Chronic Kidney Disease and Heart Failure–Everyday Diagnostic Challenges
Abstract
:1. Introduction
2. Materials and Methods
3. How to Confirm or Rule out HF in a Patient
- A reduction in the eGFR to < 60 mL/min/1.73 m2
- Kidney damage in imaging, histopathology, or laboratory tests.
4. Is the Nature of Overhydration the Same in HF and CKD?
5. What Is the Practical Significance of BNP and NT-proBNP in Patients with Advanced CKD?
6. Cardiotoxicity of Arteriovenous Fistulas
7. Pulmonary Hypertension in Patients with CKD
- overhydration
- pulmonary congestion, resulting from reduced LV compliance, and LV diastolic dysfunction (a consequence of arteriosclerosis and chronic hypertension)
- pulmonary vessel remodeling, caused by an increase in vasoactive factors (e.g., nitric oxide, prostacyclin, and endothelin)
- inflammation
- coexisting lung disease (e.g., obstructive sleep apnea and chronic obstructive pulmonary disease)
8. Whether CKD Affects Basic Pharmacotherapy of HF?
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. ESC Clinical Practice Guidelines. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Van Riet, E.E.; Hoes, A.W.; Limburg, A.; Landman, M.A.; van der Hoeven, H.; Rutten, F.H. Prevalence of unrecognized heart failure in older persons with shortness of breath on exertion. Eur. J. Heart Fail. 2014, 16, 772–777. [Google Scholar] [CrossRef]
- Chioncel, O.; Lainscak, M.; Seferovic, P.M.; Anker, S.D.; Crespo-Leiro, M.G.; Harjola, V.P.; Parissis, J.; Laroche, C.; Piepoli, M.F.; Fonseca, C.; et al. Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: An analysis of the ESC Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2017, 19, 1574–1585. [Google Scholar] [CrossRef]
- Gellert, R.; Kalinowska, A.; Prystacki, T.; Daniewska, D.; Polak, W. Treatment of anemia in patients with advanced chronic kidney disease in Poland. Nefrol. Dial. Pol. 2021, 25, 33–40. [Google Scholar]
- Damman, K.; Valente, M.A.; Voors, A.A.; O’Connor, C.M.; van Veldhuisen, D.J.; Hillege, H.L. Renal impairment, worsening renal function, and outcome in patients with heart failure: An updated meta-analysis. Eur. Heart J. 2014, 35, 455–469. [Google Scholar] [CrossRef] [Green Version]
- McAlister, F.A.; Ezekowitz, J.; Tarantini, L.; Squire, I.; Komajda, M.; Bayes-Genis, A.; Gotsman, I.; Whalley, G.; Earle, N.; Poppe, K.K.; et al. Renal dysfunction in patients with heart failure with preserved versus reduced ejection fraction: Impact of the new chronic kidney disease—Epidemiology collaboration group formula. Circ. Heart Fail. 2012, 5, 309–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damman, K.; Masson, S.; Lucci, D.; Gorini, M.; Urso, R.; Maggioni, A.P.; Tavazzi, L.; Tarantini, L.; Tognoni, G.; Voors, A.; et al. Progression of renal impairment and chronic kidney disease in chronic heart failure: An analysis from GISSI-HF. J. Card. Fail. 2017, 23, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Rangaswami, J.; Bhalla, V.; Blair, J.; Chang, T.I.; Costa, S.; Lentine, K.L.; Lerma, E.V.; Mezue, K.; Molitch, M.; Mullens, W.; et al. Cardiorenal syndrome: Classification, pathophysiology, diagnosis, and treatment strategies: A scientific statement from the american heart association. Circulation 2019, 139, e840–e878. [Google Scholar] [CrossRef]
- Levin, A.; Stevens, P.E.; Bilous, R.W.; Coresh, J.; de Francisco, A.L.M.; de Jong, P.E.; Griffith, K.E.; Hemmelgarn, B.R.; Iseki, K.; Lamb, E.J.; et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013, 3, 1–150. [Google Scholar]
