The Effect of CAG Repeats within the Non-Pathological Range in the HTT Gene on Cognitive Functions in Patients with Subjective Cognitive Decline and Mild Cognitive Impairment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Clinical Assessment
2.2. Neuropsychological Assessment
2.3. HTT, BDNF and APOE Genotyping
2.4. Statistical Analysis
3. Results
3.1. Frequency Distribution of CAG Repeats
3.2. Comparison between SCD and MCI
3.3. Correlations between Neuropsychological Scores and CAG Repeat Length
3.4. Multivariate Analysis and Regression Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jessen, F.; Amariglio, R.E.; van Boxtel, M.; Breteler, M.; Ceccaldi, M.; Chételat, G.; Dubois, B.; Dufouil, C.; Ellis, K.A.; van der Flier, W.M.; et al. A Conceptual Framework for Research on Subjective Cognitive Decline in Preclinical Alzheimer’s Disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2014, 10, 844–852. [Google Scholar] [CrossRef] [Green Version]
- Parfenov, V.A.; Zakharov, V.V.; Kabaeva, A.R.; Vakhnina, N.V. Subjective Cognitive Decline as a Predictor of Future Cognitive Decline: A Systematic Review. Dement. Neuropsychol. 2020, 14, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The Diagnosis of Mild Cognitive Impairment Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimers Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Mazzeo, S.; Padiglioni, S.; Bagnoli, S.; Bracco, L.; Nacmias, B.; Sorbi, S.; Bessi, V. The Dual Role of Cognitive Reserve in Subjective Cognitive Decline and Mild Cognitive Impairment: A 7-Year Follow-up Study. J. Neurol. 2019, 266, 487–497. [Google Scholar] [CrossRef]
- Mazzeo, S.; Bessi, V.; Padiglioni, S.; Bagnoli, S.; Bracco, L.; Sorbi, S.; Nacmias, B. KIBRA T Allele Influences Memory Performance and Progression of Cognitive Decline: A 7-Year Follow-up Study in Subjective Cognitive Decline and Mild Cognitive Impairment. Neurol. Sci. 2019, 40, 1559–1566. [Google Scholar] [CrossRef]
- Bessi, V.; Mazzeo, S.; Padiglioni, S.; Piccini, C.; Nacmias, B.; Sorbi, S.; Bracco, L. From Subjective Cognitive Decline to Alzheimer’s Disease: The Predictive Role of Neuropsychological Assessment, Personality Traits, and Cognitive Reserve. A 7-Year Follow-Up Study. J. Alzheimer’s Dis. 2018, 63, 1523–1535. [Google Scholar] [CrossRef]
- Bessi, V.; Giacomucci, G.; Mazzeo, S.; Bagnoli, S.; Padiglioni, S.; Balestrini, J.; Tomaiuolo, G.; Piaceri, I.; Carraro, M.; Bracco, L.; et al. PER2 C111G Polymorphism, Cognitive Reserve and Cognition in Subjective Cognitive Decline and Mild Cognitive Impairment. A 10-Year Follow-up Study. Eur. J. Neurol. 2020, 28, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Brundin, P.; Li, J.-Y. Synaptic Dysfunction in Huntington’s Disease: A New Perspective. Cell Mol. Life Sci. 2005, 62, 1901–1912. [Google Scholar] [CrossRef]
- Schulte, J.; Littleton, J.T. The Biological Function of the Huntingtin Protein and Its Relevance to Huntington’s Disease Pathology. Curr. Trends Neurol. 2011, 5, 65–78. [Google Scholar] [PubMed]
- Gauthier, L.R.; Charrin, B.C.; Borrell-Pagès, M.; Dompierre, J.P.; Rangone, H.; Cordelières, F.P.; De Mey, J.; MacDonald, M.E.; Lessmann, V.; Humbert, S.; et al. Huntingtin Controls Neurotrophic Support and Survival of Neurons by Enhancing BDNF Vesicular Transport along Microtubules. Cell 2004, 118, 127–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in Neuronal Development and Function. Annu. Rev. Neurosci. 2001, 24, 677–736. [Google Scholar] [CrossRef] [Green Version]
