Serum Biomarkers in Carotid Artery Disease
Abstract
:1. Introduction
2. Biomarkers Description
2.1. Inflammatory Biomarkers
2.2. Endothelial and Cell Adhesion Biomarkers
2.3. Matrix-Degrading or Proteolysis Biomarkers
2.4. Lipid Biomarkers
2.5. Metabolic Biomarkers
3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saenger, A.K.; Christenson, R.H. Stroke biomarkers: Progress and challenges for diagnosis, prognosis, differentiation, and treatment. Clin. Chem. 2010, 56, 21–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart disease and stroke statistics—2020 update: A report from the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef] [PubMed]
- Messas, E.; Goudot, G.; Halliday, A.; Sitruk, J.; Mirault, T.; Khider, L.; Saldmann, F.; Mazzolai, L.; Abyans, V. Management of carotid stenosis for primary and secondary prevention of stroke: State-of-the-art 2020: A critical review. Eur. Heart J. Suppl. 2020, 22, M35–M42. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, C.; Xaplanteris, P.; Aboyans, V.; Brodmann, M.; Cífková, R.; Cosentino, F.; De Carlo, M.; Gallino, A.; Landmesser, U.; Laurent, S.; et al. The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology Working Group on peripheral circulation: Endorsed by the Association for Research into Arterial Structure and Physiology (ARTERY) Society. Atherosclerosis 2015, 241, 507–532. [Google Scholar]
- Hermus, L.; Lefrandt, J.D.; Tio, R.A.; Breek, J.-C.; Zeebregts, C.J. Carotid plaque formation and serum biomarkers. Atherosclerosis 2010, 213, 21–29. [Google Scholar] [CrossRef]
- Ammirati, E.; Moroni, F.; Norata, G.D.; Magnoni, M.; Camici, P.G. Markers of inflammation associated with plaque progression and instability in patients with carotid atherosclerosis. Mediat. Inflamm. 2015, 2015, 718329. [Google Scholar] [CrossRef] [Green Version]
- Nasser, S.A.; Afify, E.A.; Kobeissy, F.; Hamam, B.; Eid, A.H.; El-Mas, M.M. Inflammatory basis of atherosclerosis: Modulation by sex hormones. Curr. Pharm. Des. 2021, 27, 2099–2111. [Google Scholar] [CrossRef]
- Puz, P.; Lasek-Bal, A.; Ziaja, D.; Kazibutowska, Z.; Ziaja, K. Inflammatory markers in patients with internal carotid artery stenosis. Arch. Med. Sci. 2013, 9, 254. [Google Scholar] [CrossRef]
- Debing, E.; Peeters, E.; Demanet, C.; De Waele, M.; Van den Brande, P. Markers of inflammation in patients with symptomatic and asymptomatic carotid artery stenosis: A case-control study. Vasc. Endovasc. Surg. 2008, 42, 122–127. [Google Scholar] [CrossRef]
- Horn, C.S.; Ilg, R.; Sander, K.; Bickel, H.; Briesenick, C.; Hemmer, B.; Poppert, H.; Sander, D. High-sensitivity C-reactive protein at different stages of atherosclerosis: Results of the INVADE study. J. Neurol. 2009, 256, 783–791. [Google Scholar] [CrossRef]
- Yamagami, H.; Kitagawa, K.; Nagai, Y.; Hougaku, H.; Sakaguchi, M.; Kuwabara, K.; Kondo, K.; Masuyama, T.; Matsumoto, M.; Hori, M. Higher levels of interleukin-6 are associated with lower echogenicity of carotid artery plaques. Stroke 2004, 35, 677–681. [Google Scholar] [CrossRef] [Green Version]
- Shindo, A.; Tanemura, H.; Yata, K.; Hamada, K.; Shibata, M.; Umeda, Y.; Asakura, F.; Toma, N.; Sakaida, H.; Fujisawa, T.; et al. Inflammatory biomarkers in atherosclerosis: Pentraxin 3 can become a novel marker of plaque vulnerability. PLoS ONE 2014, 9, e100045. [Google Scholar] [CrossRef]