- Mulia, E.; Nugraha, R.A.; A’yun, M.Q.; Juwita, R.R.; Yofrido, F.M.; Julario, R.; Alkaff, F.F. Electrocardiographic abnormalities among late-stage non-dialysis chronic kidney disease patients. J. Basic Clin. Physiol. Pharmacol. 2020, 32, 155–162. [Google Scholar] [CrossRef]
- Heo, N.J.; Rhee, S.Y.; Waalen, J.; Steinhubl, S. Chronic kidney disease and undiagnosed atrial fibrillation in individuals with diabetes. Cardiovasc. Diabetol. 2020, 19, 157. [Google Scholar] [CrossRef] [PubMed]
- Ajam, F.; Akoluk, A.; Alrefaee, A.; Campbell, N.; Masud, A.; Mehandru, S.; Patel, M.; Asif, A.; Carson, M.P. Prevalence of abnormalities in electrocardiogram conduction in dialysis patients: A comparative study. J. Bras. Nefrol. 2020, 42, 448–453. [Google Scholar] [CrossRef]
- Han, X.; Zhang, S.; Chen, Z.; Adhikari, B.K.; Zhang, Y.; Zhang, J.; Sun, J.; Wang, Y. Cardiac biomarkers of heart failure in chronic kidney disease. Clin. Chim. Acta 2020, 510, 298–310. [Google Scholar] [CrossRef]
- Whalley, G.A.; Marwick, T.H.; Doughty, R.N.; Cooper, B.A.; Johnson, D.W.; Pilmore, A.; Harris, D.C.; Pollock, C.A.; Collins, J.F.; IDEAL Echo Substudy Investigators. Effect of early initiation of dialysis on cardiac structure and function: Results from the echo substudy of the IDEAL trial. Am. J. Kidney Dis. 2013, 61, 262–270. [Google Scholar] [CrossRef]
- Park, M.; Hsu, C.Y.; Li, Y.; Mishra, R.K.; Keane, M.; Rosas, S.E.; Dries, D.; Xie, D.; Chen, J.; He, J.; et al. Associations between kidney function and subclinical cardiac abnormalities in CKD. J. Am. Soc. Nephrol. 2012, 23, 1725–1734. [Google Scholar] [CrossRef] [Green Version]
- Shroff, G.R.; Herzog, C.A. Echocardiography: Providing additional insights into cardiovascular structural and functional abnormalities in advanced CKD. Clin. J. Am. Soc. Nephrol. 2013, 8, 339–341. [Google Scholar] [CrossRef] [Green Version]
- Edmonston, D.L.; Rajagopal, S.; Wolf, M. Echocardiography to screen for pulmonary hypertension in CKD. Kidney Int. Rep. 2020, 5, 2275–2283. [Google Scholar] [CrossRef] [PubMed]
- Ronco, C.; Haapio, M.; House, A.A.; Anavekar, N.; Bellomo, R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 2008, 52, 1527–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voroneanu, L.; Cusai, C.; Hogas, S.; Ardeleanu, S.; Onofriescu, M.; Nistor, I.; Prisada, O.; Sascau, R.; Goldsmith, D.; Covic, A. The relationship between chronic volume overload and elevated blood pressure in hemodialysis patients: Use of bioimpedance provides a different perspective from echocardiography and biomarker methodologies. Int. Urol. Nephrol. 2010, 42, 789–797. [Google Scholar] [CrossRef]
- Agarwal, R.; Andersen, M.J.; Pratt, J.H. On the importance of pedal edema in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2008, 3, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Adamska-Wełnicka, A.; Wełnicki, M.; Krzesiński, P.; Niemczyk, S.; Lubas, A. Multi-method complex approach for hydration assessment does not detect a hydration difference in hemodialysis versus peritoneal dialysis patient. Diagnostics 2020, 10, 767. [Google Scholar] [CrossRef] [PubMed]