- Binder, D.K.; Scharfman, H.E. Brain-Derived Neurotrophic Factor. Growth Factors 2004, 22, 123–131. [Google Scholar] [CrossRef] [Green Version]
- McAllister, A.K.; Lo, D.C.; Katz, L.C. Neurotrophins Regulate Dendritic Growth in Developing Visual Cortex. Neuron 1995, 15, 791–803. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, M.E.; Ambrose, C.M.; Duyao, M.P.; Myers, R.H.; Lin, C.; Srinidhi, L.; Barnes, G.; Taylor, S.A.; James, M.; Groot, N.; et al. A Novel Gene Containing a Trinucleotide Repeat That Is Expanded and Unstable on Huntington’s Disease Chromosomes. Cell 1993, 72, 971–983. [Google Scholar] [CrossRef]
- Reiner, A.E.; Albin, R.L.; Anderson, K.D.; D’Amato, C.J.; Penney, J.B.; Young, A.B. Differential Loss of Striatal Projection Neurons in Huntington Disease. Proc. Natl. Acad. Sci. USA 1988, 85, 5733–5737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ACMG/ASHG Statement. Laboratory Guidelines for Huntington Disease Genetic Testing. The American College of Medical Genetics/American Society of Human Genetics Huntington Disease Genetic Testing Working Group. Am. J. Hum. Genet. 1998, 62, 1243–1247. [Google Scholar]
- Semaka, A.; Creighton, S.; Warby, S.; Hayden, M.R. Predictive Testing for Huntington Disease: Interpretation and Significance of Intermediate Alleles. Clin. Genet. 2006, 70, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Frenkel, Z.M.; Trifonov, E.N. Origin and Evolution of Genes and Genomes. Crucial Role of Triplet Expansions. J. Biomol. Struct. Dyn. 2012, 30, 201–210. [Google Scholar] [CrossRef]
- Cattaneo, E.; Zuccato, C.; Tartari, M. Normal Huntingtin Function: An Alternative Approach to Huntington’s Disease. Nat. Rev. Neurosci. 2005, 6, 919–930. [Google Scholar] [CrossRef]
- Fondon, J.W.; Hammock, E.A.D.; Hannan, A.J.; King, D.G. Simple Sequence Repeats: Genetic Modulators of Brain Function and Behavior. Trends Neurosci. 2008, 31, 328–334. [Google Scholar] [CrossRef]
- Hannan, A.J. TRPing up the Genome: Tandem Repeat Polymorphisms as Dynamic Sources of Genetic Variability in Health and Disease. Discov. Med. 2010, 10, 314–321. [Google Scholar]
- Lee, J.K.; Ding, Y.; Conrad, A.L.; Cattaneo, E.; Epping, E.; Mathews, K.; Gonzalez-Alegre, P.; Cahill, L.; Magnotta, V.; Schlaggar, B.L.; et al. Sex-Specific Effects of the Huntington Gene on Normal Neurodevelopment. J. Neurosci. Res. 2017, 95, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Killoran, A.; Biglan, K.M.; Jankovic, J.; Eberly, S.; Kayson, E.; Oakes, D.; Young, A.B.; Shoulson, I. Characterization of the Huntington Intermediate CAG Repeat Expansion Phenotype in PHAROS. Neurology 2013, 80, 2022–2027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feigin, A. Redefining the Genetic Risk for Huntington Disease. Neurology 2013, 80, 2004–2005. [Google Scholar] [CrossRef]
- Hogarth, P. Huntington Disease: How Many Repeats Does It Take? Neurology 2013, 80, e241–e243. [Google Scholar] [CrossRef] [Green Version]
- Menéndez-González, M.; Clarimón, J.; Rosas-Allende, I.; Blázquez, M.; San Martín, E.S.; García-Fernández, C.; Lleó, A.; Dols-Icardo, O.; Illán-Gala, I.; Morís, G.; et al. HTT Gene Intermediate Alleles in Neurodegeneration: Evidence for Association with Alzheimer’s Disease. Neurobiol. Aging 2019, 76, 215.e9–215.e14. [Google Scholar] [CrossRef] [PubMed]