- Zhou, Y.; Han, W.; Gong, D.; Man, C.; Fan, Y. Hs-CRP in stroke: A meta-analysis. Clin. Chim. Acta 2016, 453, 21–27. [Google Scholar] [CrossRef]
- Liu, X.; Wu, G.; Xu, C.; He, Y.; Shu, L.; Liu, Y.; Zhang, N.; Lin, C. Prediction of coronary plaque progression using biomechanical factors and vascular characteristics based on computed tomography angiography. Comput. Assist. Surg. 2017, 22, 286–294. [Google Scholar] [CrossRef]
- Knoflach, M.; Kiechl, S.; Mantovani, A.; Cuccovillo, I.; Bottazzi, B.; Xu, Q.; Xiao, Q.; Gasperi, A.; Mayr, A.; Kehrer, M.; et al. Pentraxin-3 as a marker of advanced atherosclerosis results from the Bruneck, ARMY and ARFY Studies. PLoS ONE 2012, 7, e31474. [Google Scholar] [CrossRef]
- Yi, L.; Tang, J.; Shi, C.; Zhang, T.; Li, J.; Guo, F.; Zhang, W. Pentraxin 3, TNF-α, and LDL-C are associated with carotid artery stenosis in patients with ischemic stroke. Front. Neurol. 2020, 10, 1365. [Google Scholar] [CrossRef] [Green Version]
- Andersson, J.; Sundström, J.; Kurland, L.; Gustavsson, T.; Hulthe, J.; Elmgren, A.; Zilmer, K.; Zilmer, M.; Lind, L. The carotid artery plaque size and echogenicity are related to different cardiovascular risk factors in the elderly: The Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. Lipids 2009, 44, 397. [Google Scholar] [CrossRef]
- Abbas, A.; Aukrust, P.; Russell, D.; Krohg-Sørensen, K.; Almås, T.; Bundgaard, D.; Bjerkeli, V.; Sagen, E.L.; Michelsen, A.E.; Dahl, T.B.; et al. Matrix metalloproteinase 7 is associated with symptomatic lesions and adverse events in patients with carotid atherosclerosis. PLoS ONE 2014, 9, e84935. [Google Scholar] [CrossRef] [Green Version]
- Schneiderman, J.; Schaefer, K.; Kolodgie, F.D.; Savion, N.; Kotev-Emeth, S.; Dardik, R.; Simon, A.J.; Halak, M.; Pariente, C.; Engelberg, I.; et al. Leptin locally synthesized in carotid atherosclerotic plaques could be associated with lesion instability and cerebral emboli. J. Am. Heart Assoc. 2012, 1, e001727. [Google Scholar] [CrossRef] [Green Version]
- Mitroulis, I.; Alexaki, V.I.; Kourtzelis, I.; Ziogas, A.; Hajishengallis, G.; Chavakis, T. Leukocyte integrins: Role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol. Ther. 2015, 147, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Hoke, M.; Winter, M.-P.; Wagner, O.; Exner, M.; Schillinger, M.; Arnold, Z.; Mlekusch, W.; Maurer, G.; Koppensteiner, R.; Minar, E.; et al. The impact of selectins on mortality in stable carotid atherosclerosis. Thromb. Haemost. 2015, 114, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Biscetti, F.; Straface, G.; Bertoletti, G.; Vincenzoni, C.; Snider, F.; Arena, V.; Landolfi, R.; Flex, A. Identification of a potential proinflammatory genetic profile influencing carotid plaque vulnerability. J. Vasc. Surg. 2015, 61, 374–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eilenberg, W.; Stojkovic, S.; Kaider, A.; Piechota-Polanczyk, A.; Nanobachvili, J.; Domenig, C.M.; Wojta, J.; Huk, I.; Demyanets, S.; Neumayer, C. Neutrophil gelatinase associated lipocalin (NGAL) for identification of unstable plaques in patients with asymptomatic carotid stenosis. Eur. J. Vasc. Endovasc. Surg. 2019, 57, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Pelisek, J.; Rudelius, M.; Zepper, P.; Poppert, H.; Reeps, C.; Schuster, T.; Hans-Henning Eckstein, H. Multiple biological predictors for vulnerable carotid lesions. Cerebrovasc. Dis. 2009, 28, 601–610. [Google Scholar] [CrossRef]
