Multicenter Evaluation of Rapid BACpro® II for the Accurate Identification of Microorganisms Directly from Blood Cultures Using MALDI-TOF MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation Using the Rapid BACpro® II Kit
2.2. Sample Preparation Using Sepsityper® Kit
2.3. Ammonium Chloride Erythrocyte-Lysing Procedure
2.4. Differential Centrifugation Method
2.5. Identification of Microorganisms by MALDI-TOF MS
2.6. Interpretation of the Results
2.7. Statistical Analysis
3. Results
3.1. Performance of the Rapid BACpro® II Kit
3.2. Comparison between the Rapid BACpro® II Kit and Sepsityper® Kit
3.3. Comparison between the Rapid BACpro® II Kit and in-House Methods
3.3.1. The Ammonium-Chloride Method
3.3.2. Differential Centrifugation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Patel, R. MALDI-TOF MS for the diagnosis of infectious diseases. Clin. Chem. 2015, 61, 100–111. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Sanchez, B.; Cercenado, E.; Coste, A.T.; Greub, G. Review of the impact of MALDI-TOF MS in public health and hospital hygiene, 2018. Euro Surveill. 2019, 24. [Google Scholar] [CrossRef]
- Opota, O.; Croxatto, A.; Prod’hom, G.; Greub, G. Blood culture-based diagnosis of bacteraemia: State of the art. Clin. Microbiol. Infect. 2015, 21, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Oviano, M.; Bou, G. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for the Rapid Detection of Antimicrobial Resistance Mechanisms and Beyond. Clin. Microbiol. Rev. 2019, 32. [Google Scholar] [CrossRef] [Green Version]
- Leibovici, L.; Shraga, I.; Drucker, M.; Konigsberger, H.; Samra, Z.; Pitlik, S.D. The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J. Intern. Med. 1998, 244, 379–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- March-Rossello, G.A.; Munoz-Moreno, M.F.; Garcia-Loygorri-Jordan de Urries, M.C.; Bratos-Perez, M.A. A differential centrifugation protocol and validation criterion for enhancing mass spectrometry (MALDI-TOF) results in microbial identification using blood culture growth bottles. Eur. J. Clin Microbiol. Infect. Dis. 2013, 32, 699–704. [Google Scholar] [CrossRef]
- Prod’hom, G.; Bizzini, A.; Durussel, C.; Bille, J.; Greub, G. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets. J. Clin. Microbiol. 2010, 48, 1481–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bidart, M.; Bonnet, I.; Hennebique, A.; Kherraf, Z.E.; Pelloux, H.; Berger, F.; Cornet, M.; Bailly, S.; Maubon, D. An in-house assay is superior to Sepsityper for direct matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry identification of yeast species in blood cultures. J. Clin. Microbiol. 2015, 53, 1761–1764. [Google Scholar] [CrossRef] [Green Version]
