Nasal Mycology of Chronic Rhinosinusitis Revealed by Nanopore Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Fungal Culture Using Ponikau et al’s Method
2.3. DNA Extraction from the Nasal Irrigant
2.4. PCR-Free Library Preparation and NS
2.5. Bioinformatic Analysis
3. Results
3.1. Clinical Characteristics of Patients
3.2. Isolation of Fungi Using Ponikau et al’s Method
3.3. Identification of Fungi by Nanopore Sequencing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rose, A.S.; Thorp, B.D.; Zanation, A.M.; Ebert, C.S., Jr. Chronic rhinosinusitis in children. Pediatr. Clin. N. Am. 2013, 60, 979–991. [Google Scholar] [CrossRef] [PubMed]
- Bachert, C.; Marple, B.; Schlosser, R.J.; Hopkins, C.; Schleimer, R.P.; Lambrecht, B.N.; Broker, B.M.; Laidlaw, T.; Song, W.J. Adult chronic rhinosinusitis. Nat. Rev. Dis. Prim. 2020, 6, 86. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cutting, G.R. Chronic rhinosinusitis. Adv. Otorhinolaryngol. 2011, 70, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Heath, J.; Hartzell, L.; Putt, C.; Kennedy, J.L. Chronic Rhinosinusitis in Children: Pathophysiology, Evaluation, and Medical Management. Curr. Allergy Asthma Rep. 2018, 18, 37. [Google Scholar] [CrossRef]
- Ohki, Y.; Okamoto, Y.; Iinuma, T.; Yamamoto, H.; Toyotome, T.; Yahiro, M.; Yonekura, S.; Sakurai, D.; Kamei, K. Local fungus-specific Immunoglobulin E production in chronic rhinosinusitis with nasal polyps. Rhinology 2020, 58, 136–144. [Google Scholar] [CrossRef]
- Didehdar, M.; Khoshbayan, A.; Vesal, S.; Darban-Sarokhalil, D.; Razavi, S.; Chegini, Z.; Shariati, A. An overview of possible pathogenesis mechanisms of Alternaria alternata in chronic rhinosinusitis and nasal polyposis. Microb. Pathog. 2021, 155, 104905. [Google Scholar] [CrossRef]
- Tyler, M.A.; Lam, K.; Marino, M.J.; Yao, W.C.; Schmale, I.; Citardi, M.J.; Luong, A.U. Revisiting the controversy: The role of fungi in chronic rhinosinusitis. Int. Forum Allergy Rhinol. 2021, 11, 1577–1587. [Google Scholar] [CrossRef]
- Ponikau, J.U.; Sherris, D.A.; Kern, E.B.; Homburger, H.A.; Frigas, E.; Gaffey, T.A.; Roberts, G.D. The diagnosis and incidence of allergic fungal sinusitis. Mayo Clin. Proc. 1999, 74, 877–884. [Google Scholar] [CrossRef]
- Braun, H.; Buzina, W.; Freudenschuss, K.; Beham, A.; Stammberger, H. ‘Eosinophilic fungal rhinosinusitis’: A common disorder in Europe? Laryngoscope 2003, 113, 264–269. [Google Scholar] [CrossRef]
- Jiang, R.S.; Su, M.C.; Lin, J.F. Nasal mycology of chronic rhinosinusitis. Am. J. Rhinol. 2005, 19, 131–133. [Google Scholar] [CrossRef]
- Cleland, E.J.; Bassiouni, A.; Boase, S.; Dowd, S.; Vreugde, S.; Wormald, P.J. The fungal microbiome in chronic rhinosinusitis: Richness, diversity, postoperative changes and patient outcomes. Int. Forum Allergy Rhinol. 2014, 4, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Polzehl, D.; Weschta, M.; Podbielski, A.; Riechelmann, H.; Rimek, D. Fungus culture and PCR in nasal lavage samples of patients with chronic rhinosinusitis. J. Med. Microbiol. 2005, 54, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.Y.; Miller, S.A. Clinical metagenomics. Nat. Rev. Genet. 2019, 20, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Merkley, M.A.; Bice, T.C.; Grier, A.; Strohl, A.M.; Man, L.X.; Gill, S.R. The effect of antibiotics on the microbiome in acute exacerbations of chronic rhinosinusitis. Int. Forum Allergy Rhinol. 2015, 5, 884–893. [Google Scholar] [CrossRef] [PubMed]
