Predicting Bacteremia among Septic Patients Based on ED Information by Machine Learning Methods: A Comparative Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Data Collection
2.2. Measurements and Outcomes
2.3. Definition
2.4. Ethical Considerations
2.5. Statistical Analysis
2.6. Logistic Regression
2.7. Support Vector Machine and Random Forest
2.8. Net Reclassification Index
3. Results
3.1. Study Population
3.2. Model Training with Logistic Regression
3.3. Model Training with Support Vector Machine and Random Forest
3.4. Comparison of Support Vector Machine, Random Forest, and Logistic Regression
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laupland, K.B.; Gregson, D.B.; Flemons, W.W.; Hawkins, D.; Ross, T.; Church, D.L. Burden of community-onset bloodstream infection: A population-based assessment. Epidemiol. Infect. 2007, 135, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.W.; Pruess, K.E.; Lee, T.H. How Bad Are Bacteremia and Sepsis?: Outcomes in a Cohort With Suspected Bacteremia. Arch Intern. Med. 1995, 155, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Lee, C.H.; Chuang, M.C.; Hong, M.Y.; Hsu, H.C.; Ko, W.C. Impact of inappropriate empirical antibiotic therapy on outcome of bacteremic adults visiting the ED. Am. J. Emerg. Med. 2012, 30, 1447–1456. [Google Scholar] [CrossRef] [PubMed]
- Magadia, R.R.; Weinstein, M.P. Laboratory diagnosis of bacteremia and fungemia. Infect. Dis. Clin. N. Am. 2001, 15, 1009–1024. [Google Scholar] [CrossRef]
- Takeshima, T.; Yamamoto, Y.; Noguchi, Y.; Maki, N.; Gibo, K.; Tsugihashi, Y.; Doi, A.; Fukuma, S.; Yamazaki, S.; Kajii, E.; et al. Identifying Patients with Bacteremia in Community-Hospital Emergency Rooms: A Retrospective Cohort Study. PLoS ONE 2016, 11, e0148078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, A.M. Clinical impact of blood cultures taken in the emergency department. J. Accid. Emerg. Med. 1998, 15, 254–256. [Google Scholar] [CrossRef]
- Mountain, D.; Bailey, P.M.; O’Brien, D.; Jelinek, G.A. Blood cultures ordered in the adult emergency department are rarely useful. Eur. J. Emerg. Med. 2006, 13, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Ntusi, N.; Aubin, L.; Oliver, S.; Whitelaw, A.; Mendelson, M. Guideline for the optimal use of blood cultures. S. Afr. Med. J. 2010, 100, 839–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratzinger, F.; Dedeyan, M.; Rammerstorfer, M.; Perkmann, T.; Burgmann, H.; Makristathis, A.; Dorffner, G.; Lotsch, F.; Blacky, A.; Ramharter, M. A risk prediction model for screening bacteremic patients: A cross sectional study. PLoS ONE 2014, 9, e106765. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.K.; Lyman, J.A. Updated review of blood culture contamination. Clin. Microbiol. Rev. 2006, 19, 788–802. [Google Scholar] [CrossRef]
