Epicardial Adiposity in Relation to Metabolic Abnormality, Circulating Adipocyte FABP, and Preserved Ejection Fraction Heart Failure
Abstract
1. Introduction
2. Methods
2.1. Study Subjects
2.2. Anthropometric Measurements
2.3. Biochemical Analysis of Pro-Inflammatory and HF Markers
2.4. Measures of EAT, and Cardiac Structure and Function
2.5. Validating EAT with CT-Based PCF Measurement
2.6. Statistical Analysis
3. Results
3.1. Clinical Demographical and Metabolic Relevance of EAT
3.2. Associations of EAT with Pro-Inflammatory/HF Markers
3.3. Associations of EAT with Cardiac Structure and Function
3.4. Association of EAT with Incident HF: Mediator Analysis
4. Discussion
4.1. Functional and Prognostic Significance of EAT as a Surrogate of Visceral Obesity
4.2. Associations of EAT with Circulating A-FABP
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ather, S.; Chan, W.; Bozkurt, B.; Aguilar, D.; Ramasubbu, K.; Zachariah, A.A.; Wehrens, X.H.; Deswal, A. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J. Am. Coll. Cardiol. 2012, 59, 998–1005. [Google Scholar] [CrossRef] [PubMed]
- Bank, I.E.M.; Gijsberts, C.M.; Teng, T.K.; Benson, L.; Sim, D.; Yeo, P.S.D.; Ong, H.Y.; Jaufeerally, F.; Leong, G.K.T.; Ling, L.H.; et al. Prevalence and clinical significance of diabetes in Asian versus white patients with heart failure. JACC Heart Fail. 2017, 5, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Hajer, G.R.; Van Haeften, T.W.; Visseren, F.L. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur. Heart J. 2008, 29, 2959–2971. [Google Scholar] [CrossRef]
- Yatagai, T.; Nagasaka, S.; Taniguchi, A.; Fukushima, M.; Nakamura, T.; Kuroe, A.; Nakai, Y.; Ishibashi, S. Hypoadiponectinemia is associated with visceral fat accumulation and insulin resistance in Japanese men with type 2 diabetes mellitus. Metabolism. 2003, 52, 1274–1278. [Google Scholar] [CrossRef]
- Lopes, H.F.; Correa-Giannella, M.L.; Consolim-Colombo, F.M.; Egan, B.M. Visceral adiposity syndrome. Diabetol. Metab. Syndr. 2016, 8, 40. [Google Scholar] [CrossRef]
- Iacobellis, G.; Bianco, A.C. Epicardial adipose tissue: Emerging physiological, pathophysiological and clinical features. Trends Endocrinol. Metab. 2011, 22, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, P.; Mathangasinghe, Y.; Jayawardena, R.; Hills, A.P.; Misra, A. Prevalence and trends of metabolic syndrome among adults in the Asia-Pacific region: A systematic review. BMC Public Health 2017, 17, 101. [Google Scholar] [CrossRef]