- Hauser, L.J.; Ir, D.; Kingdom, T.T.; Robertson, C.E.; Frank, D.N.; Ramakrishnan, V.R. Investigation of bacterial repopulation after sinus surgery and perioperative antibiotics. Int. Forum Allergy Rhinol. 2016, 6, 34–40. [Google Scholar] [CrossRef]
- Heikema, A.P.; Horst-Kreft, D.; Boers, S.A.; Jansen, R.; Hiltemann, S.D.; de Koning, W.; Kraaij, R.; de Ridder, M.A.J.; van Houten, C.B.; Bont, L.J.; et al. Comparison of Illumina versus Nanopore 16S rRNA Gene Sequencing of the Human Nasal Microbiota. Genes 2020, 11, 1105. [Google Scholar] [CrossRef]
- Thompson, J.F.; Steinmann, K.E. Single molecule sequencing with a HeliScope genetic analysis system. Curr. Protoc. Mol. Biol. 2010, 92, 7.10.1–7.10.14. [Google Scholar] [CrossRef] [Green Version]
- D’Andreano, S.; Cusco, A.; Francino, O. Rapid and real-time identification of fungi up to species level with long amplicon nanopore sequencing from clinical samples. Biol. Methods Protoc. 2021, 6, bpaa026. [Google Scholar] [CrossRef]
- Fokkens, W.J.; Lund, V.J.; Hopkins, C.; Hellings, P.W.; Kern, R.; Reitsma, S.; Toppila-Salmi, S.; Bernal-Sprekelsen, M.; Mullol, J.; Alobid, I.; et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology 2020, 58, 1–464. [Google Scholar] [CrossRef]
- Lund, V.J.; Kennedy, D.W. Staging for rhinosinusitis. Otolaryngol. Head Neck Surg. 1997, 117, S35–S40. [Google Scholar] [CrossRef]
- Lund, V.J.; Mackay, I.S. Staging in rhinosinusitus. Rhinology 1993, 31, 183–184. [Google Scholar] [PubMed]
- Snidvongs, K.; Pratt, E.; Chin, D.; Sacks, R.; Earls, P.; Harvey, R.J. Corticosteroid nasal irrigations after endoscopic sinus surgery in the management of chronic rhinosinusitis. Int. Forum Allergy Rhinol. 2012, 2, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, P.G.; Whittaker, J.; Prasad, S. Invasive and Non-Invasive Fungal Rhinosinusitis-A Review and Update of the Evidence. Medicina 2019, 55, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauser, L.J.; Feazel, L.M.; Ir, D.; Fang, R.; Wagner, B.D.; Robertson, C.E.; Frank, D.N.; Ramakrishnan, V.R. Sinus culture poorly predicts resident microbiota. Int. Forum Allergy Rhinol. 2015, 5, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Deng, X.; Lee, M.; Sucu, Y.D.; Arevalo, S.; Stryke, D.; Federman, S.; Gopez, A.; Reyes, K.; Zorn, K.; et al. Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids. Nat. Med. 2021, 27, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.C.; Bassiouni, A.; Tanjararak, K.; Vreugde, S.; Wormald, P.J.; Psaltis, A.J. Role of fungi in chronic rhinosinusitis through ITS sequencing. Laryngoscope 2018, 128, 16–22. [Google Scholar] [CrossRef]