- Alvarez, B.; Ruiz, C.; Chacón, P.; Alvarez-Sabin, J.; Matas, M. Serum values of metalloproteinase-2 and metalloproteinase-9 as related to unstable plaque and inflammatory cells in patients with greater than 70% carotid artery stenosis. J. Vasc. Surg. 2004, 40, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.Y.; Zhang, B.; Yan, Y.H.; Gao, S.S.; Liu, J.J.; Xu, L.; Hui, P. Specific matrix metalloproteinases and calcification factors are associated with the vulnerability of human carotid plaque. Exp. Ther. Med. 2018, 16, 2071–2079. [Google Scholar] [CrossRef] [Green Version]
- Sigala, F.; Kotsinas, A.; Savari, P.; Filis, K.; Markantonis, S.; Iliodromitis, E.K.; Gorgoulis, V.; Andreadou, I. Oxidized LDL in human carotid plaques is related to symptomatic carotid disease and lesion instability. J. Vasc. Surg. 2010, 52, 704–713. [Google Scholar] [CrossRef] [Green Version]
- Zhong, C.; Yang, J.; Xu, T.; Peng, Y.; Wang, A.; Wang, J.; Peng, H.; Li, Q.; Ju, Z.; Geng, D.; et al. Serum matrix metalloproteinase-9 levels and prognosis of acute ischemic stroke. Neurology 2017, 89, 805–812. [Google Scholar] [CrossRef]
- Fernández-Friera, L.; Fuster, V.; López-Melgar, B.; Oliva, B.; García-Ruiz, J.M.; Mendiguren, J.; Bueno, H.; Pocock, S.; Ibáñez, B.; Fernández-Ortiz, A.; et al. Normal LDL-cholesterol levels are associated with subclinical atherosclerosis in the absence of risk factors. J. Am. Coll. Cardiol. 2017, 70, 2979–2991. [Google Scholar] [CrossRef]
- Hindy, G.; Engström, G.; Larsson, S.C.; Traylor, M.; Markus, S.H.; Melander, O.; Ohro-Melander, M. Role of blood lipids in the development of ischemic stroke and its subtypes: A Mendelian randomization study. Stroke 2018, 49, 820–827. [Google Scholar] [CrossRef]
- Shingai, Y.; Kimura, N.; Doijiri, R.; Takahashi, K.; Yokosawa, M.; Kanoke, A.; Kikuchi, T.; Sugawara, T.; Tominaga, T. Effect of preoperative administration of proprotein convertase subtilisin/kexin type 9 inhibitor on carotid artery stenting. World Neurosurg. 2020, 135, e36–e42. [Google Scholar] [CrossRef]
- Gu, X.; Li, Y.; Chen, S.; Yang, X.; Liu, F.; Li, Y.; Li, J.; Cao, J.; Liu, X.; Chen, J.; et al. Association of lipids with ischemic and hemorrhagic stroke: A prospective cohort study among 267,500 Chinese. Stroke 2019, 50, 3376–3384. [Google Scholar] [CrossRef]
- Poznyak, A.V.; Nikiforov, N.G.; Markin, A.M.; Kashirskikh, D.A.; Myasoedova, V.A.; Gerasimova, E.V.; Orekhov, A. Overview of OxLDL and its impact on cardiovascular health: Focus on atherosclerosis. Front. Pharmacol. 2021, 11, 2248. [Google Scholar] [CrossRef]
- Ishigaki, Y.; Oka, Y.; Katagiri, H. Circulating oxidized LDL: A biomarker and a pathogenic factor. Curr. Opin. Lipidol. 2009, 20, 363–369. [Google Scholar] [CrossRef]
- Nishi, K.; Itabe, H.; Uno, M.; Kitazato, K.T.; Horiguchi, H.; Shinno, K.; Nagahiro, S. Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1649–1654. [Google Scholar] [CrossRef] [Green Version]