- House, A.A.; Wanner, C.; Sarnak, M.J.; Piña, I.L.; McIntyre, C.W.; Komenda, P.; Kasiske, B.L.; Deswal, A.; deFilippi, C.R.; Cleland, J.; et al. Heart failure in chronic kidney disease: Conclusions from a kidney disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2019, 95, 1304–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vickery, S.; Price, C.P.; John, R.I.; Abbas, N.A.; Webb, M.C.; Kempson, M.E.; Lamb, E.J. B-type natriuretic peptide (BNP) and amino-terminal proBNP in patients with CKD: Relationship to renal function and left ventricular hypertrophy. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2005, 46, 610–620. [Google Scholar] [CrossRef]
- Sato, Y. Diagnostic and prognostic property of NT-proBNP in patients with renal dysfunction. J. Cardiol. 2013, 61, 446–447. [Google Scholar] [CrossRef] [Green Version]
- McCullough, P.A.; Duc, P.; Omland, T.; McCord, J.; Nowak, R.M.; Hollander, J.E.; Herrmann, H.C.; Steg, P.G.; Westheim, A.; Knudsen, C.W.; et al. B-type natriuretic peptide and renal function in the diagnosis of heart failure: An analysis from the breathing not properly multinational study. Am. J. Kidney Dis. 2003, 41, 571–579. [Google Scholar] [CrossRef]
- Mueller, C.; McDonald, K.; de Boer, R.A.; Maisel, A.; Cleland, J.; Kozhuharov, N.; Coats, A.; Metra, M.; Mebazaa, A.; Ruschitzka, F.; et al. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur. J. Heart Fail. 2019, 21, 715–731. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.E.; Park, S.; Kim, J.K.; Kim, S.G.; Kim, H.J.; Song, Y.R. B-type natriuretic peptide predicts an ischemic etiology of acute heart failure in patients with stage 4-5 chronic kidney disease. Clin. Biochem. 2014, 47, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Horii, M.; Matsumoto, T.; Uemura, S.; Sugawara, Y.; Takitsume, A.; Ueda, T.; Nakagawa, H.; Nishida, T.; Soeda, T.; Okayama, S.; et al. Prognostic value of B-type natriuretic peptide and its amino-terminal proBNP fragment for cardiovascular events with stratification by renal function. J. Cardiol. 2013, 61, 410–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, T.; Yasuda, K.; Kimura, T.; Sasaki, K.; Shimada, K.; Hashimoto, N.; Isaka, Y. Prognostic significance of asymptomatic brain natriuretic peptide elevation at nephrology referral in patients with chronic kidney disease. Am. J. Nephrol. 2018, 48, 205–213. [Google Scholar] [CrossRef]
- Şimşek, M.A.; Değertekin, M.; Türer Cabbar, A.; Hünük, B.; Aktürk, S.; Erdoğmuş, S.; Mutlu, B.; Kozan, Ö. NT-proBNP level in stage 3-4 chronic kidney disease and mortality in long-term follow-up: HAPPY study subgroup analysis. Turk. Kardiyol. Dern. Ars. 2020, 48, 454–460. [Google Scholar] [CrossRef]
- Hickman, P.E.; McGill, D.A.; Talaulikar, G.; Hiremagalur, B.; Bromley, J.; Rahman, A.; Koerbin, G.; Southcott, E.; Potter, J.M. Prognostic efficacy of cardiac biomarkers for mortality in dialysis patients. Intern. Med. J. 2009, 39, 812–818. [Google Scholar] [CrossRef]
- Tsai, Y.C.; Tsai, H.J.; Lee, C.S.; Chiu, Y.W.; Kuo, H.T.; Lee, S.C.; Chen, T.H.; Kuo, M.C. The interaction between N-terminal pro-brain natriuretic peptide and fluid status in adverse clinical outcomes of late stages of chronic kidney disease. PLoS ONE 2018, 13, e0202733. [Google Scholar] [CrossRef] [Green Version]
- Scheen, V.; Bhalla, V.; Tulua Tata, A. The use of B-type natriuretic peptide to assess volume status in patients with end-stage renal disease. Am. Heart J. 2007, 153, 244.e1–244.e5. [Google Scholar] [CrossRef]
- Somer, C.; Heckle, S.; Schwenger, V. Cardiac biomarkers are influenced by dialysis characteristics. Clin. Nephrol. 2007, 68, 392–400. [Google Scholar] [CrossRef]