- Haass, M.; Kitzman, D.W.; Anand, I.S.; Miller, A.; Zile, M.R.; Massie, B.M.; Carson, P.E. Body mass index and adverse cardiovascular outcomes in heart failure patients with preserved ejection fraction: Results from the Irbesartan in Heart Failure with Preserved Ejection Fraction (I-preserve) trial. Circ. Heart Fail. 2011, 4, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Tromp, J.; Tay, W.T.; Ouwerkerk, W.; Teng, T.K.; Yap, J.; MacDonald, M.R.; Leineweber, K.; McMurray, J.J.V.; Zile, M.R.; Anand, I.S.; et al. Multimorbidity in patients with heart failure from 11 Asian regions: A prospective cohort study using the ASIAN-HF registry. PLoS Med. 2018, 15, e1002541. [Google Scholar]
- Vural, B.; Atalar, F.; Ciftci, C.; Demirkan, A.; Susleyici-Duman, B.; Gunay, D.; Akpinar, B.; Sagbas, E.; Ozbek, U.; Buyukdevrim, A.S. Presence of fatty-acid-binding protein 4 expression in human epicardial adipose tissue in metabolic syndrome. Cardiovasc Pathol. 2008, 17, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Engeli, S.; Utz, W.; Haufe, S.; Lamounier-Zepter, V.; Pofahl, M.; Traber, J.; Janke, J.; Luft, F.C.; Boschmann, M.; Schulz-Menger, J.; et al. Fatty acid binding protein 4 predicts left ventricular mass and longitudinal function in overweight and obese women. Heart 2013, 99, 944–948. [Google Scholar] [CrossRef]
- Xu, A.; Wang, Y.; Xu, J.Y.; Stejskal, D.; Tam, S.; Zhang, J.; Wat, N.M.; Wong, W.K.; Lam, K.S. Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin. Chem. 2006, 52, 405–413. [Google Scholar] [CrossRef]
- Lamounier-Zepter, V.; Look, C.; Alvarez, J.; Christ, T.; Ravens, U.; Schunck, W.H.; Ehrhart-Bornstein, M.; Bornstein, S.R.; Morano, I. Adipocyte fatty acid-binding protein suppresses cardiomyocyte contraction: A new link between obesity and heart disease. Circ. Res. 2009, 105, 326–334. [Google Scholar] [CrossRef]
- Mazurek, T.; Zhang, L.; Zalewski, A.; Mannion, J.D.; Diehl, J.T.; Arafat, H.; Sarov-Blat, L.; O’Brien, S.; Keiper, E.A.; Johnson, A.G.; et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 2003, 108, 2460–2466. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.E.; Ma, S.; Wai, D.; Chew, S.K.; Tai, E.S. Can we apply the national cholesterol education program adult treatment panel definition of the metabolic syndrome to Asians? Diabetes Care 2004, 27, 1182–1186. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.N.; Sung, K.T.; Yen, C.H.; Su, C.H.; Lee, P.Y.; Hung, T.C.; Huang, W.H.; Chien, S.C.; Tsai, J.P.; Yun, C.H.; et al. Carotid arterial mechanics as useful biomarker of extracellular matrix turnover and preserved ejection fraction heart failure. ESC Heart Fail. 2020, 7, 1615–1625. [Google Scholar] [CrossRef]
- Lai, Y.H.; Yun, C.H.; Yang, F.S.; Liu, C.C.; Wu, Y.J.; Kuo, J.Y.; Yeh, H.I.; Lin, T.Y.; Bezerra, H.G.; Shih, S.C.; et al. Epicardial adipose tissue relating to anthropometrics, metabolic derangements and fatty liver disease independently contributes to serum high-sensitivity C-reactive protein beyond body fat composition: A study validated with computed tomography. J. Am. Soc. Echocardiogr. 2012, 25, 234–241. [Google Scholar] [CrossRef]