- Yonetani, S.; Ohnishi, H.; Ohkusu, K.; Matsumoto, T.; Watanabe, T. Direct identification of microorganisms from positive blood cultures by MALDI-TOF MS using an in-house saponin method. Int. J. Infect. Dis. 2016, 52, 37–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Idelevich, E.A.; Schule, I.; Grunastel, B.; Wullenweber, J.; Peters, G.; Becker, K. Rapid identification of microorganisms from positive blood cultures by MALDI-TOF mass spectrometry subsequent to very short-term incubation on solid medium. Clin. Microbiol. Infect. 2014, 20, 1001–1006. [Google Scholar] [CrossRef] [Green Version]
- Florio, W.; Morici, P.; Ghelardi, E.; Barnini, S.; Lupetti, A. Recent advances in the microbiological diagnosis of bloodstream infections. Crit. Rev. Microbiol. 2018, 44, 351–370. [Google Scholar] [CrossRef]
- Schieffer, K.M.; Tan, K.E.; Stamper, P.D.; Somogyi, A.; Andrea, S.B.; Wakefield, T.; Romagnoli, M.; Chapin, K.C.; Wolk, D.M.; Carroll, K.C. Multicenter evaluation of the Sepsityper extraction kit and MALDI-TOF MS for direct identification of positive blood culture isolates using the BD BACTEC FX and VersaTREK((R)) diagnostic blood culture systems. J. Appl. Microbiol. 2014, 116, 934–941. [Google Scholar] [CrossRef] [Green Version]
- Azrad, M.; Keness, Y.; Nitzan, O.; Pastukh, N.; Tkhawkho, L.; Freidus, V.; Peretz, A. Cheap and rapid in-house method for direct identification of positive blood cultures by MALDI-TOF MS technology. BMC Infect. Dis. 2019, 19, 72. [Google Scholar] [CrossRef] [Green Version]
- Jeverica, S.; Nagy, E.; Mueller-Premru, M.; Papst, L. Sample preparation method influences direct identification of anaerobic bacteria from positive blood culture bottles using MALDI-TOF MS. Anaerobe 2018, 54, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Morgenthaler, N.G.; Kostrzewa, M. Rapid identification of pathogens in positive blood culture of patients with sepsis: Review and meta-analysis of the performance of the sepsityper kit. Int. J. Microbiol. 2015, 2015, 827416. [Google Scholar] [CrossRef]
- Schubert, S.; Weinert, K.; Wagner, C.; Gunzl, B.; Wieser, A.; Maier, T.; Kostrzewa, M. Novel, improved sample preparation for rapid, direct identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. J. Mol. Diagn. 2011, 13, 701–706. [Google Scholar] [CrossRef]
- Scohy, A.; Noel, A.; Boeras, A.; Brassinne, L.; Laurent, T.; Rodriguez-Villalobos, H.; Verroken, A. Evaluation of the Bruker(R) MBT Sepsityper IVD module for the identification of polymicrobial blood cultures with MALDI-TOF MS. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 2145–2152. [Google Scholar] [CrossRef] [PubMed]
- Fothergill, A.; Kasinathan, V.; Hyman, J.; Walsh, J.; Drake, T.; Wang, Y.F. Rapid identification of bacteria and yeasts from positive-blood-culture bottles by using a lysis-filtration method and matrix-assisted laser desorption ionization-time of flight mass spectrum analysis with the SARAMIS database. J. Clin. Microbiol. 2013, 51, 805–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machen, A.; Drake, T.; Wang, Y.F. Same day identification and full panel antimicrobial susceptibility testing of bacteria from positive blood culture bottles made possible by a combined lysis-filtration method with MALDI-TOF VITEK mass spectrometry and the VITEK2 system. PLoS ONE 2014, 9, e87870. [Google Scholar] [CrossRef]