- Coburn, B.; Morris, A.M.; Tomlinson, G.; Detsky, A.S. Does this adult patient with suspected bacteremia require blood cultures? JAMA 2012, 308, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Pfitzenmeyer, P.; Decrey, H.; Auckenthaler, R.; Michel, J.P. Predicting bacteremia in older patients. J. Am. Geriatr. Soc. 1995, 43, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Falguera, M.; Trujillano, J.; Caro, S.; Menendez, R.; Carratala, J.; Ruiz-Gonzalez, A.; Vila, M.; Garcia, M.; Porcel, J.M.; Torres, A.; et al. A prediction rule for estimating the risk of bacteremia in patients with community-acquired pneumonia. Clin. Infect. Dis. 2009, 49, 409–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.S.; Kim, K.; Jo, Y.H.; Kim, T.Y.; Lee, J.H.; Lee, S.J.; Rhee, J.E.; Suh, G.J. A simple model to predict bacteremia in women with acute pyelonephritis. J. Infect. 2011, 63, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Takahashi, O.; Matsui, K.; Shimizu, S.; Setoyama, M.; Nakagawa, M.; Fukui, T.; Morimoto, T. Clinical prediction rules for bacteremia and in-hospital death based on clinical data at the time of blood withdrawal for culture: An evaluation of their development and use. J. Eval. Clin. Pr. 2006, 12, 692–703. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, N.I.; Wolfe, R.E.; Wright, S.B.; Moore, R.; Bates, D.W. Who needs a blood culture? A prospectively derived and validated prediction rule. J. Emerg. Med. 2008, 35, 255–264. [Google Scholar] [CrossRef]
- Su, C.P.; Chen, T.H.; Chen, S.Y.; Ghiang, W.C.; Wu, G.H.; Sun, H.Y.; Lee, C.C.; Wang, J.L.; Chang, S.C.; Chen, Y.C.; et al. Predictive model for bacteremia in adult patients with blood cultures performed at the emergency department: A preliminary report. J. Microbiol. Immunol. Infect. 2011, 44, 449–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obermeyer, Z.; Emanuel, E.J. Predicting the Future-Big Data, Machine Learning, and Clinical Medicine. N. Engl. J. Med. 2016, 375, 1216–1219. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.H.; Dong, J.J.; Kim, S.; Kim, D.; Hyun, J.H.; Chae, M.H.; Lee, B.S.; Song, Y.G. Prediction of Bacteremia Based on 12-Year Medical Data Using a Machine Learning Approach: Effect of Medical Data by Extraction Time. Diagn. (Basel) 2022, 12, 102. [Google Scholar] [CrossRef]
- Tsai, C.M.; Lin, C.R.; Zhang, H.; Chiu, I.M.; Cheng, C.Y.; Yu, H.R.; Huang, Y.H. Using Machine Learning to Predict Bacteremia in Febrile Children Presented to the Emergency Department. Diagn. (Basel) 2020, 10, 307. [Google Scholar] [CrossRef]
- Chen, J.H.; Asch, S.M. Machine Learning and Prediction in Medicine-Beyond the Peak of Inflated Expectations. N. Engl. J. Med. 2017, 376, 2507–2509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannay, A.; Chaignot, C.; Blotiere, P.O.; Basson, M.; Weill, A.; Ricordeau, P.; Alla, F. The Best Use of the Charlson Comorbidity Index With Electronic Health Care Database to Predict Mortality. Med. Care 2016, 54, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Jaimes, F.; Arango, C.; Ruiz, G.; Cuervo, J.; Botero, J.; Vélez, G.; Upegui, N.; Machado, F. Predicting bacteremia at the bedside. Clin. Infect. Dis. 2004, 38, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock, 2012. Intensive. Care Med. 2013, 39, 165–228. [Google Scholar] [CrossRef]
- Cox, D.R. The Regression Analysis of Binary Sequences. J. R. Stat. Society. Ser. B (Methodol.) 1958, 20, 215–242. [Google Scholar] [CrossRef]
- Stoltzfus, J.C. Logistic regression: A brief primer. Acad. Emerg. Med. 2011, 18, 1099–1104. [Google Scholar] [CrossRef]
- Akaike, H. A New Look at the Statistical Model Identification. In Selected Papers of Hirotugu Akaike; Parzen, E., Tanabe, K., Kitagawa, G., Eds.; Springer: New York, NY, USA, 1998; pp. 215–222. [Google Scholar]