- Markstad, H.; Edsfeldt, A.; Yao Mattison, I.; Bengtsson, E.; Singh, P.; Cavalera, M.; Asciutto, G.; Björkbacka, H.; Fredrikson, G.N.; Dias, N.; et al. High levels of soluble lectinlike oxidized low-density lipoprotein receptor-1 are associated with carotid plaque inflammation and increased risk of ischemic stroke. J. Am. Heart Assoc. 2019, 8, e009874. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Yang, Y.; Su, Z.; Yue, W.; Hao, H.; Ren, L.; Wang, Y.; Cao, Y.; Wang, Y. Association of oxidized low-density lipoprotein with prognosis of stroke and stroke subtypes. Stroke 2017, 48, 91–97. [Google Scholar] [CrossRef]
- Meilhac, O. High-density lipoproteins in stroke. High Density Lipoproteins 2015, 224, 509–526. [Google Scholar]
- Mathiesen, E.B.; Bønaa, K.H.; Joakimsen, O. Low levels of high-density lipoprotein cholesterol are associated with echolucent carotid artery plaques: The Tromsø study. Stroke 2001, 32, 1960–1965. [Google Scholar] [CrossRef] [Green Version]
- Peters, S.; Lind, L.; Palmer, M.; Grobbee, D.; Crouse, J.; O’Leary, D.; Evans, G.; Raichlen, J.; Bots, M.; den Ruijter, H. Increased age, high body mass index and low HDL-C levels are related to an echolucent carotid intima–media: The METEOR study. J. Intern. Med. 2012, 272, 257–266. [Google Scholar] [CrossRef]
- Nordestgaard, B.G.; Grønholdt, M.-L.M.; Sillesen, H. Echolucent rupture-prone plaques. Curr. Opin. Lipidol. 2003, 14, 505–512. [Google Scholar] [CrossRef]
- Yeh, P.-S.; Yang, C.-M.; Lin, S.-H.; Wang, W.-M.; Chen, P.-S.; Chao, T.-H.; Lin, H.-J.; Lin, K.-C.; Chang, C.-Y.; Cheng, T.-J.; et al. Low levels of high-density lipoprotein cholesterol in patients with atherosclerotic stroke: A prospective cohort study. Atherosclerosis 2013, 228, 472–477. [Google Scholar] [CrossRef]
- Talayero, B.G.; Sacks, F.M. The role of triglycerides in atherosclerosis. Curr. Cardiol. Rep. 2011, 13, 544–552. [Google Scholar] [CrossRef] [Green Version]
- Kofoed, S.C.; Grønholdt, M.-L.M.; Bismuth, J.; Wilhjelm, J.E.; Sillesen, H.; Nordestgaard, B.G. Echolucent, rupture-prone carotid plaques associated with elevated triglyceride-rich lipoproteins, particularly in women. J. Vasc. Surg. 2002, 36, 783–792. [Google Scholar] [CrossRef]
- Mannheim, D.; Herrmann, J.; Versari, D.; Gossl, M.; Meyer, F.B.; McConnell, J.P.; Lerman, L.; Lerman, A. Enhanced expression of Lp-PLA2 and lysophosphatidylcholine in symptomatic carotid atherosclerotic plaques. Stroke 2008, 39, 1448–1455. [Google Scholar] [CrossRef] [Green Version]
- Sarlon-Bartoli, G.; Boudes, A.; Buffat, C.; Bartoli, M.; Piercecchi-Marti, M.; Sarlon, E.; Arnaud, L.; Bennis, Y.; Thevenin, B.; Squarcioni, C.; et al. Circulating lipoprotein-associated phospholipase A2 in high-grade carotid stenosis: A new biomarker for predicting unstable plaque. Eur. J. Vasc. Endovasc. Surg. 2012, 43, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Oei, H.-H.S.; Van Der Meer, I.M.; Hofman, A.; Koudstaal, P.J.; Stijnen, T.; Breteler, M.M.; Witteman, J. Lipoprotein-associated phospholipase A2 activity is associated with risk of coronary heart disease and ischemic stroke: The Rotterdam Study. Circulation 2005, 111, 570–575. [Google Scholar] [CrossRef] [Green Version]