- Ashizawa, K.; Murata, S.; Terada, T.; Ito, D.; Bunya, M.; Watanabe, K.; Teruuchi, Y.; Tsuchida, S.; Satoh, M.; Nishimura, M.; et al. Applications of copolymer for rapid identification of bacteria in blood culture broths using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J. Microbiol. Methods 2017, 139, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Kayin, M.; Mert, B.; Aydemir, S.; Ozenci, V. Comparison of rapid BACpro(R) II, Sepsityper(R) kit and in-house preparation methods for direct identification of bacteria from blood cultures by MALDI-TOF MS with and without Sepsityper(R) module analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 2133–2143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuchida, S.; Murata, S.; Miyabe, A.; Satoh, M.; Takiwaki, M.; Ashizawa, K.; Terada, T.; Ito, D.; Matsushita, K.; Nomura, F. Application of the biocopolymer preparation system, rapid BACpro(R) II kit, for mass-spectrometry-based bacterial identification from positive blood culture bottles by the MALDI Biotyper system. J. Microbiol. Methods 2018, 152, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Yonezawa, T.; Watari, T.; Ashizawa, K.; Hanada, D.; Yanagiya, T.; Watanabe, N.; Terada, T.; Tomoda, Y.; Fujii, S. Development of an improved rapid BACpro(R) protocol and a method for direct identification from blood-culture-positive bottles using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J. Microbiol. Methods 2018, 148, 138–144. [Google Scholar] [CrossRef]
- Buchan, B.W.; Ledeboer, N.A. Advances in identification of clinical yeast isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2013, 51, 1359–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
n | Rapid BACpro II | ||||||
---|---|---|---|---|---|---|---|
S >2.0 | (%) | 1.7 < S < 1.99 | (%) | S < 1.7 | (%) | ||
(A) | |||||||
Overall | 761 | 609 | 80.0 | 110 | 14.4 | 42 | 5.6 |
Gram-Negative (GN) | 323 | 298 | 92.3 | 20 | 6.2 | 5 | 1.5 |
Gram-Positive (GP) | 417 | 302 | 72.4 | 86 | 20.6 | 29 | 7.0 |
(B) | |||||||
Enterobacterales | 271 | 254 | 93.7 | 15 | 5.5 | 2 | 0.8 |
Escherichia coli | 149 | 139 | 93.3 | 9 | 6.0 | 1 | 0.7 |
Klebsiella spp. | 70 | 68 | 97.1 | 2 | 2.9 | 0 | 0 |
Pseudomonas | 15 | 15 | 100 | 0 | 0 | 0 | 0 |
Other GN | 37 | 29 | 78.4 | 5 | 13.5 | 3 | 8.1 |
S. aureus | 95 | 90 | 94.7 | 2 | 2.1 | 3 | 3.2 |
CoN staphylococci | 153 | 91 | 59.5 | 53 | 34.6 | 9 | 5.9 |
Streptococci | 86 | 57 | 66.3 | 16 | 18.6 | 13 | 15.1 |
Enterococci | 37 | 36 | 97.3 | 1 | 2.7 | 0 | 0 |
Other GP | 46 | 28 | 60.9 | 14 | 30.4 | 4 | 8.7 |
Yeast | 21 | 9 | 42.9 | 4 | 19.0 | 8 | 38.1 |
n | rapid BACpro II | Sepsityper Kit | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S >2.0 | (%) | 1.7 < S < 1.99 | (%) | S < 1.7 | (%) | S >2.0 | (%) | 1.7 < S < 1.99 | (%) | S < 1.7 | (%) | ||