- Kalloo, S.; Blake, P.G.; Wish, J. A patient centered approach to hemodialysis vascular access in the era of fistula first. Semin. Dial. 2016, 29, 148–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, A.J.; Foley, R.N.; Gilbertson, D.T.; Chen, S.C. The state of chronic kidney disease, ESRD, and morbidity and mortality in the first year of dialysis. Clin. J. Am. Soc. Nephrol. 2009, 4, S5–S11. [Google Scholar] [CrossRef] [PubMed]
- Basile, C.; Lomonte, C.; Vernaglione, L.; Casucci, F.; Antonelli, M.; Losurdo, N. The relationship between the flow of arteriovenous fistula and cardiac output in haemodialysis patients. Nephrol. Dial. Transplant. 2007, 23, 282–287. [Google Scholar] [CrossRef]
- Korsheed, S.; Eldehni, M.T.; John, S.G.; Fluck, R.J.; McIntyre, C.W. Effects of arteriovenous fistula formation on arterial stiffness and cardiovascular performance and function. Nephrol. Dial. Transplant. 2011, 26, 3296–3302. [Google Scholar] [CrossRef]
- Reddy, Y.; Obokata, M.; Dean, P.G.; Melenovsky, V.; Nath, K.A.; Borlaug, B. A Long term cardiovascular changes following creation of arteriovenous fistula in patients with end stage renal disease. Eur. Heart J. 2017, 38, 1913–1923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwashima, Y.; Horio, T.; Takami, Y.; Inenaga, T.; Nishikimi, T.; Takishita, S.; Kawano, Y. Effects of the creation of arteriovenous fistula for hemodialysis on cardiac function and natriuretic peptide levels in CRF. Am. J. Kidney Dis. 2002, 40, 974–982. [Google Scholar] [CrossRef] [Green Version]
- Pandeya, S.; Lindsay, R.M. The relationship between cardiac output and access flow during hemodialysis. ASAIO J. 1999, 45, 135–138. [Google Scholar] [CrossRef]
- Wasse, H.; Singapuri, M.S. High output heart failure: How to define it, when to treat it, and how to treat it. Semin. Nephrol. 2012, 32, 551–557. [Google Scholar] [CrossRef]
- Raza, F.; Alkhouli, M.; Rogers, F.; Vaidya, A.; Forfia, P. Case series of 5 patients with end stage renal disease with reversible dyspnea, heart failure, and pulmonary hypertension related to arteriovenous dialysis access. Pulm. Circ. 2015, 5, 398–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, A.D.; Chen, M.; Dahl, N.; Scoutt, L.; Dardik, A.; Ochoa Chaar, C.I. Intraoperative ultrasound guidance for banding of an arteriovenous fistula causing high cardiac output heart failure. Ann. Vasc. Surg. 2020, 66, 665.e5–665.e8. [Google Scholar] [CrossRef]
- Rao, N.; Worthley, M.; Disney, P.; Faull, R. Dramatic improvement in decompensated right heart failure due to severe tricuspid regurgitation following ligation of arteriovenous fistula in a renal transplant recipient. Semin. Dial. 2014, 27, E24–E26. [Google Scholar] [CrossRef]
- Gumus, F.; Saricaoglu, M.C. Assessment of right heart functions in the patients with arteriovenous fistula for hemodialysis access: Right ventricular free wall strain and tricuspid regurgitation jet velocity as the predictors of right heart failure. Vascular 2020, 28, 96–103. [Google Scholar] [CrossRef]
- Roca-Tey, R. Permanent arteriovenous fistula or catheter dialysis for heart failure patients. J. Vasc. Access 2016, 17, S23–S29. [Google Scholar] [CrossRef] [PubMed]
- Faull, R.; Rao, N.; Worthley, M. Do arteriovenous fistulas increase cardiac risk? Semin. Dial. 2018, 31, 357–361. [Google Scholar] [CrossRef]