- Hung, C.L.; Goncalves, A.; Lai, Y.J.; Lai, Y.H.; Sung, K.T.; Lo, C.I.; Liu, C.C.; Kuo, J.Y.; Hou, C.J.; Chao, T.F.; et al. Light to moderate habitual alcohol consumption is associated with subclinical ventricular and left atrial mechanical dysfunction in an asymptomatic population: Dose-response and propensity analysis. J. Am. Soc. Echocardiogr. 2016, 29, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Yun, C.H.; Lin, T.Y.; Wu, Y.J.; Liu, C.C.; Kuo, J.Y.; Yeh, H.I.; Yang, F.S.; Chen, S.C.; Hou, C.J.; Bezerra, H.G.; et al. Pericardial and thoracic peri-aortic adipose tissues contribute to systemic inflammation and calcified coronary atherosclerosis independent of body fat composition, anthropometric measures and traditional cardiovascular risks. Eur. J. Radiol. 2012, 81, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Parisi, V.; Rengo, G.; Perrone-Filardi, P.; Pagano, G.; Femminella, G.D.; Paolillo, S.; Petraglia, L.; Gambino, G.; Caruso, A.; Grimaldi, M.G.; et al. Increased epicardial adipose tissue volume correlates with cardiac sympathetic denervation in patients with heart failure. Circ. Res. 2016, 118, 1244–1253. [Google Scholar] [CrossRef]
- Schejbal, V. Epicardial fatty tissue of the right ventricle--morphology, morphometry and functional significance. Pneumologie. 1989, 43, 490–499. [Google Scholar]
- Iacobellis, G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat. Rev. Endocrinol. 2015, 11, 363–371. [Google Scholar] [CrossRef]
- Iacobellis, G.; Ribaudo, M.C.; Assael, F.; Vecci, E.; Tiberti, C.; Zappaterreno, A.; Di Mario, U.; Leonetti, F. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: A new indicator of cardiovascular risk. J. Clin. Endocrinol. Metab. 2003, 88, 5163–5168. [Google Scholar] [CrossRef]
- Mookadam, F.; Goel, R.; Alharthi, M.S.; Jiamsripong, P.; Cha, S. Epicardial fat and its association with cardiovascular risk: A cross-sectional observational study. Heart Views. 2010, 11, 103–108. [Google Scholar] [PubMed]
- Iacobellis, G.; Leonetti, F.; Singh, N.; Sharma, A.M. Relationship of epicardial adipose tissue with atrial dimensions and diastolic function in morbidly obese subjects. Int. J. Cardiol. 2007, 115, 272–273. [Google Scholar] [CrossRef] [PubMed]
- Jonker, J.T.; De Mol, P.; De Vries, S.T.; Widya, R.L.; Hammer, S.; Van Schinkel, L.D.; Van der Meer, R.W.; Gans, R.O.; Webb, A.G.; Kan, H.E.; et al. Exercise and type 2 diabetes mellitus: Changes in tissue-specific fat distribution and cardiac function. Radiology 2013, 269, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Van Woerden, G.; Gorter, T.M.; Westenbrink, B.D.; Willems, T.P.; Van Veldhuisen, D.J.; Rienstra, M. Epicardial fat in heart failure patients with mid-range and preserved ejection fraction. Eur. J. Heart Fail. 2018, 20, 1559–1566. [Google Scholar] [CrossRef]
