Ventricular Tachycardia Has Mainly Non-Ischaemic Substrates in Patients with Autoimmune Rheumatic Diseases and a Preserved Ejection Fraction
Abstract
:1. Introduction
2. Significance and Innovation
3. Patients and Methods
3.1. Patients
3.2. Methods
3.3. CMR Data Analysis
3.4. X-Ray Coronary Angiography (XCA)
3.5. Statistical Analysis
4. Results
5. Discussion
6. Limitations
- NSVT was an inclusion criterion. Evaluation of de novo VT occurrence after CMR is required to provide more robust evidence in support of the findings observed in this study. Our group has already published similar work in patients with SSc [20].
- Potential differences between groups in some CMR indices might have not been identified due to insufficient statistical power, as in the case of LGE. In addition, the study did not include any patients with psoriatic arthritis.
- A referral bias may have occurred since only severely ill patients with a well-documented history of NSVT were referred to our tertiary centre.
- This study was performed in a population made up of patients with different ARDs. Further studies in uniform populations with individual ARDs should be performed before final conclusions can be drawn. Again, our group has already published similar work in patients with SSc [20].
- The evaluation of myocardial strain in non-contrast CMR scans was not a part of this investigation.
- The prevalence of CAD-related LGE might have been underestimated due to the relatively young age of the examined patient group.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mavrogeni, S.I.; Markousis-Mavrogenis, G.; Aggeli, C.; Tousoulis, D.; Kitas, G.D.; Kolovou, G.; Iliodromitis, E.K.; Sfikakis, P.P. Arrhythmogenic inflammatory cardiomyopathy in autoimmune rheumatic diseases: A challenge for cardio-rheumatology. Diagnostics 2019, 9, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, N.T.; Schilling, R.J. Sudden Cardiac Death and Arrhythmias. Arrhythmia Electrophysiol. Rev. 2018, 7, 111. [Google Scholar] [CrossRef]
- Myerburg, R.J.; Reddy, V.; Castellanos, A. Indications for Implantable Cardioverter-Defibrillators Based on Evidence and Judgment. J. Am. Coll. Cardiol. 2009, 54, 747–763. [Google Scholar] [CrossRef] [PubMed]
- Israel, C.W. Mechanisms of sudden cardiac death. Indian Heart J. 2014, 66, S10. [Google Scholar] [CrossRef] [Green Version]
- Seferović, P.M.; Ristić, A.D.; Maksimović, R.; Simeunović, D.S.; Ristić, G.G.; Radovanović, G.; Seferović, D.; Maisch, B.; Matucci-Cerinic, M. Cardiac arrhythmias and conduction disturbances in autoimmune rheumatic diseases. Rheumatology 2006, 45, iv39–iv42. [Google Scholar] [CrossRef] [Green Version]
- Rosenstein, E.D.; Zucker, M.J.; Kramer, N. Giant cell myocarditis: Most fatal of autoimmune diseases. Semin. Arthritis Rheum. 2000, 30, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Lazzerini, P.E.; Bertolozzi, I.; Acampa, M.; Fulceri, R.; Laghi-Pasini, F.; Capecchi, P.L. Torsades de Pointes in patients with polymyalgia rheumatica. Curr. Pharm. Des. 2018, 24, 323–340. [Google Scholar] [CrossRef] [PubMed]