- Pietryga, J.A.; Little, M.D.; Robbin, M.L. Sonography of arteriovenous fistulas and grafts. Semin. Dial. 2017, 30, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Sise, M.E.; Courtwright, A.M.; Channick, R.N. Pulmonary hypertension in patients with chronic and end stage kidney disease. Kidney Int. 2013, 84, 682–692. [Google Scholar] [CrossRef] [Green Version]
- Tedford, R.J.; Forfia, P. Hemodynamic evaluation of pulmonary hypertension in chronic kidney disease. Adv. Pulm. Hypertens. 2013, 12, 82. [Google Scholar] [CrossRef]
- Delgado, J.F. Pulmonary circulation in heart failure. Rev. Esp. Cardiol. 2010, 63, 334–345. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, L.; Zeng, H.; Lv, Y.; Huang, Y. Epidemiology and risk factors in CKD patients with pulmonary hypertension: A retrospective study. BMC Nephrol. 2018, 19, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, M.; Batty, J.A.; Lin, C.; Fan, X.; Chan, K.E.; Kalim, S. Pulmonary hypertension, mortality, and cardiovascular disease in ckd and esrd patients: A systematic review and meta-analysis. Am. J. Kidney Dis. 2018, 72, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, S.; Shah, S.J.; Ommerborn, M.J.; Clark, C.R.; Hall, M.E.; Mentz, R.J.; Qazi, S.; Robbins, J.M.; Skelton, T.N.; Chen, J.; et al. Pulmonary hypertension is associated with a higher risk of heart failure hospitalization and mortality in patients with chronic kidney disease: The Jackson heart study. circulation. Heart Fail. 2017, 10, e003940. [Google Scholar] [CrossRef]
- Reque, J.; Garcia-Prieto, A.; Linares, T.; Vega, A.; Abad, S.; Panizo, N.; Quiroga, B.; Collado Boira, E.J.; López-Gómez, J.M. Pulmonary hypertension is associated with mortality and cardiovascular events in chronic kidney disease patients. Am. J. Nephrol. 2017, 45, 107–114. [Google Scholar] [CrossRef]
- Guazzi, M.; Naeije, R. Pulmonary hypertension in heart failure: Pathophysiology, pathobiology, and emerging clinical perspectives. J. Am. Coll. Cardiol. 2017, 69, 1718–1734. [Google Scholar] [CrossRef]
- Sandqvist, A.; Schneede, J.; Kylhammar, D.; Henrohn, D.; Lundgren, J.; Hedeland, M.; Bondesson, U.; Rådegran, G.; Wikström, G. Plasma L argininę levels distinguish pulmonary arterial hypertension from left ventricular systolic dysfunction. Heart Vessels 2018, 33, 255–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petropoulos, T.E.; Ramirez, M.E.; Granton, J.; Licht, C.; John, R.; Moayedi, Y.; Morel, C.F.; McQuillan, R.F. Renal thrombotic microangiopathy and pulmonary arterial hypertension in a patient with late onset cobalamin C deficiency. Clin. Kidney J. 2018, 11, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Imazu, M.; Takahama, H.; Amaki, M.; Sugano, Y.; Ohara, T.; Hasegawa, T.; Kanzaki, H.; Anzai, T.; Mochizuki, N.; Asanuma, H.; et al. Use of serum fibroblast growth factor 23 vs. plasma B type natriuretic peptide levels in assessing the pathophysiology of patients with heart failure. Hypertens. Res. 2017, 40, 181–188. [Google Scholar] [CrossRef]
- Walther, C.P.; Nambi, V.; Hanania, N.A.; Navaneethan, S.D. Diagnosis and management of pulmonary hypertension in patients with ckd. Am. J. Kidney Dis. 2020, 75, 935–945. [Google Scholar] [CrossRef]
- Ghali, J.K.; Wikstrand, J.; Van Veldhuisen, D.J.; Fagerberg, B.; Goldstein, S.; Hjalmarson, A.; Johansson, P.; Kjekshus, J.; Ohlsson, L.; Samuelsson, O.; et al. The influence of renal function on clinical outcome and response to beta-blockade in systolic heart failure: Insights from metoprolol CR/XL randomized intervention trial in chronic HF (MERIT-HF). J. Card Fail. 2009, 15, 310–318. [Google Scholar] [CrossRef] [PubMed]