Patient | Sex | Age | Smoking History | Nasal Steroid | Atopic Dermatitis | Nasal Polyps | Eosinophilic CRS | Endoscopic Score | CT Score | Culture Result |
---|---|---|---|---|---|---|---|---|---|---|
1 | F | 44 | N | N | N | Y | N | 4 | 9 | Mucor species |
2 | F | 73 | N | N | N | N | N | 3 | 7 | Aspergillus fumigatus |
Aspergillus niger | ||||||||||
Cladosporium species | ||||||||||
3 | M | 39 | N | N | Y | N | Y | 3 | 7 | Penicillium species |
4 | M | 51 | Y | N | N | Y | Y | 4 | 11 | Aspergillus niger |
Penicillium species | ||||||||||
5 | M | 27 | N | N | Y | N | N | 3 | 5 | - |
6 | M | 61 | N | N | Y | N | N | 4 | 8 | Unidentified mold |
7 | M | 80 | N | Y | N | Y | Y | 5 | 11 | - |
8 | M | 53 | N | Y | N | Y | Y | 3 | 7 | Candida albicans |
9 | M | 45 | N | Y | N | N | Y | 4 | 6 | Aspergillus niger |
10 | M | 21 | N | N | N | Y | Y | 3 | 6 | Aspergillus flavus |
Cladosporium species | ||||||||||
11 | F | 54 | N | N | N | N | N | 2 | 8 | Cladosporium species |
12 | M | 45 | N | N | N | N | Y | 2 | 6 | Chaetomium species |
Penicillium species | ||||||||||
13 | F | 41 | N | N | N | Y | Y | 4 | 9 | Penicillium species |
Patient | Total Reads | Reads Classified | Reads Unclassified | Human Read Counts | % of Human Read | Fungal Read Counts | % of Fungal Read | Bacterial Read Counts | % of Bacterial Read | Archaeal Reads | Viral Reads |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 91,476 | 86,209 | 5267 | 85,768 | 93.76% | 105 | 0.11% | 246 | 0.27% | 1 | 2 |
2 | 260,652 | 247,711 | 12,941 | 246,976 | 94.75% | 276 | 0.11% | 257 | 0.10% | 3 | 5 |
3 | 124,092 | 119,782 | 4310 | 119,206 | 96.06% | 125 | 0.10% | 378 | 0.30% | 0 | 2 |
4 | 461,770 | 438,200 | 23,570 | 437,483 | 94.74% | 309 | 0.07% | 121 | 0.03% | 4 | 2 |
5 | 473,888 | 454,052 | 19,836 | 449,829 | 94.92% | 2219 | 0.47% | 689 | 0.15% | 4 | 191 |
6 | 587,767 | 553,744 | 34,023 | 548,601 | 93.34% | 675 | 0.11% | 3763 | 0.64% | 9 | 12 |
7 | 673,783 | 655,678 | 18,105 | 651,395 | 96.68% | 347 | 0.05% | 2499 | 0.37% | 4 | 34 |
8 | 944,779 | 919,864 | 24,915 | 827,692 | 87.61% | 912 | 0.10% | 64,239 | 6.80% | 4 | 244 |
9 | 1,598,608 | 1,537,782 | 60,826 | 1,389,765 | 86.94% | 1458 | 0.09% | 101,373 | 6.34% | 5 | 379 |
10 | 598,282 | 577,110 | 21,172 | 530,416 | 88.66% | 634 | 0.11% | 34,257 | 5.73% | 2 | 156 |
11 | 339,267 | 328,838 | 10,429 | 226,793 | 66.85% | 273 | 0.08% | 69,760 | 20.56% | 2 | 314 |
12 | 228,665 | 226,967 | 1698 | 64,832 | 28.35% | 54 | 0.02% | 128,244 | 56.08% | 0 | 348 |
13 | 516,000 | 483,958 | 32,042 | 314,131 | 60.88% | 470 | 0.09% | 107,473 | 20.83% | 5 | 783 |
Patient | Shannon Species Diversity | Number of Fungi Genus Identified (OTU) | Top 10 Genus | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
1 | 1.672 | 81 | Malassezia | Phycomyces | Lobosporangium | Aspergillus | Coccidioides | Marssonina | Sclerotinia | Capronia | Penicilliopsis | Paracoccidioides |
35.80% | 17.28% | 8.64% | 4.94% | 3.70% | 3.70% | 3.70% | 2.47% | 2.47% | 2.47% | |||
2 | 1.297 | 242 | Malassezia | Phycomyces | Lobosporangium | Verticillium | Aspergillus | Bipolaris | Mitosporidium | Penicillium | Sclerotinia | Colletotrichum |