- Rosas, I.; Martínez, C.; Clarimón, J.; Lleó, A.; Illán-Gala, I.; Dols-Icardo, O.; Borroni, B.; Almeida, M.R.; van der Zee, J.; Van Broeckhoven, C.; et al. Role for ATXN1, ATXN2, and HTT Intermediate Repeats in Frontotemporal Dementia and Alzheimer’s Disease. Neurobiol. Aging 2020, 87, 139.e1–139.e7. [Google Scholar] [CrossRef] [PubMed]
- Bracco, L.; Amaducci, L.; Pedone, D.; Bino, G.; Lazzaro, M.P.; Carella, F.; D’Antona, R.; Gallato, R.; Denes, G. Italian Multicentre Study on Dementia (SMID): A Neuropsychological Test Battery for Assessing Alzheimer’s Disease. J. Psychiatr. Res. 1990, 24, 213–226. [Google Scholar] [CrossRef]
- Caffarra, P.; Vezzadini, G.; Dieci, F.; Zonato, F.; Venneri, A. Rey-Osterrieth Complex Figure: Normative Values in an Italian Population Sample. Neurol. Sci. 2002, 22, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, A.; Della Sala, S.; Papagno, C.; Spinnler, H. Dual-Task Performance in Dysexecutive and Nondysexecutive Patients with a Frontal Lesion. Neuropsychology 1997, 11, 187–194. [Google Scholar] [CrossRef]
- Spinnler, H.; Tognoni, G. Standardizzazione e Taratura Italiana di Test Neuropsicologici: Gruppo Italiano per lo Studio Neuropsicologico Dell’invecchiamento; Masson Italia Periodici: Milano, Italy, 1987. [Google Scholar]
- Giovagnoli, A.R.; Del Pesce, M.; Mascheroni, S.; Simoncelli, M.; Laiacona, M.; Capitani, E. Trail Making Test: Normative Values from 287 Normal Adult Controls. Ital. J. Neurol. Sci. 1996, 17, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Brazzelli, M.; Della Sala, S.; Laiacona, M. Calibration of the Italian Version of the Rivermead Behavioural Memory Test: A Test for the Ecological Evaluation of Memory. Boll. Psicol. Appl. 1993, 206, 33–42. [Google Scholar]
- Colombo, L.; Sartori, G.; Brivio, C. Stima Del Quoziente Intellettivo Tramite l’applicazione Del TIB (Test Breve Di Intelligenza). G. Ital. Psicol. 2002, 3, 613–638. [Google Scholar] [CrossRef]
- Nelson, H. National Adult Reading Test (NART): For the Assessment of Premorbid Intelligence in Patients with Dementia: Test Manual, NFER-Nelson; NFER-Nelson: Windsor, UK, 1982. [Google Scholar]
- Hamilton, M. A Rating Scale for Depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Crook, T.H.; Feher, E.P.; Larrabee, G.J. Assessment of Memory Complaint in Age-Associated Memory Impairment: The MAC-Q. Int. Psychogeriatr. 1992, 4, 165–176. [Google Scholar] [CrossRef]
- Sorbi, S.; Nacmias, B.; Forleo, P.; Latorraca, S.; Gobbini, I.; Bracco, L.; Piacentini, S.; Amaducci, L. ApoE Allele Frequencies in Italian Sporadic and Familial Alzheimer’s Disease. Neurosci. Lett. 1994, 177, 100–102. [Google Scholar] [CrossRef]
- Jama, M.; Millson, A.; Miller, C.E.; Lyon, E. Triplet Repeat Primed PCR Simplifies Testing for Huntington Disease. J. Mol. Diagn. 2013, 15, 255–262. [Google Scholar] [CrossRef]
- Mühlau, M.; Winkelmann, J.; Rujescu, D.; Giegling, I.; Koutsouleris, N.; Gaser, C.; Arsic, M.; Weindl, A.; Reiser, M.; Meisenzahl, E.M. Variation within the Huntington’s Disease Gene Influences Normal Brain Structure. PLoS ONE 2012, 7, e29809. [Google Scholar] [CrossRef] [Green Version]
- Stern, Y. What Is Cognitive Reserve? Theory and Research Application of the Reserve Concept. J. Int. Neuropsychol. Soc. 2002, 8, 448–460. [Google Scholar] [CrossRef]
- Stern, Y.; Gurland, B.; Tatemichi, T.K.; Tang, M.X.; Wilder, D.; Mayeux, R. Influence of Education and Occupation on the Incidence of Alzheimer’s Disease. JAMA 1994, 271, 1004–1010. [Google Scholar] [CrossRef]