- Elkind, M.S.; Tai, W.; Coates, K.; Paik, M.C.; Sacco, R.L. Lipoprotein-associated phospholipase A2 activity and risk of recurrent stroke. Cerebrovasc. Dis. 2009, 27, 42–50. [Google Scholar] [CrossRef]
- Walsh, K.B.; Hart, K.; Roll, S.; Sperling, M.; Unruh, D.; Davidson, W.S.; Lindsell, C.; Adeoye, O. Apolipoprotein AI and paraoxonase-1 are potential blood biomarkers for ischemic stroke diagnosis. J. Stroke Cerebrovasc. Dis. 2016, 25, 1360–1365. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Chen, W.; Wang, X.; Pi, F.; Wu, Y.; Pang, S.; Xie, Y.; Xia, F.; Zhang, Q. Apolipoprotein A1, B levels, and their ratio and the risk of a first stroke: A meta-analysis and case–control study. Metab. Brain Dis. 2015, 30, 1319–1330. [Google Scholar] [CrossRef]
- Paternoster, L.; Martínez González, N.A.; Lewis, S.; Sudlow, C. Association between apolipoprotein E genotype and carotid intima-media thickness may suggest a specific effect on large artery atherothrombotic stroke. Stroke 2008, 39, 48–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidah, N.G.; Awan, Z.; Chrétien, M.; Mbikay, M. PCSK9: A key modulator of cardiovascular health. Circ. Res. 2014, 114, 1022–1036. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.C.; Pang, J.; McQuillan, B.; Hung, J.; Beilby, J.P.; Barrett, P.H.R.; Watts, G. Plasma proprotein convertase subtilisin kexin type 9 as a predictor of carotid atherosclerosis in asymptomatic adults. Heart Lung Circ. 2016, 25, 520–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, W.; Liu, J.; Wang, W.; Wang, M.; Qi, Y.; Zhao, F.; Sun, J.; Liu, J.; Li, Y.; Zhao, D. Association between plasma PCSK9 levels and 10-year progression of carotid atherosclerosis beyond LDL-C: A cohort study. Int. J. Cardiol. 2016, 215, 293–298. [Google Scholar] [CrossRef]
- Gasbarrino, K.; Mantzoros, C.; Gorgui, J.; Veinot, J.P.; Lai, C.; Daskalopoulou, S.S. Circulating chemerin is associated with carotid plaque instability, whereas resistin is related to cerebrovascular symptomatology. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1670–1678. [Google Scholar] [CrossRef] [Green Version]
- Gorgui, J.; Gasbarrino, K.; Georgakis, M.K.; Karalexi, M.A.; Nauche, B.; Petridou, E.T.; Daskalopoulou, S. Circulating adiponectin levels in relation to carotid atherosclerotic plaque presence, ischemic stroke risk, and mortality: A systematic review and meta-analyses. Metabolism 2017, 69, 51–66. [Google Scholar] [CrossRef] [Green Version]
- Gairolla, J.; Kler, R.; Modi, M.; Khurana, D. Leptin and adiponectin: Pathophysiological role and possible therapeutic target of inflammation in ischemic stroke. Rev. Neurosci. 2017, 28, 295–306. [Google Scholar] [CrossRef]
- Gustafsson, S.; Lind, L.; Soderberg, S.; Ingelsson, E. Associations of circulating adiponectin with measures of vascular function and morphology. J. Clin. Endocrinol. Metab. 2010, 95, 2927–2934. [Google Scholar] [CrossRef] [Green Version]
- Saarikoski, L.A.; Huupponen, R.K.; Viikari, J.S.; Marniemi, J.; Juonala, M.; Kähönen, M.; Raitakari, O. Adiponectin is related with carotid artery intima-media thickness and brachial flow-mediated dilatation in young adults—The Cardiovascular Risk in Young Finns Study. Ann. Med. 2010, 42, 603–611. [Google Scholar] [CrossRef]