43.39% | 7.02% | 4.96% | 3.72% | 3.31% | 2.07% | 2.07% | 1.65% | 1.65% | 1.65% | |||
3 | 1.445 | 92 | Malassezia | Phycomyces | ParaCoccidioides | Tuber | Marssonina | Verticillium | Lodderomyces | Laccaria | Melampsora | Lobosporangium |
54.35% | 7.61% | 4.35% | 3.26% | 3.26% | 3.26% | 3.26% | 3.26% | 3.26% | 3.26% | |||
4 | 1.321 | 276 | Malassezia | Phycomyces | Colletotrichum | Lobosporangium | Aspergillus | Lodderomyces | Penicilliopsis | Coccidioides | Metarhizium | Trichoderma |
36.23% | 6.88% | 4.71% | 3.62% | 3.26% | 2.90% | 1.81% | 1.81% | 1.81% | 1.81% | |||
5 | 1.516 | 2226 | Verticillium | Malassezia | Lobosporangium | Phycomyces | Pestalotiopsis | Penicillium | Beauveria | Aspergillus | Tetrapisispora | Metschnikowia |
30.10% | 13.88% | 4.67% | 3.86% | 3.82% | 3.28% | 3.05% | 2.52% | 2.38% | 2.29% | |||
6 | 1.23 | 644 | Malassezia | Phycomyces | Lobosporangium | Aspergillus | Verticillium | ParaCoccidioides | Ascoidea | Trichoderma | Candida | Anthracocystis |
47.20% | 4.97% | 4.81% | 3.26% | 2.80% | 2.64% | 2.02% | 1.55% | 1.55% | 1.55% | |||
7 | 1.283 | 312 | Malassezia | Phycomyces | Lobosporangium | Aspergillus | Blastomyces | Verticillium | Trichoderma | Lodderomyces | Capronia | Penicilliopsis |
43.91% | 7.05% | 5.13% | 3.53% | 2.24% | 2.24% | 2.24% | 1.92% | 1.60% | 1.60% | |||
8 | 1.128 | 888 | Malassezia | Verticillium | Phycomyces | Lobosporangium | Paracoccidioides | Aspergillus | Candida | Penicillium | Sclerotinia | Colletotrichum |
53.49% | 6.42% | 4.95% | 3.60% | 1.58% | 1.46% | 1.35% | 1.24% | 1.24% | 1.24% | |||
9 | 1.094 | 1439 | Malassezia | Phycomyces | Lobosporangium | Verticillium | Aspergillus | Paracoccidioides | Colletotrichum | Trichoderma | Candida | Anthracocystis |
47.12% | 4.59% | 2.78% | 2.43% | 2.15% | 1.88% | 1.67% | 1.53% | 1.39% | 1.39% | |||
10 | 1.683 | 608 | Verticillium | Malassezia | Candida | Colletotrichum | Phycomyces | Isaria | Penicillium | Aspergillus | Lobosporangium | Metarhizium |
18.75% | 18.42% | 9.38% | 6.58% | 5.92% | 3.62% | 2.80% | 2.63% | 2.63% | 1.97% | |||
11 | 1.441 | 259 | Malassezia | Candida | Colletotrichum | Phycomyces | Lobosporangium | Isaria | Anthracocystis | Marssonina | Setosphaeria | Metarhizium |
36.29% | 8.49% | 8.11% | 4.25% | 3.86% | 2.70% | 2.70% | 1.93% | 1.54% | 1.54% | |||
12 | 1.358 | 55 | Malassezia | Phycomyces | Anthracocystis | Lobosporangium | Schizosaccharomyces | Arthrobotrys | Exophiala | Penicilliopsis | Nannizzia | Trichophyton |
50.91% | 7.27% | 3.64% | 3.64% | 1.82% | 1.82% | 1.82% | 1.82% | 1.82% | 1.82% | |||
13 | 1.52 | 447 | Malassezia | Lobosporangium | Phycomyces | Candida | Aspergillus | Colletotrichum | Lodderomyces | Metarhizium | Histoplasma | Isaria |
12.98% | 8.95% | 7.83% | 7.38% | 4.47% | 4.47% | 3.13% | 2.46% | 2.24% | 2.24% |
Genus | Ponikau et al.’s Method [8] (N, %) | Nanopore Sequencing (N, %) |
---|---|---|
Malassezia sp. | - | 13 (100%) |
Aspergillus sp. | 4 (30.8%) | 12 (92.3%) |
Penicillium sp. | 4 (30.8%) | 10 (76.9%) |
Cladosporium sp. | 3 (23.1%) | - |