(A) | |||||||||||||
Overall | 560 | 430 | 76.8 | 92 | 16.4 | 38 | 6.8 | 388 | 69.3 | 85 | 15.2 | 87 | 15.5 |
Gram-Negative (GN) | 232 | 210 | 90.5 | 18 | 7.8 | 4 | 1.7 | 199 | 85.8 | 8 | 3.4 | 25 | 10.8 |
Gram-Positive (GP) | 313 | 215 | 68.7 | 72 | 23.0 | 26 | 8.3 | 187 | 59.7 | 70 | 22.4 | 56 | 17.9 |
(B) | |||||||||||||
Enterobacterales | 194 | 179 | 92.3 | 14 | 7.2 | 1 | 0.5 | 179 | 92.3 | 5 | 2.6 | 10 | 5.1 |
Escherichia coli | 112 | 103 | 92.0 | 8 | 7.1 | 1 | 0.9 | 105 | 93.7 | 2 | 1.8 | 5 | 4.5 |
Klebsiella spp. | 43 | 41 | 95.3 | 2 | 4.7 | 0 | 0 | 41 | 95.4 | 1 | 2.3 | 1 | 2.3 |
Pseudomonas | 10 | 10 | 100 | 0 | 0 | 0 | 0 | 7 | 70.0 | 0 | 0 | 3 | 30.0 |
Other GN | 28 | 21 | 75.0 | 4 | 14.3 | 3 | 10.7 | 13 | 46.4 | 3 | 10.7 | 12 | 42.9 |
S. aureus | 75 | 70 | 93.3 | 2 | 2.7 | 3 | 4.0 | 68 | 90.7 | 2 | 2.7 | 5 | 6.6 |
CoN staphylococci | 118 | 66 | 55.9 | 44 | 37.3 | 8 | 6.8 | 51 | 43.2 | 36 | 30.5 | 31 | 26.3 |
Streptococci | 67 | 39 | 58.2 | 15 | 22.4 | 13 | 19.4 | 34 | 50.7 | 21 | 31.3 | 12 | 18.0 |
Enterococci | 30 | 29 | 96.7 | 1 | 3.3 | 0 | 0 | 23 | 76.7 | 4 | 13.3 | 3 | 10.0 |
Other GP | 23 | 11 | 47.8 | 10 | 43.5 | 2 | 8.7 | 11 | 47.8 | 7 | 30.4 | 5 | 21.8 |
Yeast | 15 | 5 | 33.3 | 2 | 13.3 | 8 | 53.4 | 2 | 13.3 | 7 | 46.7 | 6 | 40.0 |
n | Rapid BACpro II | Ammonium Chloride Method | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S >2.0 | (%) | 1.7 < S < 1.99 | (%) | S < 1.7 | (%) | S >2.0 | (%) | 1.7 < S < 1.99 | (%) | S < 1.7 | (%) | ||
(A) | |||||||||||||
Overall | 201 | 179 | 89.0 | 18 | 9.0 | 4 | 2.0 | 80 | 39.8 | 60 | 29.9 | 61 | 30.3 |
Gram-Negative (GN) | 91 | 88 | 96.7 | 2 | 2.2 | 1 | 1.1 | 49 | 53.8 | 24 | 26.4 | 18 | 19.8 |
Gram-Positive (GP) | 104 | 87 | 83.6 | 14 | 13.5 | 3 | 2.9 | 28 | 26.9 | 36 | 34.6 | 40 | 38.5 |
(B) | |||||||||||||
Enterobacterales | 77 | 75 | 97.4 | 1 | 1.3 | 1 | 1.3 | 47 | 61.0 | 19 | 24.7 | 11 | 14.3 |
Escherichia coli | 37 | 36 | 97.3 | 1 | 2.7 | 0 | 0 | 26 | 70.3 | 5 | 13.5 | 6 | 16.2 |
Klebsiella spp. | 27 | 27 | 100 | 0 | 0 | 0 | 0 | 18 | 66.7 | 5 | 18.5 | 4 | 14.8 |
Pseudomonas | 5 | 5 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 40.0 | 3 | 60.0 |
Other GN | 9 | 8 | 88.9 | 1 | 11.1 | 0 | 0 | 2 | 22.2 | 3 | 33.3 | 4 | 44.5 |
S. aureus | 20 | 20 | 100 | 0 | 0 | 0 | 0 | 8 | 40.0 | 9 | 45.0 | 3 | 15.0 |
CoN staphylococci | 35 | 25 | 71.4 | 9 | 25.7 | 1 | 2.9 | 10 | 28.6 | 12 | 34.3 | 13 | 37.1 |
Streptococci | 19 | 18 | 94.7 | 1 | 5.3 | 0 | 0 | 5 | 26.4 | 7 | 36.8 | 7 | 36.8 |
Enterococci | 7 | 7 | 100 | 0 | 0 | 0 | 0 | 2 | 28.6 | 1 | 14.3 | 4 | 57.1 |
Other GP | 23 | 17 | 73.9 | 4 | 17.4 | 2 | 8.7 | 3 | 13.1 | 7 | 30.4 | 13 | 56.5 |
Yeast | 6 | 4 | 66.7 | 2 | 33.3 | 0 | 0 | 3 | 50.0 | 0 | 0 | 3 | 50.0 |