- Perez-Belmonte, L.M.; Moreno-Santos, I.; Gomez-Doblas, J.J.; Garcia-Pinilla, J.M.; Morcillo-Hidalgo, L.; Garrido-Sanchez, L.; Santiago-Fernandez, C.; Crespo-Leiro, M.G.; Carrasco-Chinchilla, F.; Sanchez-Fernandez, P.L.; et al. Expression of epicardial adipose tissue thermogenic genes in patients with reduced and preserved ejection fraction heart failure. Int. J. Med. Sci. 2017, 14, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Sacks, H.S.; Fain, J.N. Human epicardial adipose tissue: A review. Am. Heart J. 2007, 153, 907–917. [Google Scholar] [CrossRef]
- Cavalcante, J.L.; Tamarappoo, B.K.; Hachamovitch, R.; Kwon, D.H.; Alraies, M.C.; Halliburton, S.; Schoenhagen, P.; Dey, D.; Berman, D.S.; Marwick, T.H. Association of epicardial fat, hypertension, subclinical coronary artery disease, and metabolic syndrome with left ventricular diastolic dysfunction. Am. J. Cardiol. 2012, 110, 1793–1798. [Google Scholar] [CrossRef]
- Paulus, W.J.; Tschope, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Su, M.Y.; Lin, L.Y.; Tseng, Y.H.; Chang, C.C.; Wu, C.K.; Lin, J.L.; Tseng, W.Y. CMR-verified diffuse myocardial fibrosis is associated with diastolic dysfunction in HFpEF. JACC. Cardiovasc Imaging 2014, 7, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Hur, J.; Dauch, J.R.; Hinder, L.M.; Hayes, J.M.; Backus, C.; Pennathur, S.; Kretzler, M.; Brosius, F.C., 3rd; Feldman, E.L. The metabolic syndrome and microvascular complications in a murine model of type 2 diabetes. Diabetes 2015, 64, 3294–3304. [Google Scholar] [CrossRef]
- Turak, O.; Ozcan, F.; Canpolat, U.; Isleyen, A.; Cebeci, M.; Oksuz, F.; Mendi, M.A.; Cagli, K.; Golbasi, Z.; Aydogdu, S. Increased echocardiographic epicardial fat thickness and high-sensitivity CRP level indicate diastolic dysfunction in patients with newly diagnosed essential hypertension. Blood Press Monitor. 2013, 18, 259–264. [Google Scholar] [CrossRef]
- Yu, L.; Ruifrok, W.P.; Meissner, M.; Bos, E.M.; Van Goor, H.; Sanjabi, B.; Van der Harst, P.; Pitt, B.; Goldstein, I.J.; Koerts, J.A.; et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ Heart Fail. 2013, 6, 107–117. [Google Scholar] [CrossRef]
- Hayashi, M.; Tsutamoto, T.; Wada, A.; Tsutsui, T.; Ishii, C.; Ohno, K.; Fujii, M.; Taniguchi, A.; Hamatani, T.; Nozato, Y.; et al. Immediate administration of mineralocorticoid receptor antagonist spironolactone prevents post-infarct left ventricular remodeling associated with suppression of a marker of myocardial collagen synthesis in patients with first anterior acute myocardial infarction. Circulation 2003, 107, 2559–2565. [Google Scholar] [PubMed]
- Zhang, J.; Qiao, C.; Chang, L.; Guo, Y.; Fan, Y.; Villacorta, L.; Chen, Y.E.; Zhang, J. Cardiomyocyte overexpression of fabp4 aggravates pressure overload-induced heart hypertrophy. PLoS ONE 2016, 11, e0157372. [Google Scholar] [CrossRef]