- Cortes, C. and Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Garcia, E.A. Learning from Imbalanced Data. Knowl. Data Eng. IEEE Trans. 2009, 21, 1263–1284. [Google Scholar] [CrossRef]
- Leening, M.J.; Vedder, M.M.; Witteman, J.C.; Pencina, M.J.; Steyerberg, E.W. Net reclassification improvement: Computation, interpretation, and controversies: A literature review and clinician’s guide. Ann. Intern. Med. 2014, 160, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Churpek, M.M.; Yuen, T.C.; Huber, M.T.; Park, S.Y.; Hall, J.B.; Edelson, D.P. Predicting cardiac arrest on the wards: A nested case-control study. Chest 2012, 141, 1170–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Churpek, M.M.; Yuen, T.C.; Winslow, C.; Robicsek, A.A.; Meltzer, D.O.; Gibbons, R.D.; Edelson, D.P. Multicenter development and validation of a risk stratification tool for ward patients. Am. J. Respir. Crit. Care Med. 2014, 190, 649–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobar, G.J.; LaGuardia, J.C.; Turk, B.J.; Ragins, A.; Kipnis, P.; Draper, D. Early detection of impending physiologic deterioration among patients who are not in intensive care: Development of predictive models using data from an automated electronic medical record. J. Hosp. Med. 2012, 7, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Rubenfeld, G.; Kahn, J.M.; Shankar-Hari, M.; Singer, M.; et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 762–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seymour, C.W.; Kennedy, J.N.; Wang, S.; Chang, C.H.; Elliott, C.F.; Xu, Z.; Berry, S.; Clermont, G.; Cooper, G.; Gomez, H.; et al. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis. JAMA 2019, 321, 2003–2017. [Google Scholar] [CrossRef] [PubMed]
- Coopersmith, C.M.; De Backer, D.; Deutschman, C.S.; Ferrer, R.; Lat, I.; Machado, F.R.; Martin, G.S.; Martin-Loeches, I.; Nunnally, M.E.; Antonelli, M.; et al. Surviving sepsis campaign: Research priorities for sepsis and septic shock. Intensive. Care Med. 2018, 44, 1400–1426. [Google Scholar] [CrossRef] [Green Version]
- Ranzani, O.T.; Shankar-Hari, M.; Harrison, D.A.; Rabello, L.S.; Salluh, J.I.F.; Rowan, K.M.; Soares, M. A Comparison of Mortality From Sepsis in Brazil and England: The Impact of Heterogeneity in General and Sepsis-Specific Patient Characteristics. Crit. Care Med. 2019, 47, 76–84. [Google Scholar] [CrossRef]
- Tonai, M.; Shiraishi, A.; Karumai, T.; Endo, A.; Kobayashi, H.; Fushimi, K.; Hayashi, Y. Hospital-onset sepsis and community-onset sepsis in critical care units in Japan: A retrospective cohort study based on a Japanese administrative claims database. Crit. Care 2022, 26, 136. [Google Scholar] [CrossRef]
- Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.; Sibbald, W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992, 101, 1644–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Lee, C.C.; Ho, C.Y.; Chen, P.L.; Hsieh, C.C.; Wang, W.Y.C.; Lin, C.H.; Ko, W.C. Is qSOFA Suitable for Early Diagnosis of Sepsis Among Bacteremia Patients in Emergency Departments? Time for a Reappraisal of Sepsis-3 Criteria. Front Med. (Lausanne) 2021, 8, 743822. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.W.; Cook, E.F.; Goldman, L.; Lee, T.H. Predicting bacteremia in hospitalized patients. A prospectively validated model. Ann. Intern. Med. 1990, 113, 495–500. [Google Scholar] [CrossRef] [PubMed]