- Lazzerini, P.E.; Capecchi, P.L.; Acampa, M.; Galeazzi, M.; Laghi-Pasini, F. Arrhythmic risk in rheumatoid arthritis: The driving role of systemic inflammation. Autoimmun. Rev. 2014, 13, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Mavrogeni, S.; Gargani, L.; Pepe, A.; Monti, L.; Markousis-Mavrogenis, G.; De Santis, M.; De Marchi, D.; Koutsogeorgopoulou, L.; Karabela, G.; Stavropoulos, E.; et al. Cardiac magnetic resonance predicts ventricular arrhythmias in scleroderma: The Scleroderma Arrhythmia Clinical Utility Study (SAnCtUS). Rheumatology 2019, 59, 1938–1948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavrogeni, S.I.; Sfikakis, P.P.; Markousis-Mavrogenis, G.; Bournia, V.K.; Poulos, G.; Koutsogeorgopoulou, L.; Karabela, G.; Stavropoulos, E.; Katsifis, G.; Boki, K.; et al. Cardiovascular magnetic resonance imaging pattern in patients with autoimmune rheumatic diseases and ventricular tachycardia with preserved ejection fraction. Int. J. Cardiol. 2019, 284, 105–109. [Google Scholar] [CrossRef]
- Mavrogeni, S.I.; Kitas, G.D.; Dimitroulas, T.; Sfikakis, P.P.; Seo, P.; Gabriel, S.; Patel, A.R.; Gargani, L.; Bombardieri, S.; Matucci-Cerinic, M.; et al. Cardiovascular magnetic resonance in rheumatology: Current status and recommendations for use. Int. J. Cardiol. 2016, 217, 135–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavrogeni, S.; Sfikakis, P.; Dimitroulas, T.; Kolovou, G.; Kitas, G.D. Edema and fibrosis imaging by cardiovascular magnetic resonance: How can the experience of Cardiology be best utilized in rheumatological practice? Semin. Arthritis Rheum. 2014, 44, 76–85. [Google Scholar] [CrossRef]
- Mavrogeni, S.; Markousis-Mavrogenis, G.; Koutsogeorgopoulou, L.; Dimitroulas, T.; Bratis, K.; Kitas, G.D.; Sfikakis, P.; Tektonidou, M.; Karabela, G.; Stavropoulos, E.; et al. Cardiovascular magnetic resonance imaging pattern at the time of diagnosis of treatment naïve patients with connective tissue diseases. Int. J. Cardiol. 2017, 236, 151–156. [Google Scholar] [CrossRef]
- Friedrich, M.G.; Sechtem, U.; Schulz-Menger, J.; Holmvang, G.; Alakija, P.; Cooper, L.T.; White, J.A.; Abdel-Aty, H.; Gutberlet, M.; Prasad, S.; et al. Cardiovascular Magnetic Resonance in Myocarditis: A JACC White Paper. J. Am. Coll. Cardiol. 2009, 53, 1475–1487. [Google Scholar] [CrossRef] [Green Version]
- Mavrogeni, S.; Anastasakis, A.; Sfendouraki, E.; Gialafos, E.; Aggeli, C.; Stefanadis, C.; Kolovou, G. Ventricular tachycardia in patients with family history of sudden cardiac death, normal coronaries and normal ventricular function. Can cardiac magnetic resonance add to diagnosis? Int. J. Cardiol. 2013, 168, 1532–1533. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.A.; Chow, K.; Salerno, M. Myocardial T1 and ECV Measurement: Underlying Concepts and Technical Considerations. JACC Cardiovasc. Imaging 2019, 12, 2332–2344. [Google Scholar] [CrossRef] [PubMed]