- Djousse, L.; Bartz, T.M.; Ix, J.H.; Kochar, J.; Kizer, J.R.; Gottdiener, J.S.; Tracy, R.P.; Mozaffarian, D.; Siscovick, D.S.; Mukamal, K.J.; et al. Fatty acid-binding protein 4 and incident heart failure: The cardiovascular health study. Eur. J. Heart Fail. 2013, 15, 394–399. [Google Scholar] [CrossRef]
- Lee, M.J.; Wu, Y.; Fried, S.K. Adipose tissue heterogeneity: Implication of depot differences in adipose tissue for obesity complications. Mol. Aspects Med. 2013, 34, 1–11. [Google Scholar] [CrossRef]
Metabolic Score Categories | All Subjects (N = 252) | Epicardial Adipose Tissue (EAT) | p for Trend | R Value (All Variable Correlated with EAT) | p Value (Pearson Correlation) | ANOVA/ꭓ2 | ||
---|---|---|---|---|---|---|---|---|
Q1 (n = 84) ≤7.5 mm | Q2 (n = 84) 7.6–9.0 mm | Q3 (n = 84) ≥9.1 mm | ||||||
Baseline Demographics | ||||||||
Age, y | 65.8 ± 9.87 | 61.7 ± 7.79 | 65.8 ± 10.1 * | 69.7 ± 10.0 *,# | <0.001 | 0.381 | <0.001 | <0.001 |
Female sex, n (%) | 165 (65.5%) | 47 (56.0%) | 53 (63.1%) | 65 (77.4%) | 0.004 | 0.153 | 0.02 | 0.01 |
Systolic blood pressure, mm Hg | 140.3 ± 20.0 | 133.4 ± 19.1 | 140.3 ± 19.3 * | 147.2 ± 19.3 * | <0.001 | 0.303 | <0.001 | <0.001 |
Diastolic blood pressure, mm Hg | 80.8 ± 12.3 | 78.6 ± 11.6 | 80.1 ± 12.1 | 83.6 ± 12.6 * | 0.01 | 0.169 | 0.01 | 0.03 |
Heart rate, min−1 | 75.7 ± 11.3 | 73.3 ± 11.0 | 76.9 ± 12.1 | 77.1 ± 10.3 | 0.03 | 0.170 | 0.01 | 0.049 |
Waist circumference, cm | 89.7 ± 11.8 | 85.0 ± 10.6 | 91.1 ± 11.4 * | 92.9 ± 12.0 * | <0.001 | 0.361 | <0.001 | <0.001 |
Weight, kg | 66.3 ± 13.0 | 63.0 ± 11.8 | 68.0 ± 13.2 * | 68.0 ± 13.6 * | 0.01 | 0.213 | 0.001 | 0.02 |
BMI, kg/m2 | 26.5 ± 4.24 | 24.6 ± 3.88 | 26.7 ± 4.04 * | 28.1 ± 4.06 * | <0.001 | 0.400 | <0.001 | <0.001 |
Body fat, % | 34.3 ± 9.29 | 29.3 ± 8.68 | 34.9 ± 8.43 * | 38.9 ± 8.13 *,# | <0.001 | 0.465 | <0.001 | <0.001 |
Laboratory Data | ||||||||
Fasting glucose, mg/dL | 113.7 ± 2.39 | 105.3 ± 37.6 | 116.4 ± 34.0 | 119.2 ± 40.6 | 0.01 | 0.237 | <0.001 | 0.04 |
Total cholesterol, mg/dL | 198.8 ± 42.9 | 202.1 ± 42.6 | 199.5 ± 39.7 | 194.9 ± 46.3 | 0.27 | 0.037 | 0.55 | 0.54 |
Triglyceride, mg/dL | 115.0 ± 86.4 | 88.4 ± 55.3 | 132.6 ± 114.8 * | 123.9 ± 72.4 * | 0.01 | 0.227 | <0.001 | 0.002 |
HDL, mg/dL | 54.9 ± 19.3 | 61.1 ± 23.1 | 53.6 ± 18.2 * | 49.9 ± 13.8 * | <0.001 | 0.229 | <0.001 | 0.001 |
LDL, mg/dL | 119.9 ± 35.8 | 120.6 ± 35.0 | 120.5 ± 35.5 | 118.5 ± 37.2 | 0.71 | 0.018 | 0.78 | 0.91 |
Uric acid, mg/dL | 6.04 ± 1.51 | 5.58 ± 1.40 | 5.99 ± 1.41 * | 6.45 ± 1.58 * | 0.001 | 0.301 | <0.001 | 0.003 |
e-GFR, mL/min/1.73 m2 | 79.1 ± 25.9 | 87.3 ± 23.0 | 81.8 ± 22.4 | 68.2 ± 28.1 *,# | <0.001 | 0.342 | <0.001 | <0.001 |
Biomarkers | ||||||||