- CIBIS-II Investigators. The cardiac insufficiency bisoprolol study II (CIBISII): A randomised trial. Lancet 1999, 353, 9–13. [Google Scholar] [CrossRef]
- Cice, G.; Ferrara, L.; D’Andrea, A.; D’Isa, S.; Di Benedetto, A.; Cittadini, A.; Russo, P.E.; Golino, P.; Calabrò, R. Carvedilol increases two-year survival in dialysis patients with dilated cardiomyopathy: A prospective, placebo-controlled trial. J. Am. Coll. Cardiol. 2003, 41, 1438–1444. [Google Scholar] [CrossRef] [Green Version]
- Clark, H.; Krum, H.; Hopper, I. Worsening renal function during renin angiotensin aldosterone system inhibitor initiation and long term outcomes in patients with left ventricular systolic dysfunction. Eur. J. Heart Fail 2014, 16, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Edner, M.; Benson, L.; Dahlström, U.; Lund, L.H. Association between renin-angiotensin system antagonist use and mortality in heart failure with severe renal insufficiency: A prospective propensity score-matched cohort study. Eur. Heart J. 2015, 36, 2318–2326. [Google Scholar] [CrossRef] [Green Version]
- Quach, K.; Lvtvyn, L.; Baigent, C.; Bueti, J.; Garg, A.X.; Hawley, C.; Haynes, R.; Manns, B.; Perkovic, V.; Rabbat, C.G.; et al. The Safety and efficacy of mineralocorticoid receptor antagonists in patients who require dialysis: A systematic review and meta-analysis. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2016, 68, 591–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, W.C.; Liu, J.S.; Hung, S.C.; Kuo, K.L.; Chen, Y.H.; Tarng, D.C.; Hsu, C.C. Effect of spironolactone on the risks of mortality and hospitalization for heart failure in pre-dialysis advanced chronic kidney disease: A nationwide population-based study. Int. J. Cardiol. 2017, 238, 72–78. [Google Scholar] [CrossRef]
- Pfeffer, M.A.; Shah, A.M.; Borlaug, B.A. Heart failure with preserved ejection fraction in perspective. Circ. Res. 2019, 124, 1598–1617. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner-La Rocca, H.P.; Choi, D.J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; DAPA-CKD Trial Committees and Investigators. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
Study Methods | Benefits | Limitations |
---|---|---|
Electrical bioimpedance |
|
|
Ultrasound evaluation of the inferior vena cava |
|
|
Lung Ultrasound |
|
|
Maximum Velocity of the Tricuspid Regurgitation Velocity | Probability of PH |
---|---|
≤2.8 m/s (TVPG ≤ 31 mm Hg) | Low |
2.9–3.4 m/s (TVPG 32–46 mm Hg) | Intermediate |
>3.4 m/s | High |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamska-Wełnicka, A.; Wełnicki, M.; Mamcarz, A.; Gellert, R. Chronic Kidney Disease and Heart Failure–Everyday Diagnostic Challenges. Diagnostics 2021, 11, 2164. https://doi.org/10.3390/diagnostics11112164
Adamska-Wełnicka A, Wełnicki M, Mamcarz A, Gellert R. Chronic Kidney Disease and Heart Failure–Everyday Diagnostic Challenges. Diagnostics. 2021; 11(11):2164. https://doi.org/10.3390/diagnostics11112164
Chicago/Turabian StyleAdamska-Wełnicka, Anna, Marcin Wełnicki, Artur Mamcarz, and Ryszard Gellert. 2021. "Chronic Kidney Disease and Heart Failure–Everyday Diagnostic Challenges" Diagnostics 11, no. 11: 2164. https://doi.org/10.3390/diagnostics11112164
APA StyleAdamska-Wełnicka, A., Wełnicki, M., Mamcarz, A., & Gellert, R. (2021). Chronic Kidney Disease and Heart Failure–Everyday Diagnostic Challenges. Diagnostics, 11(11), 2164. https://doi.org/10.3390/diagnostics11112164