- Bessi, V.; Mazzeo, S.; Bagnoli, S.; Padiglioni, S.; Carraro, M.; Piaceri, I.; Bracco, L.; Sorbi, S.; Nacmias, B. The Implication of BDNF Val66Met Polymorphism in Progression from Subjective Cognitive Decline to Mild Cognitive Impairment and Alzheimer’s Disease: A 9-Year Follow-up Study. Eur. Arch. Psychiatry Clin. Neurosci. 2020, 270, 471–482. [Google Scholar] [CrossRef]
- Beeri, M.S.; Sonnen, J. Brain BDNF Expression as a Biomarker for Cognitive Reserve against Alzheimer Disease Progression. Neurology 2016, 86, 702–703. [Google Scholar] [CrossRef] [PubMed]
- Rigamonti, D.; Bauer, J.H.; De-Fraja, C.; Conti, L.; Sipione, S.; Sciorati, C.; Clementi, E.; Hackam, A.; Hayden, M.R.; Li, Y.; et al. Wild-Type Huntingtin Protects from Apoptosis Upstream of Caspase-3. J. Neurosci. 2000, 20, 3705–3713. [Google Scholar] [CrossRef]
- Schaefer, M.H.; Wanker, E.E.; Andrade-Navarro, M.A. Evolution and Function of CAG/Polyglutamine Repeats in Protein–Protein Interaction Networks. Nucleic. Acids Res. 2012, 40, 4273–4287. [Google Scholar] [CrossRef] [Green Version]
- Kay, C.; Collins, J.A.; Wright, G.E.B.; Baine, F.; Miedzybrodzka, Z.; Aminkeng, F.; Semaka, A.J.; McDonald, C.; Davidson, M.; Madore, S.J.; et al. The Molecular Epidemiology of Huntington Disease Is Related to Intermediate Allele Frequency and Haplotype in the General Population. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2018, 177, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Cubo, E.; Ramos-Arroyo, M.A.; Martinez-Horta, S.; Martínez-Descalls, A.; Calvo, S.; Gil-Polo, C. Clinical Manifestations of Intermediate Allele Carriers in Huntington Disease. Neurology 2016, 87, 571–578. [Google Scholar] [CrossRef]
- Ha, A.D.; Jankovic, J. Exploring the Correlates of Intermediate CAG Repeats in Huntington Disease. Postgrad Med. 2011, 123, 116–121. [Google Scholar] [CrossRef]
- Sequeiros, J.; Ramos, E.M.; Cerqueira, J.; Costa, M.C.; Sousa, A.; Pinto-Basto, J.; Alonso, I. Large Normal and Reduced Penetrance Alleles in Huntington Disease: Instability in Families and Frequency at the Laboratory, at the Clinic and in the Population. Clin. Genet. 2010, 78, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Abdelnour, C.; Rodríguez-Gómez, O.; Alegret, M.; Valero, S.; Moreno-Grau, S.; Sanabria, Á.; Hernández, I.; Rosende-Roca, M.; Vargas, L.; Mauleón, A.; et al. Impact of Recruitment Methods in Subjective Cognitive Decline. J. Alzheimers Dis. 2017, 57, 625–632. [Google Scholar] [CrossRef] [PubMed]
Variable | SCD | MCI | p |
---|---|---|---|
N | 46 | 29 | |
Age at onset (years) | 56.00 (15.00) | 66.00 (13.00) | <0.001 |
Age at baseline (years) | 61.52 (14.13) | 68.53 (13.44) | 0.001 |
Disease duration (years) | 3.53 (2.84) | 2.70 (2.91) | 0.096 |
Sex (women/men) | 34/12 | 19/10 | 0.437 |
Family history of dementia | 52.17% (33.99–70.35) | 55.17% (37.07–73.27) | 0.800 |
Education (years) | 11.00 (8.00) | 8.00 (8.00) | 0.004 |
APOE ε4+ | 28.26% (15.25–41.27) | 27.59% (11.31–43.85) | 0.949 |
CAG repeats, shorter allele | 16.00 (3.00) | 16.00 (2.50) | 0.376 |
CAG repeats, longer allele | 19.00 (3.25) | 18.00 (2.50) | 0.042 |
IA+ | 3/46 | 2/29 | 0.949 |
MMSE | 27.15 (3.85) | 26.70 (1.70) | 0.094 |
HDRS | 5.00 (6) | 5.00 (6.00) | 0.691 |
MAC-Q | 26.00 (2.00) | 25.00 (6.00) | 0.401 |
TMT-B | ROCF-C | RBMT | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
B | 95% CI | B | 95% CI | B | 95% CI | ||||||