- van der Heijden, Y.F.; Miller, G.; Wright, P.W.; Shepherd, B.E.; Daniels, T.L.; Talbot, T.R. Clinical impact of blood cultures contaminated with coagulase-negative staphylococci at an academic medical center. Infect. Control Hosp. Epidemiol. 2011, 32, 623–625. [Google Scholar] [CrossRef] [Green Version]
- Little, J.R.; Trovillion, E.; Fraser, V. High frequency of pseudobacteremia at a university hospital. Infect. Control Hosp. Epidemiol. 1997, 18, 200–202. [Google Scholar] [CrossRef] [PubMed]
- Steyerberg, E.W. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating; Springer: New York, NY, USA, 2009; 497p. [Google Scholar]
- Christodoulou, E.; Ma, J.; Collins, G.S.; Steyerberg, E.W.; Verbakel, J.Y.; Van Calster, B. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J. Clin. Epidemiol. 2019, 110, 12–22. [Google Scholar] [CrossRef]
- Beam, A.L.; Kohane, I.S. Big Data and Machine Learning in Health Care. JAMA 2018, 319, 1317–1318. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, B.A.; Navar, A.M.; Carter, R.E. Moving beyond regression techniques in cardiovascular risk prediction: Applying machine learning to address analytic challenges. Eur. Heart J. 2017, 38, 1805–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulesteix, A.-L.; Schmid, M. Machine learning versus statistical modeling. Biom. J. 2014, 56, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Rajkomar, A.; Oren, E.; Chen, K.; Dai, A.M.; Hajaj, N.; Hardt, M.; Liu, P.J.; Liu, X.; Marcus, J.; Sun, M.; et al. Scalable and accurate deep learning with electronic health records. NPJ Digit. Med. 2018, 1, 18. [Google Scholar] [CrossRef] [PubMed]
- Petch, J.; Di, S.; Nelson, W. Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology. Can. J. Cardiol. 2022, 38, 204–213. [Google Scholar] [CrossRef]
- Cabitza, F.; Rasoini, R.; Gensini, G.F. Unintended Consequences of Machine Learning in Medicine. JAMA 2017, 318, 517–518. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [Google Scholar] [CrossRef]
- Vellido, A. The importance of interpretability and visualization in machine learning for applications in medicine and health care. Neural. Comput. Appl. 2020, 32, 18069–18083. [Google Scholar] [CrossRef] [Green Version]
- van Werkhoven, C.H.; Huijts, S.M.; Postma, D.F.; Oosterheert, J.J.; Bonten, M.J. Predictors of Bacteraemia in Patients with Suspected Community-Acquired Pneumonia. PLoS ONE 2015, 10, e0143817. [Google Scholar] [CrossRef] [PubMed]
Variables | Patient Number (%) | p Value | |||||
---|---|---|---|---|---|---|---|
All (n = 40,395) | Bacteremia (n = 4058) | Non-Bacteremia (n = 36,337) | |||||
Age, mean ± SD | 63.5 ± 19.4 | 69.2 ± 15.4 | 62.9 ± 19.7 | <0.001 | |||
Gender, male | 21,272 | (53) | 2032 | (50) | 19,240 | (53) | <0.001 |
Comorbidities | |||||||
Myocardial infarction | 289 | (0.7) | 23 | (0.6) | 266 | (0.7) | 0.277 |
Congestive heart failure | 2502 | (6.2) | 231 | (5.7) | 2271 | (6.3) | 0.173 |
Peripheral vascular disease | 231 | (0.6) | 25 | (0.6) | 206 | (0.6) | 0.776 |
Old stroke or TIA | 440 | (1.1) | 53 | (1.3) | 387 | (1.1) | 0.186 |
Dementia | 130 | (0.3) | 19 | (0.5) | 111 | (0.3) | 0.112 |