- Mavrogeni, S.; Markousis-Mavrogenis, G.; Kolovou, G. Clinical use of cardiac magnetic resonance in systemic heart disease. Eur. Cardiol. Rev. 2014, 9, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Freitas, P.; Ferreira, A.M.; Arteaga-Fernández, E.; De Oliveira Antunes, M.; Mesquita, J.; Abecasis, J.; Marques, H.; Saraiva, C.; Matos, D.N.; Rodrigues, R.; et al. The amount of late gadolinium enhancement outperforms current guideline-recommended criteria in the identification of patients with hypertrophic cardiomyopathy at risk of sudden cardiac death. J. Cardiovasc. Magn. Reson. 2019, 21, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto-Iglesias, D.; Penela, D.; Jáuregui, B.; Acosta, J.; Fernández-Armenta, J.; Linhart, M.; Zucchelli, G.; Syrovnev, V.; Zaraket, F.; Terés, C.; et al. Cardiac Magnetic Resonance-Guided Ventricular Tachycardia Substrate Ablation. JACC Clin. Electrophysiol. 2020, 6, 436–447. [Google Scholar] [CrossRef]
- Markousis-Mavrogenis, G.; Bournia, V.K.; Panopoulos, S.; Koutsogeorgopoulou, L.; Kanoupakis, G.; Apostolou, D.; Katsifis, G.; Polychroniadis, M.; Dimitroulas, T.; Kolovou, G.; et al. Cardiovascular magnetic resonance identifies high-risk systemic sclerosis patients with normal echocardiograms and provides incremental prognostic value. Diagnostics 2019, 9, 220. [Google Scholar] [CrossRef] [Green Version]
- Nelson, T.; Garg, P.; Clayton, R.H.; Lee, J. The role of cardiac MRI in the management of ventricular arrhythmias in ischaemic and non-ischaemic dilated cardiomyopathy. Arrhythmia Electrophysiol. Rev. 2019, 8, 191–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavrogeni, S.I.; Sfikakis, P.P.; Koutsogeorgopoulou, L.; Markousis-Mavrogenis, G.; Dimitroulas, T.; Kolovou, G.; Kitas, G.D. Cardiac Tissue Characterization and Imaging in Autoimmune Rheumatic Diseases. JACC Cardiovasc. Imaging 2017, 10, 1387–1396. [Google Scholar] [CrossRef]
- Agca, R.; Heslinga, S.C.; Rollefstad, S.; Heslinga, M.; McInnes, I.B.; Peters, M.J.L.; Kvien, T.K.; Dougados, M.; Radner, H.; Atzeni, F.; et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann. Rheum. Dis. 2016, 76, 17–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ntusi, N.A.B.; Francis, J.M.; Sever, E.; Liu, A.; Piechnik, S.K.; Ferreira, V.M.; Matthews, P.M.; Robson, M.D.; Wordsworth, P.B.; Neubauer, S.; et al. Anti-TNF modulation reduces myocardial inflammation and improves cardiovascular function in systemic rheumatic diseases. Int. J. Cardiol. 2018, 270, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Ntusi, N.A.B.; Francis, J.M.; Gumedze, F.; Karvounis, H.; Matthews, P.M.; Wordsworth, P.B.; Neubauer, S.; Karamitsos, T.D. Cardiovascular magnetic resonance characterization of myocardial and vascular function in rheumatoid arthritis patients. Hell. J. Cardiol. 2019, 60, 28–35. [Google Scholar] [CrossRef]
- Hinojar, R.; Foote, L.; Sangle, S.; Marber, M.; Mayr, M.; Carr-White, G.; D’Cruz, D.; Nagel, E.; Puntmann, V.O. Native T1 and T2 mapping by CMR in lupus myocarditis: Disease recognition and response to treatment. Int. J. Cardiol. 2016, 222, 717–726. [Google Scholar] [CrossRef]
- Aggarwal, D.; Singla, S. Prevalence of autonomic neuropathy in patients of rheumatoid arthritis and its correlation with disease severity. J. Clin. Diagnostic Res. 2017, 11, OC09–OC13. [Google Scholar] [CrossRef]
- Josephson, M.E. Clinical Cardiac Electrophysiology: Techniques and Interpretations, 4th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008; pp. 446–643. [Google Scholar]