Lower | Upper | Lower | Upper | Lower | Upper | ||||||
Constant | −1.624 * | −2.923 | −0.324 | −0.657 | −2.276 | 0.962 | −0.085 | −2.809 | 2.638 | ||
CAG repeats (shorter allele) | 0.075 * | 0.013 | 0.137 | 0.098 ** | 0.027 | 0.169 | 0.019 | −0.110 | 0.148 | ||
CAG repeats (longer allele) | 0.010 | −0.026 | 0.046 | −0.009 | −0.055 | 0.037 | 0.076 * | 0.001 | 0.152 | ||
Age at baseline (years) | 0.020 ** | 0.006 | 0.033 | −0.001 | −0.018 | 0.015 | −0.022 | −0.050 | 0.005 | ||
Disease duration (years) | 0.011 | −0.022 | 0.044 | 0.006 | −0.033 | 0.045 | 0.018 | −0.051 | 0.087 | ||
Education (years) | −0.028 | −0.056 | 0.000 | −0.020 | −0.055 | 0.014 | 0.004 | −0.050 | 0.058 | ||
Female sex | 0.017 | −0.247 | 0.280 | 0.051 | −0.303 | 0.406 | −0.293 | −0.839 | 0.254 | ||
APOE ε4+ | 0.075 | −0.171 | 0.321 | −0.057 | −0.378 | 0.265 | −0.278 | −0.797 | 0.240 | ||
BDNF Val66Met+ | −0.065 | −0.298 | 0.168 | 0.127 | −0.172 | 0.426 | 0.247 | −0.188 | 0.681 |
ROCF-C | TIB | ||||||
---|---|---|---|---|---|---|---|
B | 95% CI | B | 95% CI | ||||
Lower | Upper | Lower | Upper | ||||
Constant | 0.938 | −2.951 | 4.827 | 117.372 | 97.847 | 136.897 | |
CAG repeats (shorter allele) | −0.175 * | −0.342 | −0.009 | −1.081 ** | −1.737 | −0.426 | |
CAG repeats (longer allele) | 0.083 | −0.032 | 0.198 | 0.244 | −.208 | 0.696 | |
Age at baseline (years) | −0.004 | −0.056 | 0.049 | −0.060 | −0.291 | 0.170 | |
Disease duration (years) | −0.003 | −0.079 | 0.073 | −0.219 | −0.531 | 0.094 | |
Education (years) | 0.076 | −0.018 | 0.170 | 1.803 *** | 1.421 | 2.185 | |
Female sex | −0.440 | −1.179 | 0.299 | −9.084 *** | −12.077 | −6.091 | |
APOE ε4+ | −0.120 | −0.871 | 0.631 | 6.141 | 3.322 | 8.959 | |
BDNF Val66Met+ | 0.380 | −0.374 | 1.135 | 0.541 | −2.214 | 3.497 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bessi, V.; Mazzeo, S.; Bagnoli, S.; Giacomucci, G.; Ingannato, A.; Ferrari, C.; Padiglioni, S.; Franchi, V.; Sorbi, S.; Nacmias, B. The Effect of CAG Repeats within the Non-Pathological Range in the HTT Gene on Cognitive Functions in Patients with Subjective Cognitive Decline and Mild Cognitive Impairment. Diagnostics 2021, 11, 1051. https://doi.org/10.3390/diagnostics11061051
Bessi V, Mazzeo S, Bagnoli S, Giacomucci G, Ingannato A, Ferrari C, Padiglioni S, Franchi V, Sorbi S, Nacmias B. The Effect of CAG Repeats within the Non-Pathological Range in the HTT Gene on Cognitive Functions in Patients with Subjective Cognitive Decline and Mild Cognitive Impairment. Diagnostics. 2021; 11(6):1051. https://doi.org/10.3390/diagnostics11061051
Chicago/Turabian StyleBessi, Valentina, Salvatore Mazzeo, Silvia Bagnoli, Giulia Giacomucci, Assunta Ingannato, Camilla Ferrari, Sonia Padiglioni, Virginia Franchi, Sandro Sorbi, and Benedetta Nacmias. 2021. "The Effect of CAG Repeats within the Non-Pathological Range in the HTT Gene on Cognitive Functions in Patients with Subjective Cognitive Decline and Mild Cognitive Impairment" Diagnostics 11, no. 6: 1051. https://doi.org/10.3390/diagnostics11061051
APA StyleBessi, V., Mazzeo, S., Bagnoli, S., Giacomucci, G., Ingannato, A., Ferrari, C., Padiglioni, S., Franchi, V., Sorbi, S., & Nacmias, B. (2021). The Effect of CAG Repeats within the Non-Pathological Range in the HTT Gene on Cognitive Functions in Patients with Subjective Cognitive Decline and Mild Cognitive Impairment. Diagnostics, 11(6), 1051. https://doi.org/10.3390/diagnostics11061051