Candida albicans | 1 (7.7%) | 11 (84.6%) |
Mucor sp. | 1 (7.7%) | - |
Chaetomium sp. | 1 (7.7%) | 10 (76.9%) |
Total | 11 (84.6%) | 13 (100%) |
Patient | Pathogenic Fungi | Read Counts | Relative Abundance of Fungi (%) |
---|---|---|---|
1 | Malassezia sp. | 29 | 27.62% |
Aspergillus sp. | 4 | 3.81% | |
Chaetomium sp. | 1 | 0.95% | |
Penicillium sp. | 1 | 0.95% | |
2 | Aspergillus sp. | 8 | 2.90% |
Chaetomium sp. | 2 | 0.722% | |
Malassezia sp. | 105 | 38.05% | |
Penicillium sp. | 4 | 1.45% | |
3 | Aspergillus sp. | 1 | 0.8% |
Chaetomium sp. | 1 | 0.8% | |
Malassezia sp. | 50 | 40.0% | |
4 | Aspergillus sp. | 9 | 2.91% |
Candida albicans | 2 | 0.65% | |
Malassezia sp. | 100 | 32.36% | |
Penicillium sp. | 1 | 0.32% | |
5 | Aspergillus sp. | 56 | 2.52% |
Candida albicans | 1 | 0.05% | |
Chaetomium sp. | 1 | 0.05% | |
Malassezia sp. | 309 | 13.93% | |
Penicillium sp. | 73 | 3.29% | |
6 | Aspergillus sp. | 20 | 2.96% |
Candida albicans | 3 | 0.44% | |
Chaetomium sp. | 3 | 0.44% | |
Malassezia sp. | 304 | 45.04% | |
Penicillium sp. | 6 | 0.89% | |
7 | Aspergillus sp. | 11 | 3.17% |
Chaetomium sp. | 1 | 0.29% | |
Candida albicans | 1 | 0.29% | |
Malassezia sp. | 137 | 39.48% | |
8 | Aspergillus sp. | 13 | 1.43% |
Candida albicans | 4 | 0.44% | |
Chaetomium sp. | 3 | 0.33% | |
Malassezia sp. | 475 | 52.08% | |
Penicillium sp. | 11 | 1.21% | |
9 | Aspergillus sp. | 31 | 2.13% |
Candida albicans | 6 | 0.41% | |
Chaetomium sp. | 5 | 0.34% | |
Malassezia sp. | 678 | 46.5% | |
Penicillium sp. | 11 | 0.75% | |
10 | Malassezia sp. | 112 | 17.67% |
Aspergillus sp. | 16 | 2.52% | |
Candida albicans | 1 | 0.16% | |
Chaetomium sp. | 2 | 0.32% | |
Penicillium sp. | 17 | 2.68% | |
11 | Malassezia sp. | 94 | 34.43% |
Aspergillus sp. | 3 | 1.10% | |
Penicillium sp. | 1 | 0.37% | |
12 | Malassezia sp. | 28 | 51.85% |
13 | Aspergillus sp. | 20 | 4.26% |
Candida albicans | 7 | 1.49% | |
Chaetomium sp. | 2 | 0.43% | |
Malassezia sp. | 58 | 12.34% | |
Penicillium sp. | 5 | 1.06% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, R.-S.; Shih, C.-H.; Jiang, Y.-H.; Hsieh, H.-H.; Chiang, Y.-F.; Chuang, H.-N.; Hsiao, T.-H. Nasal Mycology of Chronic Rhinosinusitis Revealed by Nanopore Sequencing. Diagnostics 2022, 12, 2735. https://doi.org/10.3390/diagnostics12112735
Jiang R-S, Shih C-H, Jiang Y-H, Hsieh H-H, Chiang Y-F, Chuang H-N, Hsiao T-H. Nasal Mycology of Chronic Rhinosinusitis Revealed by Nanopore Sequencing. Diagnostics. 2022; 12(11):2735. https://doi.org/10.3390/diagnostics12112735
Chicago/Turabian StyleJiang, Rong-San, Chien-Hung Shih, Yu-Han Jiang, Han-Hsueh Hsieh, Yi-Fang Chiang, Han-Ni Chuang, and Tzu-Hung Hsiao. 2022. "Nasal Mycology of Chronic Rhinosinusitis Revealed by Nanopore Sequencing" Diagnostics 12, no. 11: 2735. https://doi.org/10.3390/diagnostics12112735
APA StyleJiang, R.-S., Shih, C.-H., Jiang, Y.-H., Hsieh, H.-H., Chiang, Y.-F., Chuang, H.-N., & Hsiao, T.-H. (2022). Nasal Mycology of Chronic Rhinosinusitis Revealed by Nanopore Sequencing. Diagnostics, 12(11), 2735. https://doi.org/10.3390/diagnostics12112735