- De Bakker, J.M.T.; Van Capelle, F.J.L.; Janse, M.J.; Tasseron, S.; Vermeulen, J.T.; De Jonge, N.; Lahpor, J.R. Slow conduction in the infarcted human heart: “Zigzag” course of activation. Circulation 1993, 88, 915–926. [Google Scholar] [CrossRef] [Green Version]
- Estner, H.L.; Zviman, M.M.; Herzka, D.; Miller, F.; Castro, V.; Nazarian, S.; Ashikaga, H.; Dori, Y.; Berger, R.D.; Calkins, H.; et al. The critical isthmus sites of ischemic ventricular tachycardia are in zones of tissue heterogeneity, visualized by magnetic resonance imaging. Hear. Rhythm 2011, 8, 1942–1949. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Qu, Z.; Weiss, J.N. Cardiac fibrosis and arrhythmogenesis: The road to repair is paved with perils. J. Mol. Cell. Cardiol. 2014, 70, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Dinov, B.; Fiedler, L.; Schönbauer, R.; Bollmann, A.; Rolf, S.; Piorkowski, C.; Hindricks, G.; Arya, A. Outcomes in catheter ablation of ventricular tachycardia in dilated nonischemic cardiomyopathy compared with ischemic cardiomyopathy: Results from the Prospective Heart Centre of Leipzig VT (HELP-VT) Study. Circulation 2014, 129, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Sohal, M.; Voigt, T.; Sammut, E.; Tobon-Gomez, C.; Child, N.; Jackson, T.; Shetty, A.; Bostock, J.; Cooklin, M.; et al. Myocardial tissue characterization by cardiac magnetic resonance imaging using T1 mapping predicts ventricular arrhythmia in ischemic and non-ischemic cardiomyopathy patients with implantable cardioverter-defibrillators. Hear. Rhythm 2015, 12, 792–801. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.C.; Piehler, K.; Meier, C.G.; Testa, S.M.; Klock, A.M.; Aneizi, A.A.; Shakesprere, J.; Kellman, P.; Shroff, S.G.; Schwartzman, D.S.; et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 2012, 126, 1206–1216. [Google Scholar] [CrossRef] [PubMed]
- Greulich, S.; Kitterer, D.; Latus, J.; Aguor, E.; Steubing, H.; Kaesemann, P.; Patrascu, A.; Greiser, A.; Groeninger, S.; Mayr, A.; et al. Comprehensive Cardiovascular Magnetic Resonance Assessment in Patients with Sarcoidosis and Preserved Left Ventricular Ejection Fraction. Circ. Cardiovasc. Imaging 2016, 9, e005022. [Google Scholar] [CrossRef] [Green Version]
- Gin, P.L.; Wang, W.C.; Yang, S.H.; Hsiao, S.H.; Tseng, J.C. Right Heart Function in Systemic Lupus Erythematosus: Insights from Myocardial Doppler Tissue Imaging. J. Am. Soc. Echocardiogr. 2006, 19, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Bezante, G.P.; Rollando, D.; Sessarego, M.; Panico, N.; Setti, M.; Filaci, G.; Molinari, G.; Balbi, M.; Cutolo, M.; Barsotti, A.; et al. Cardiac magnetic resonance imaging detects subclinical right ventricular impairment in systemic sclerosis. J. Rheumatol. 2007, 34, 2431–2437. [Google Scholar] [PubMed]
- Velangi, P.S.; Chen, K.H.A.; Kazmirczak, F.; Okasha, O.; von Wald, L.; Roukoz, H.; Farzaneh-Far, A.; Markowitz, J.; Nijjar, P.S.; Bhargava, M.; et al. Right Ventricular Abnormalities on Cardiovascular Magnetic Resonance Imaging in Patients With Sarcoidosis. JACC Cardiovasc. Imaging 2020, 13, 1395–1405. [Google Scholar] [CrossRef]
Variables | Patients with ARDs | Patients without ARDs | p-Value | |
---|---|---|---|---|
Number of patients | 40 | 40 | N/A | |
Demographics | 32 (80%) 48.5 (12.5) | 15 (38%) 47.8 (15.7) | <0.001 * 0.83 | |