hs-CRP (median, 25th–75th), mg/L | 0.22 ± 0.24 | 0.17 ± 0.19 | 0.21 ± 0.26 | 0.27 ± 0.26 * | 0.01 | 0.255 | <0.001 | 0.03 |
BNP (median, 25th–75th), pg/mL | 62.2 ± 125.0 | 34.7 ± 80.0 | 55.5 ± 99.0 | 95.4 ± 169.8 * | 0.002 | 0.207 | 0.001 | 0.01 |
Galectin-3, ng/mL | 2.74 ± 2.36 | 2.16 ± 1.96 | 2.74 ± 2.16 | 3.32 ± 2.77 * | 0.001 | 0.248 | <0.001 | 0.001 |
PIIINP, ng/mL | 0.98 ± 0.39 | 0.84 ± 0.26 | 0.98 ± 0.36 * | 1.13 ± 0.46 *,# | <0.001 | 0.363 | <0.001 | <0.001 |
A-FABP, ng/mL | 26.1 ± 21.4 | 17.4 ± 8.31 | 25.4 ± 14.7 * | 35.7 ± 30.4 *,# | <0.001 | 0.392 | <0.001 | <0.001 |
Medical Histories | ||||||||
Hypertension, n (%) | 179 (71%) | 47 (56.0%) | 59 (70.2%) | 73 (86.9%) | <0.001 | — | — | <0.001 |
Diabetes, n (%) | 75 (29.8%) | 12 (14.3%) | 25 (29.8%) | 38 (45.2%) | <0.001 | — | — | <0.001 |
Cardiovascular diseases, n (%) | 34 (13.5%) | 6 (7.1%) | 10 (11.9%) | 18 (21.4%) | 0.01 | — | — | 0.02 |
Heart failure, n (%) | 51 (20.2%) | 5 (6.0%) | 14 (16.7%) | 32 (38.1%) | <0.001 | — | — | <0.001 |
Metabolic score (median, 25th–75th) | 3 (2–4) | 2 (1–4) | 3 (2–4) * | 4 (3–5) *,# | <0.001 | — | — | <0.001 |
Cardiac Structure and Function | ||||||||
IVS, mm | 9.20 ± 1.46 | 8.84 ± 1.29 | 9.15 ± 1.33 | 9.60 ± 1.65 * | <0.001 | 0.292 | <0.001 | <0.001 |
LVPW, mm | 9.19 ± 1.29 | 8.81 ± 1.12 | 9.33 ± 1.38 * | 9.42 ± 1.30 * | 0.002 | 0.302 | 0 | 0.004 |
LVIDd, mm | 46.3 ± 3.93 | 46.3 ± 4.20 | 46.6 ± 3.89 | 45.9 ± 3.71 | 0.56 | 0.001 | 0.98 | 0.55 |
LV mass, g | 144.6 ± 37.0 | 137.3 ± 34.4 | 147.5 ± 37.0 | 149.0 ± 38.8 | 0.04 | 0.214 | 0.001 | 0.08 |
LV mass index, gm/m2 | 79.3 ± 18.8 | 76.9 ± 17.0 | 79.9 ± 20.6 | 81.2 ± 18.7 | 0.14 | 0.145 | 0.02 | 0.32 |
Stroke volume, mL | 66.5 ± 12.4 | 67.0 ± 13.5 | 65.9 ± 11.4 | 66.5 ± 12.3 | 0.78 | 0.015 | 0.81 | 0.85 |
LVEF, % | 67.1 ± 6.43 | 67.3 ± 6.20 | 65.8 ± 6.73 * | 68.2 ± 6.19 * | 0.38 | 0.040 | 0.52 | 0.05 |
LVH, n (%) | 27 (10.7%) | 6 (7.1%) | 9 (10.7%) | 12 (14.3%) | 0.17 | 0.094 | 0.14 | 0.35 |
E/A ratio | 0.92 ± 0.36 | 1.02 ± 0.394 | 0.89 ± 0.31 | 0.84 ± 0.34 * | 0.001 | 0.281 | <0.001 | 0.01 |
TDI-e’ (average), cm/s | 7.71 ± 1.92 | 8.55 ± 1.98 | 7.76 ± 1.78 * | 6.82 ± 1.60 *,# | <0.001 | 0.441 | <0.001 | <0.001 |
E/e’ (average) | 9.84 ± 3.60 | 8.15 ± 2.71 | 9.90 ± 3.40 * | 11.5 ± 3.85 *,# | <0.001 | 0.371 | <0.001 | <0.001 |
LV SRe, s−1 | 1.08 ± 0.30 | 1.23 ± 0.31 | 1.07 ± 0.29 * | 0.96 ± 0.26 *# | <0.001 | 0.447 | <0.001 | <0.001 |
LV SRa, s−1 | 1.19 ± 0.24 | 1.17 ± 0.25 | 1.21 ± 0.22 | 1.19 ± 0.25 | 0.61 | 0.062 | 0.33 | 0.63 |
TDI-s’ (average), cm/s | 7.62 ± 1.45 | 7.99 ± 1.42 | 7.80 ± 1.55 | 7.07 ± 1.20 *,# | <0.001 | 0.285 | <0.001 | <0.001 |
GCS, % | −20.6 ± 2.92 | −20.7 ± 2.84 | −20.9 ± 2.94 | −20.3 ± 3.00 | 0.41 | 0.104 | 0.11 | 0.48 |
GLS, % | −19.5 ± 2.59 | −20.5 ± 2.37 | −19.4 ± 2.61 * | −18.5 ± 2.38 * | <0.001 | 0.408 | <0.001 | <0.001 |