COPD | 3220 | (8) | 130 | (3.2) | 3090 | (8.5) | <0.001 |
Connective tissue disease | 697 | (1.7) | 54 | (1.3) | 643 | (1.8) | 0.049 |
Peptic ulcer disease | 521 | (1.3) | 57 | (1.4) | 464 | (1.3) | 0.542 |
Mild liver disease | 1190 | (3) | 217 | (5.4) | 973 | (2.7) | <0.001 |
Uncomplicated diabetes | 10,078 | (25) | 1289 | (32) | 8789 | (24) | <0.001 |
Moderate to severe CKD | 2552 | (6.3) | 345 | (8.5) | 2207 | (6.1) | <0.001 |
Hemato-oncology | 8131 | (20) | 979 | (24) | 7152 | (20) | <0.001 |
Metastatic solid tumor | 108 | (0.3) | 8 | (0.2) | 100 | (0.3) | 0.451 |
HIV infections | 206 | (0.5) | 16 | (0.4) | 190 | (0.5) | 0.330 |
Laboratory data in the ED | |||||||
White blood cell > 12,000/μL | 17,812 | (44) | 2054 | (51) | 15,758 | (43) | <0.001 |
White blood cell < 4000/μL | 2900 | (7.2) | 389 | (9.6) | 2511 | (6.9) | <0.001 |
Band cells > 10% | 6884 | (17) | 1437 | (35) | 5447 | (15) | <0.001 |
Platelet < 140,000/μL | 9458 | (23) | 1588 | (39) | 7870 | (22) | <0.001 |
Vital signs upon ED triage | |||||||
Body temperature, °C | <0.001 | ||||||
36–38 | 14,493 | (36) | 1108 | (27) | 13,385 | (37) | |
<36 °C or >38 °C | 25,902 | (64) | 2950 | (73) | 22,952 | (63) | |
Heart rate, beats/minute | <0.0001 | ||||||
70–109 | 19,089 | (47) | 1735 | (43) | 17,354 | (48) | |
55–69 or 110–139 | 18,681 | (46) | 1903 | (47) | 16,778 | (46) | |
40–54 or 140–179 | 2550 | (6.3) | 405 | (10) | 2145 | (5.9) | |
<40 or >179 | 75 | 0.2 | 15 | (0.4) | 60 | (0.2) | |
Mean arterial pressure, mmHg | <0.001 | ||||||
70–109 | 26,962 | (67) | 2697 | (66) | 24,265 | (67) | |
50–69 or 110–129 | 10,547 | (26) | 1103 | (27) | 9444 | (26) | |
130–159 | 2444 | (6.1) | 188 | (4.6) | 2256 | (6.2) | |
<50 or >159 | 442 | (1.1) | 70 | (1.7) | 372 | (1) | |
Respiratory rate per minute | |||||||
12–24 | 32,496 | (80) | 3311 | (82) | 29,185 | (80) | 0.091 |
10–11 or 25–34 | 6357 | (16) | 585 | (14) | 5772 | (16) | |
6–9 or 35–49 | 1364 | (3.4) | 141 | (3.5) | 1223 | (3.4) | |
<6 or >49 | 178 | (0.4) | 21 | (0.5) | 157 | (0.4) | |
Peripheral oxygenation, % | 0.006 | ||||||
>89 | 34,359 | (88) | 3405 | (87) | 30,954 | (88) | |
86–89 | 2026 | (5.2) | 205 | (5.2) | 1821 | (5.2) | |
75–85 | 1899 | (4.9) | 223 | (5.7) | 1676 | (4.8) | |
>75% | 716 | (1.8) | 91 | (2.3) | 625 | (1.8) | |
Glasgow coma scale | <0.0001 | ||||||
>13 | 33,069 | (82) | 3097 | (76) | 29,972 | (82) | |
11–13 | 2150 | (5.3) | 278 | (6.9) | 1872 | (5.2) | |
8–10 | 2936 | (7.3) | 388 | (9.6) | 2548 | (7) | |
5–7 | 1450 | (3.6) | 176 | (4.3) | 1274 | (3.5) | |
<5 | 790 | (2) | 119 | (2.9) | 671 | (1.9) |
Variables | Model I | Model II | ||||
---|---|---|---|---|---|---|
Odds Ratio | 95% CI | p Value | Odds Ratio | 95% CI | p Value | |
Age, years | 1.021 | 1.018–1.023 | <0.001 | 1.024 | 1.022–1.027 | <0.001 |
Sex, male | 0.902 | 0.832–0.978 | 0.012 | 0.887 | 0.818–0.962 | 0.003 |
Comorbidities | ||||||
Chronic obstructive pulmonary disease | 0.407 | 0.327–0.506 | <0.001 | 0.407 | 0.327–0.507 | <0.001 |
Mild liver disease | 1.624 | 1.34–1.967 | <0.001 | 1.604 | 1.324–1.944 | <0.001 |
Uncomplicated diabetes | 1.253 | 1.146–1.37 | <0.001 | 5.21 | 3.331–8.148 | <0.001 |
Moderate to severe CKD | 1.34 | 1.154–1.555 | <0.001 | 1.32 | 1.137–1.532 | <0.001 |
Hemato-oncology | 1.155 | 1.048–1.272 | 0.004 | 1.152 | 1.046–1.27 | 0.004 |