Female Sex | ||||
Age (years) | ||||
Known ARD diagnosis | <0.001 * | |||
Systemic Sclerosis | 10 (25%) | 0 (0%) | ||
Systemic Lupus Erythematosus | 10 (25%) | 0 (0%) | ||
Sarcoidosis | 4 (10%) | 0 (0%) | ||
Rheumatoid Arthritis | 4 (10%) | 0 (0%) | ||
eGPA | 4 (10%) | 0 (0%) | ||
Ankylosing Spondylitis | 4 (10%) | 0 (0%) | ||
GPA | 2 (5%) | 0 (0%) | ||
Takayasu Arteritis | 1 (3%) | 0 (0%) | ||
Adamantiades–Behcet Disease | 1 (3%) | 0 (0%) | ||
Non-ARD Diagnosis Based on CMR and Clinical Findings | <0.001 * | |||
Infectious Myocarditis | 0 (0%) | 12 (31%) | ||
CAD | 0 (0%) | 9 (23%) | ||
Takotsubo Cardiomyopathy | 0 (0%) | 4 (10%) | ||
Dilated Cardiomyopathy | 0 (0%) | 3 (8%) | ||
Hypertrophic Cardiomyopathy | 0 (0%) | 3 (8%) | ||
ARVC | 0 (0%) | 2 (5%) | ||
Myopericarditis | 0 (0%) | 2 (5%) | ||
Non-Compaction Cardiomyopathy | 0 (0%) | 2 (5%) | ||
NSVT of Unknown Aetiology | 0 (0%) | 1 (3%) | ||
Aortic Stenosis | 0 (0%) | 1 (3%) | ||
Mitral Regurgitation | 0 (0%) | 1 (3%) | ||
CMR Indices | ||||
LVEDV (mL) | 121.0 (98.0, 137.5) | 145.5 (119.0, 197.0) | 0.001 * | |
LVESV (mL) | 42.0 (32.0, 50.5) | 52.0 (37.0, 78.5) | 0.027 * | |
LVEF (%) | 63.0 (60.5, 68.0) | 62.5 (56.5, 68.5) | 0.41 | |
RVEDV (mL) | 110.5 (86.5, 135.0) | 148.5 (114.5, 188.5) | 0.001 * | |
RVESV (mL) | 39.0 (31.0, 53.5) | 53.5 (38.5, 69.5) | 0.010 * | |
RVEF (%) | 63.5 (60.0, 68.5) | 63.0 (60.0, 68.0) | 0.86 | |
T2 Signal Ratio | 2.3 (0.5) | 2.1 (0.6) | 0.38 | |
EGE | 1.8 (1.1, 4.8) | 2.1 (1.4, 3.0) | 0.69 | |
LGE (% of LV mass) | 2.5 (0.0, 5.0) | 5.0 (0.0, 5.0) | 0.17 | |
T2 Mapping (ms) | 57.5 (54.0, 61.0) | 52.0 (48.0, 55.5) | 0.001 * | |
Native T1 Mapping (ms) | 1078.5 (1049.0, 1149.0) | 1041.5 (1014.0, 1079.5) | 0.003 * | |
Post-Contrast T1 Mapping (ms) | 353.8 (59.5) | 427.6 (59.2) | <0.001 * | |
ECV (%) | 31.0 (29.0, 32.0) | 28.0 (26.5, 30.0) | 0.003 * | |
Pathologic Cut-Off Points for CMR Tissue Characterisation Indices | ||||
LGE > 0% of LV mass | 21 (53%) | 29 (73%) | 0.065 | |
EGE ≥ 4 | 11 (28%) | 7 (18%) | 0.28 | |
Native T1 Mapping > 1050 ms | 27 (68%) | 18 (45%) | 0.043 * | |
ECV ≥ 29% | 32 (80%) | 17 (43%) | <0.001 * | |
T2 Mapping > 55 ms | 27 (68%) | 10 (25%) | <0.001 * | |
T2 Signal Ratio > 1.9 | 28 (70%) | 24 (60%) | 0.35 | |
Cardiovascular Risk Factors | ||||
Hypertension | 4 (10%) | 7 (18%) | 0.33 | |
Smoker (last 5 years) | 5 (13%) | 7 (18%) | 0.53 | |
CAD/CVD Family History | 3 (8%) | 6 (15%) | 0.29 | |
Hyperlipidemia | 6 (15%) | 6 (15%) | 0.99 | |
Diabetes Mellitus (type 2) | 4 (10%) | 7 (18%) | 0.330 |
LGE Pattern | CMR Appearance | Patients with ARDs and LGE (n = 21/40) | Patients without ARDs and LGE (n = 29/40) | ||
---|---|---|---|---|---|
Proportion Identified | CAD Confirmed by XCA | Proportion Identified | CAD Confirmed by XCA | ||
Patchy Inferolateral | | 13 (61.9%) | N/A | 0 (0%) | N/A |
Diffuse Subendocardial | | 6 (28.6%) | 0/6 (0%) | 6 (20.7%) | 0/6 (0%) |
Transmural (Typical Ischaemic Pattern) | | 2 (9.5%) | 2/2 (100%)
| 13 (44.8%) | 13/13 (100%)
|
Subepicardial | | 0 (0%) | N/A | 12 (41.4%) | N/A |
Variable | Univariable Logistic Regression | Multivariable Logistic Regression | Multivariable Logistic Regression (+Sex) | |||