LV SRs, s−1 | −1.12 ± 0.15 | −1.19 ± 0.155 | −1.12 ± 0.13 * | −1.05 ± 0.13 *,# | <0.001 | 0.436 | <0.001 | <0.001 |
Variables | EAT (mm) (Multi-Variate Regression Model) | |||
---|---|---|---|---|
Adjusted Coefficient | p Value | Adjusted Coefficient | p Value | |
Age, years | 0.03 (0.01, 0.05) | 0.004 | 0.04 (0.01, 0.06) | 0.001 |
Female sex, n (%) | 0.5 (0.07, 0.93) | 0.022 | 0.55 (0.12, 0.97) | 0.012 |
Systolic blood pressure, mm Hg | 0.01 (−0.0003, 0.02) | 0.058 | N/A | N/A |
Diastolic blood pressure, mm Hg | N/A | N/A | 0.02 (0.003, 0.03) | 0.02 |
BMI, kg/m2 | 0.11 (0.06, 0.16) | <0.001 | 0.10 (0.06, 0.15) | <0.001 |
Fasting glucose, mg/dL | - | - | - | - |
HDL-c, mg/dL | −0.012 (−0.023, −0.0003) | 0.044 | −0.012 (−0.02, −0.0006) | 0.038 |
e-GFR, mL/min/1.73 m2 | −0.012 (−0.02, −0.004) | 0.003 | −0.012 (−0.02, −0.004) | 0.003 |
Hypertension, n (%) | - | - | - | - |
Diabetes, n (%) | 0.78 (0.35–1.22) | <0.001 | 0.81 (0.37–1.24) | <0.001 |
HFpEF, n (%) | 0.81 (0.30–1.33) | 0.002 | 0.83 (0.32–1.34) | 0.002 |
Cox Regression Models | EAT (per 1 mm Increment) | |
---|---|---|
HR (95% CI) | p-Value | |
Hospitalization for HF | ||
Crude Model | 1.66 (1.45–1.91) | <0.001 |
Multivariate model | 1.36 (1.14–1.64) | 0.001 |
Composite HF/Death | ||
Crude Model | 1.60 (1.41–1.83) | <0.001 |
Multivariate model | 1.35 (1.14–1.60) | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.-L.; Sung, K.-T.; Lai, Y.-H.; Yen, C.-H.; Yun, C.-H.; Su, C.-H.; Kuo, J.-Y.; Liu, C.-Y.; Chien, C.-Y.; Cury, R.C.; et al. Epicardial Adiposity in Relation to Metabolic Abnormality, Circulating Adipocyte FABP, and Preserved Ejection Fraction Heart Failure. Diagnostics 2021, 11, 397. https://doi.org/10.3390/diagnostics11030397
Lin J-L, Sung K-T, Lai Y-H, Yen C-H, Yun C-H, Su C-H, Kuo J-Y, Liu C-Y, Chien C-Y, Cury RC, et al. Epicardial Adiposity in Relation to Metabolic Abnormality, Circulating Adipocyte FABP, and Preserved Ejection Fraction Heart Failure. Diagnostics. 2021; 11(3):397. https://doi.org/10.3390/diagnostics11030397
Chicago/Turabian StyleLin, Jiun-Lu, Kuo-Tzu Sung, Yau-Huei Lai, Chih-Hsuan Yen, Chun-Ho Yun, Cheng-Huang Su, Jen-Yuan Kuo, Chia-Yuan Liu, Chen-Yen Chien, Ricardo C. Cury, and et al. 2021. "Epicardial Adiposity in Relation to Metabolic Abnormality, Circulating Adipocyte FABP, and Preserved Ejection Fraction Heart Failure" Diagnostics 11, no. 3: 397. https://doi.org/10.3390/diagnostics11030397
APA StyleLin, J.-L., Sung, K.-T., Lai, Y.-H., Yen, C.-H., Yun, C.-H., Su, C.-H., Kuo, J.-Y., Liu, C.-Y., Chien, C.-Y., Cury, R. C., Bezerra, H. G., & Hung, C.-L. (2021). Epicardial Adiposity in Relation to Metabolic Abnormality, Circulating Adipocyte FABP, and Preserved Ejection Fraction Heart Failure. Diagnostics, 11(3), 397. https://doi.org/10.3390/diagnostics11030397