- Holm, S.; Ueland, T.; Dahl, T.B.; Michelsen, A.E.; Skjelland, M.; Russell, D.; Nymo, S.H.; Krohg-Sørensen, K.; Clausen, O.P.; Atar, D.; et al. Fatty Acid binding protein 4 is associated with carotid atherosclerosis and outcome in patients with acute ischemic stroke. PLoS ONE 2011, 6, e28785. [Google Scholar] [CrossRef]
- Agardh, H.; Folkersen, L.; Ekstrand, J.; Marcus, D.; Swedenborg, D.; Hedin Gabrielsen, A.; Paulsson-Berne, G. Expression of fatty acid–binding protein 4/aP2 is correlated with plaque instability in carotid atherosclerosis. J. Intern. Med. 2011, 269, 200–210. [Google Scholar] [CrossRef] [Green Version]
- Alsulaimani, S.; Gardener, H.; Elkind, M.S.; Cheung, K.; Sacco, R.L.; Rundek, T. Elevated homocysteine and carotid plaque area and densitometry in the Northern Manhattan Study. Stroke 2013, 44, 457–461. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, B.; Yugueros, X.; Fernández, E.; Luccini, F.; Gené, A.; Matas, M. Relationship between plasma homocysteine and the morphological and immunohistochemical study of carotid plaques in patients with carotid stenosis over 70%. Ann. Vasc. Surg. 2012, 26, 500–505. [Google Scholar] [CrossRef]
- Jia, J.; Wang, A.; Wang, J.; Wu, J.; Yan, X.; Zhou, Y.; Chen, S.; Zhao, X. Homocysteine and its relationship to asymptomatic carotid stenosis in a Chinese community population. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Davaine, J.-M.; Quillard, T.; Brion, R.; Lapérine, O.; Guyomarch, B.; Merlini, T.; Chatelais, M.; Guilbaud, F.; Brennan, M.Á.; Charrier, C.; et al. Osteoprotegerin, pericytes and bone-like vascular calcification are associated with carotid plaque stability. PLoS ONE 2014, 9, e107642. [Google Scholar] [CrossRef] [Green Version]
- Schiro, A.; Wilkinson, F.L.; Weston, R.; Smyth, J.V.; Serracino-Inglott, F.; Alexander, M.Y. Elevated levels of endothelial-derived microparticles and serum CXCL9 and SCGF-β are associated with unstable asymptomatic carotid plaques. Sci. Rep. 2015, 5, 1–12. [Google Scholar] [CrossRef]
- Saxena, A.; Ng, E.Y.K.; Lim, S.T. Imaging modalities to diagnose carotid artery stenosis: Progress and prospect. Biomed. Eng. Online 2019, 18, 1–23. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kigka, V.I.; Potsika, V.; Mantzaris, M.; Tsakanikas, V.; Koncar, I.; Fotiadis, D.I. Serum Biomarkers in Carotid Artery Disease. Diagnostics 2021, 11, 2143. https://doi.org/10.3390/diagnostics11112143
Kigka VI, Potsika V, Mantzaris M, Tsakanikas V, Koncar I, Fotiadis DI. Serum Biomarkers in Carotid Artery Disease. Diagnostics. 2021; 11(11):2143. https://doi.org/10.3390/diagnostics11112143
Chicago/Turabian StyleKigka, Vassiliki I., Vassiliki Potsika, Michalis Mantzaris, Vassilis Tsakanikas, Igor Koncar, and Dimitrios I. Fotiadis. 2021. "Serum Biomarkers in Carotid Artery Disease" Diagnostics 11, no. 11: 2143. https://doi.org/10.3390/diagnostics11112143
APA StyleKigka, V. I., Potsika, V., Mantzaris, M., Tsakanikas, V., Koncar, I., & Fotiadis, D. I. (2021). Serum Biomarkers in Carotid Artery Disease. Diagnostics, 11(11), 2143. https://doi.org/10.3390/diagnostics11112143