---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
LVEDV (per 5 mL) | 0.90 (0.84–0.96) | 0.001 * | 0.90 (0.84–0.96) | 0.001 * | 0.93 (0.87–1.00) | 0.061 |
LVESV (per 5 mL) | 0.89 (0.80–0.98) | 0.020 * | 0.89 (0.80–0.99) | 0.029 * | 0.96 (0.86–1.08) | 0.537 |
LVEF (per 5%) | 1.06 (0.77–1.47) | 0.718 | 1.05 (0.74–1.49) | 0.766 | 0.86 (0.58–1.27) | 0.449 |
RVEDV (per 5 mL) | 0.91 (0.86–0.97) | 0.002 * | 0.90 (0.85–0.96) | 0.001 * | 0.95 (0.88–1.02) | 0.185 |
RVESV (per 5 mL) | 0.86 (0.77–0.97) | 0.013 * | 0.86 (0.76–0.97) | 0.014 * | 1.00 (0.85–1.17) | 0.995 |
RVEF (per 5%) | 0.89 (0.63–1.23) | 0.472 | 0.84 (0.59–1.20) | 0.342 | 0.59 (0.37–0.94) | 0.026 * |
Nat. T1 Map. (per 10 ms) | 1.12 (1.04–1.21) | 0.003 * | 1.13 (1.05–1.23) | 0.002 * | 1.09 (1.01–1.18) | 0.033 * |
PC. T1 Map. (per 10 ms) | 0.80 (0.72–0.89) | <0.001 * | 0.79 (0.70–0.88) | <0.001 * | 0.81 (0.72–0.91) | 0.001 * |
ECV (per 1%) | 1.15 (1.02–1.31) | 0.023 * | 1.18 (1.04–1.34) | 0.013 * | 1.09 (0.94–1.25) | 0.269 |
ECV > 29% | 5.41 (2.00–14.66) | 0.001 * | 7.53 (2.51–22.6) | <0.001 * | 4.90 (1.53–15.6) | 0.007 * |
T2 Signal Ratio (per 0.2 units) | 1.07 (0.91–1.26) | 0.378 | 1.10 (0.93–1.30) | 0.284 | 1.04 (0.85–1.26) | 0.706 |
T2 Mapping (per 1 ms) | 1.10 (1.02–1.18) | 0.009 * | 1.12 (1.03–1.22) | 0.005 * | 1.07 (0.97–1.17) | 0.165 |
EGE (per 1 unit) | 1.10 (0.94–1.28) | 0.221 | 1.10 (0.94–1.29) | 0.247 | 1.13 (0.94–1.35) | 0.202 |
LGE (per 1% of LV mass) | 0.96 (0.85–1.09) | 0.519 | 0.96 (0.85–1.09) | 0.541 | 0.96 (0.83–1.10) | 0.516 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markousis-Mavrogenis, G.; Poulos, G.; Dimitroulas, T.; Giannakopoulou, A.; Mavragani, C.; Vartela, V.; Manolopoulou, D.; Kolovou, G.; Voulgari, P.; Sfikakis, P.P.; et al. Ventricular Tachycardia Has Mainly Non-Ischaemic Substrates in Patients with Autoimmune Rheumatic Diseases and a Preserved Ejection Fraction. Diagnostics 2021, 11, 519. https://doi.org/10.3390/diagnostics11030519
Markousis-Mavrogenis G, Poulos G, Dimitroulas T, Giannakopoulou A, Mavragani C, Vartela V, Manolopoulou D, Kolovou G, Voulgari P, Sfikakis PP, et al. Ventricular Tachycardia Has Mainly Non-Ischaemic Substrates in Patients with Autoimmune Rheumatic Diseases and a Preserved Ejection Fraction. Diagnostics. 2021; 11(3):519. https://doi.org/10.3390/diagnostics11030519
Chicago/Turabian StyleMarkousis-Mavrogenis, George, George Poulos, Theodoros Dimitroulas, Aikaterini Giannakopoulou, Clio Mavragani, Vasiliki Vartela, Dionysia Manolopoulou, Genovefa Kolovou, Paraskevi Voulgari, Petros P. Sfikakis, and et al. 2021. "Ventricular Tachycardia Has Mainly Non-Ischaemic Substrates in Patients with Autoimmune Rheumatic Diseases and a Preserved Ejection Fraction" Diagnostics 11, no. 3: 519. https://doi.org/10.3390/diagnostics11030519
APA StyleMarkousis-Mavrogenis, G., Poulos, G., Dimitroulas, T., Giannakopoulou, A., Mavragani, C., Vartela, V., Manolopoulou, D., Kolovou, G., Voulgari, P., Sfikakis, P. P., Kitas, G. D., & Mavrogeni, S. I. (2021). Ventricular Tachycardia Has Mainly Non-Ischaemic Substrates in Patients with Autoimmune Rheumatic Diseases and a Preserved Ejection Fraction. Diagnostics, 11(3), 519. https://doi.org/10.3390/diagnostics11030519