Laboratory data in the ED | ||||||
White blood cell > 12,000/μL | 1.598 | 1.464–1.745 | <0.001 | 1.598 | 1.464–1.745 | <0.001 |
White blood cell < 4000/μL | 1.298 | 1.114–1.511 | <0.001 | 1.299 | 1.115–1.513 | <0.001 |
Band cell > 10% | 2.847 | 2.607–3.109 | <0.001 | 2.843 | 2.603–3.106 | <0.001 |
Platelet < 140,000/μL | 2.161 | 1.973–2.367 | <0.001 | 2.151 | 1.964–2.357 | <0.001 |
Vital signs upon ED triage | ||||||
Body temperature < 36 °C or > 38 °C | 1.835 | 1.674–2.012 | <0.001 | 1.85 | 1.688–2.028 | <0.001 |
Heart rate, beats/minute | ||||||
55–69 or 110–139 | 1.279 | 1.174–1.394 | <0.001 | 1.28 | 1.175–1.395 | <0.001 |
40–54 or 140–179 | 2.025 | 1.748–2.346 | <0.001 | 2.026 | 1.749–2.348 | <0.001 |
<40 or >179 | 2.406 | 1.187–4.878 | 0.015 | 2.465 | 1.213–5.012 | 0.013 |
Age plus uncomplicated diabetes | - | - | - | 0.98 | 0.974–0.986 | <0.001 |
Model | Algorithm | Derivation Dataset | Validation Dataset | ||||
---|---|---|---|---|---|---|---|
AUROC | AIC | 95% CI | AUROC | AIC | 95% CI | ||
I | Logistic regression | 0.729 | 16,840 | 0.718–0.740 | 0.722 | - | 0.705–0.739 |
II | Logistic regression | 0.731 | 16,803 | 0.721–0.742 | 0.725 | - | 0.708–0.742 |
III | Support vector machine | 0.751 | - | 0.740–0.761 | 0.730 | - | 0.713–0.747 |
IV | Random forest | 0.835 | - | 0.825–0.844 | 0.705 | - | 0.688–0.722 |
Comparing Model | Net Reclassification Index | p Value |
---|---|---|
Model III (support vector machine) | −0.02 | >0.01 |
Model IV (random forest) | 0.01 | >0.01 |
Model | Logistic Regression | Random Forest |
---|---|---|
Variables | Age | Age |
Gender | Gender | |
COPD | COPD | |
Uncomplicated DM | Uncomplicated DM | |
Hemato-oncology | Hemato-oncology | |
WBC > 12,000/μL | WBC > 12,000/μL | |
Band cell > 10% | Band cell > 10% | |
Platelet < 140,000/μL | Platelet < 140,000/μL | |
Body temperature | Body temperature | |
Heart rate | Heart rate | |
Mild liver disease | Mean arterial pressure | |
Moderate to severe CKD | Respiratory rate | |
WBC < 4000/μL | Glasgow coma scale | |
Age plus uncomplicated DM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goh, V.; Chou, Y.-J.; Lee, C.-C.; Ma, M.-C.; Wang, W.Y.C.; Lin, C.-H.; Hsieh, C.-C. Predicting Bacteremia among Septic Patients Based on ED Information by Machine Learning Methods: A Comparative Study. Diagnostics 2022, 12, 2498. https://doi.org/10.3390/diagnostics12102498
Goh V, Chou Y-J, Lee C-C, Ma M-C, Wang WYC, Lin C-H, Hsieh C-C. Predicting Bacteremia among Septic Patients Based on ED Information by Machine Learning Methods: A Comparative Study. Diagnostics. 2022; 12(10):2498. https://doi.org/10.3390/diagnostics12102498
Chicago/Turabian StyleGoh, Vivian, Yu-Jung Chou, Ching-Chi Lee, Mi-Chia Ma, William Yu Chung Wang, Chih-Hao Lin, and Chih-Chia Hsieh. 2022. "Predicting Bacteremia among Septic Patients Based on ED Information by Machine Learning Methods: A Comparative Study" Diagnostics 12, no. 10: 2498. https://doi.org/10.3390/diagnostics12102498
APA StyleGoh, V., Chou, Y.-J., Lee, C.-C., Ma, M.-C., Wang, W. Y. C., Lin, C.-H., & Hsieh, C.-C. (2022). Predicting Bacteremia among Septic Patients Based on ED Information by Machine Learning Methods: A Comparative Study. Diagnostics, 12(10), 2498. https://doi.org/10.3390/diagnostics12102498