n | rapid BACpro II | Differential Centrifugation Method | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S >2.0 | (%) | 1.7 < S < 1.99 | (%) | S < 1.7 | (%) | S >2.0 | (%) | 1.7 < S < 1.99 | (%) | S < 1.7 | (%) | ||
(A) | |||||||||||||
Overall | 177 | 118 | 66.7 | 43 | 24.3 | 16 | 9.0 | 109 | 61.6 | 36 | 20.3 | 32 | 18.1 |
Gram-Negative (GN) | 81 | 66 | 81.5 | 13 | 16.0 | 2 | 2.5 | 68 | 83.9 | 11 | 13.6 | 2 | 2.5 |
Gram-Positive (GP) | 88 | 51 | 58.0 | 28 | 31.8 | 9 | 10.2 | 39 | 44.3 | 25 | 28.4 | 24 | 27.3 |
(B) | |||||||||||||
Enterobacterales | 69 | 58 | 84.1 | 10 | 14.5 | 1 | 1.4 | 60 | 87.0 | 8 | 11.6 | 1 | 1.4 |
Escherichia coli | 35 | 28 | 80.0 | 6 | 17.1 | 1 | 2.9 | 31 | 88.6 | 4 | 11.4 | 0 | 0 |
Klebsiella spp. | 15 | 14 | 93.3 | 1 | 6.7 | 0 | 0 | 14 | 93.3 | 1 | 6.7 | 0 | 0 |
Pseudomonas | 4 | 4 | 100 | 0 | 0 | 0 | 0 | 2 | 50.0 | 2 | 50.0 | 0 | 0 |
Other GN | 8 | 4 | 50.0 | 3 | 37.5 | 1 | 12.5 | 6 | 75.0 | 1 | 12.5 | 1 | 12.5 |
S. aureus | 12 | 11 | 91.7 | 1 | 8.3 | 0 | 0 | 3 | 25.0 | 2 | 16.7 | 7 | 58.3 |
CoN staphylococci | 27 | 16 | 59.3 | 11 | 40.7 | 0 | 0 | 12 | 44.5 | 9 | 33.3 | 6 | 22.2 |
Streptococci | 30 | 11 | 36.7 | 11 | 36.7 | 8 | 26.6 | 14 | 46.7 | 9 | 30.0 | 7 | 23.3 |
Enterococci | 12 | 11 | 91.7 | 1 | 8.3 | 0 | 0 | 9 | 75.0 | 2 | 16.7 | 1 | 8.3 |
Other GP | 7 | 2 | 28.6 | 4 | 57.1 | 1 | 14.3 | 1 | 14.3 | 3 | 42.8 | 3 | 42.8 |
Yeast | 8 | 1 | 12.5 | 2 | 25.0 | 5 | 62.5 | 2 | 25.0 | 0 | 0 | 6 | 75.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oviaño, M.; Ingebretsen, A.; Steffensen, A.K.; Croxatto, A.; Prod’hom, G.; Quiroga, L.; Bou, G.; Greub, G.; Rodríguez-Temporal, D.; Rodríguez-Sánchez, B. Multicenter Evaluation of Rapid BACpro® II for the Accurate Identification of Microorganisms Directly from Blood Cultures Using MALDI-TOF MS. Diagnostics 2021, 11, 2251. https://doi.org/10.3390/diagnostics11122251
Oviaño M, Ingebretsen A, Steffensen AK, Croxatto A, Prod’hom G, Quiroga L, Bou G, Greub G, Rodríguez-Temporal D, Rodríguez-Sánchez B. Multicenter Evaluation of Rapid BACpro® II for the Accurate Identification of Microorganisms Directly from Blood Cultures Using MALDI-TOF MS. Diagnostics. 2021; 11(12):2251. https://doi.org/10.3390/diagnostics11122251
Chicago/Turabian StyleOviaño, Marina, André Ingebretsen, Anne K. Steffensen, Antony Croxatto, Guy Prod’hom, Lidia Quiroga, Germán Bou, Gilbert Greub, David Rodríguez-Temporal, and Belén Rodríguez-Sánchez. 2021. "Multicenter Evaluation of Rapid BACpro® II for the Accurate Identification of Microorganisms Directly from Blood Cultures Using MALDI-TOF MS" Diagnostics 11, no. 12: 2251. https://doi.org/10.3390/diagnostics11122251
APA StyleOviaño, M., Ingebretsen, A., Steffensen, A. K., Croxatto, A., Prod’hom, G., Quiroga, L., Bou, G., Greub, G., Rodríguez-Temporal, D., & Rodríguez-Sánchez, B. (2021). Multicenter Evaluation of Rapid BACpro® II for the Accurate Identification of Microorganisms Directly from Blood Cultures Using MALDI-TOF MS. Diagnostics, 11(12), 2251. https://doi.org/10.3390/diagnostics11122251