | Duivenvoorden et al. [116] | 2016 | Various | Various | Various |
89 | Gay et al. [117] | 2012 | Thalidomide was given at a dose ranging from 100 mg/day to 400 mg/day continuously; lenalidomide dose was 25 mg/day, days 1 to 21 on a 28-day cycle. All patients received dexamethasone, either at high dose (40 mg orally on days 1–4, 9–12, and 17–20) or at low dose (40 mg orally on days 1, 8, 15, and 22). | N/R | 4 weeks |
90 | Hong et al. [118] | 2012 | FOLFOX or FOLFIRI consisted of leucovorin 200 mg/m2 on day 1, 5-FU 400 mg/m2 bolus infusion on day 1, and 5-FU 2400 mg/m2 continuous infusion for 46 h, either with oxaliplatin 85 mg/m2 or with irinotecan 150 or 180 mg/m2 on day 1, respectively, and repeated every 2 weeks. CapeOX consisted of capecitabine 1000 mg/m2 twice daily on days 1–14 and oxaliplatin 130 mg/m2 on day 1 and again every 3 weeks. | N/R | N/R |
91 | Kang et al. [118] | 2012 | Various | Various | Various |
92 | Li et al. [119] | 2017 | mFOLFOX6 (leucovorin 400 mg/m, fluorouracil 400 mg/m bolus and 2400 mg/m continuous infusion over 46 h, oxaliplatin 85 mg/m) and bevacizumab (10 mg/kg) every 2 weeks until disease progression or intolerance. | Median 12 cycles, range 4–86 | 2 weeks |
93 | Martella et al. [85] | 2022 | Various | Various | Various |
94 | Matikas et al. [120] | 2016 | Various | Various | Various |
95 | Monk et al. [121] | 2018 | Paclitaxel 80 mg/m2 and elesclomol sodium 200 mg/m2 (equivalent of free elesclomol) were administered as two separate 1 h IV infusions weekly × 3 with a one-week rest | Various | weeks |
96 | Slavicek et al. [122] | 2014 | Various | Various | Various |
97 | Tachihara et al. [123] | 2020 | Adjuvant chemotherapy with four cycles of cisplatin-based treatment (75 mg/m2) plus pemetrexed (500 mg/m2) with vitamin supplementation every three weeks. | N/R | N/R |
98 | Tewari et al. [124] | 2018 | Various | Various | Various |
99 | Yildiz et al. [125] | 2012 | Various | Various | Various |
100 | Lee et al. [126] | 2013 | Eligible patients received bevacizumab (Avastin, Roche Products Ltd.), plus standard 5-fluoropyrimidine (5-FU)-based chemotherapy per physician’s choice (single-agent 5-FU or 5-FU plus oxaliplatin or irinotecan) until disease progression, unacceptable toxicity or death. The bevacizumab dose was fixed at 5 mg/kg every 2 weeks. | Various | Various |
101 | Reynes et al. [127] | 2016 | All patients received oral TMZ at a fixed and continuous dose of 50 mg/m2 divided into three daily intakes, except for a single 100 mg/m2 dose, administered between 3 and 6 h before every irinotecan infusion. Irinotecan was given intravenously at the previously established dose of 100 mg/m2 on days 8 and 22 of 28-day cycles. | N/R | 4 weeks |
102 | Pinto et al. [128] | 2021 | Patients received intravenous gemcitabine 1000 mg/m2 on days 1 and 8 every 3 weeks, combined with either intravenous ramucirumab 10 mg/kg or matching placebo on day 1 of a 3-week cycle, until progressive disease, unacceptable toxicity, or withdrawal of consent to treatment occurred. | N/R | 3 weeks |
Cancer Phenotype | Number of Studies (N) | Total Number of Patients (n) | Crude Prevalence Rate | Pooled Prevalence Rate (Derived from Meta-Analysis) | 95% CI | z-Score | p-Value |
---|---|---|---|---|---|---|---|
Overall | 102 | 30671 | 5.78% | 6% | 0.06–0.07 | 18.53 | <0.001 |
Cancer Phenotype | |||||||
Bladder | 4 | 2700 | 11.30% | 18% | 0.10–0.28 | 6.53 | <0.001 |
Blood | 3 | 934 | 10.81% | N/A | N/A | N/A | N/A |
Brain | 8 | 3177 | 5.19% | 4% | 0.04–0.05 | 17.72 | <0.001 |
Breast | 8 | 3082 | 1.88% | 1% | 0.00–0.03 | 4.17 | <0.001 |
Cervical | 2 | 716 | 6.42% | N/A | N/A | N/A | N/A |
Colorectal | 15 | 5891 | 4.69% | 5% | 0.03–0.07 | 8.16 | <0.001 |
Endometrial | 3 | 173 | 11.56% | N/A | N/A | N/A | N/A |
Gastric | 7 | 4932 | 6.55% | 9% | 0.05–0.15 | 5.89 | <0.001 |
Germ Cell | 1 | 193 | 2.07% | N/A | N/A | N/A | N/A |
Head and Neck | 2 | 158 | 1.27% | N/A | N/A | N/A | N/A |
Liver | 2 | 347 | 5.19% | N/A | N/A | N/A | N/A |
Lung | 16 | 3228 | 3.97% | 5% | 0.02–0.09 | 4.32 | <0.001 |
Lymph | 6 | 699 | 3.58% | 4% | 0.02–0.07 | 4.69 | 0.05 |
Mesothelial | 5 | 1286 | 4.82% | 6% | 0.03–0.11 | 5.24 | <0.001 |
Mixed | 2 | 328 | 14% | N/A | N/A | N/A | N/A |
Neuroendocrine | 1 | 113 | 6.19% | N/A | N/A | N/A | N/A |
Oesophageal | 2 | 328 | 9.76% | N/A | N/A | N/A | N/A |
Ovarian | 6 | 718 | 8.22% | 8% | 0.05–0.12 | 7.47 | 0.02 |
Pancreatic | 3 | 144 | 28.47% | N/A | N/A | N/A | N/A |
Prostate | 3 | 1233 | 2.11% | N/A | N/A | N/A | N/A |
Renal | 2 | 198 | 11.11% | N/A | N/A | N/A | N/A |
Skin | 1 | 93 | 7.53% | N/A | N/A | N/A | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.-Y.; Bhaskar, S.M.M. Venous Thromboembolism in Cancer Patients Undergoing Chemotherapy: A Systematic Review and Meta-Analysis. Diagnostics 2022, 12, 2954. https://doi.org/10.3390/diagnostics12122954
Sun M-Y, Bhaskar SMM. Venous Thromboembolism in Cancer Patients Undergoing Chemotherapy: A Systematic Review and Meta-Analysis. Diagnostics. 2022; 12(12):2954. https://doi.org/10.3390/diagnostics12122954
Chicago/Turabian StyleSun, Ming-Yee, and Sonu M. M. Bhaskar. 2022. "Venous Thromboembolism in Cancer Patients Undergoing Chemotherapy: A Systematic Review and Meta-Analysis" Diagnostics 12, no. 12: 2954. https://doi.org/10.3390/diagnostics12122954
APA StyleSun, M.-Y., & Bhaskar, S. M. M. (2022). Venous Thromboembolism in Cancer Patients Undergoing Chemotherapy: A Systematic Review and Meta-Analysis. Diagnostics, 12(12), 2954. https://doi.org/10.3390/diagnostics12122954