Using a Multiclass Machine Learning Model to Predict the Outcome of Acute Ischemic Stroke Requiring Reperfusion Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample and Data Collection
2.2. Stepwise Feature Selection
2.3. Machine Learning Algorithms
2.4. Outcome Prediction and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vos, T.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulkader, R.S.; Abdulle, A.M.; Abebo, T.A.; Abera, S.F.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coates, M.M.; et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1459–1544. [Google Scholar] [CrossRef] [Green Version]
- Badhiwala, J.H.; Nassiri, F.; Alhazzani, W.; Selim, M.H.; Farrokhyar, F.; Spears, J.; Kulkarni, A.V.; Singh, S.; Alqahtani, A.; Rochwerg, B.; et al. Endovascular Thrombectomy for Acute Ischemic Stroke. JAMA 2015, 314, 1832–1843. [Google Scholar] [CrossRef] [PubMed]
- Wardlaw, J.M.; Murray, V.; Berge, E.; del Zoppo, G.; Sandercock, P.; Lindley, R.L.; Cohen, G. Recombinant tissue plasminogen activator for acute ischaemic stroke: An updated systematic review and meta-analysis. Lancet 2012, 379, 2364–2372. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, M.; Norrving, B.; Terént, A.; Stegmayr, B. Functional Outcome 3 Months after Stroke Predicts Long-Term Survival. Cerebrovasc. Dis. 2008, 25, 423–429. [Google Scholar] [CrossRef]
- Heo, J.; Yoon, J.G.; Park, H.; Kim, Y.D.; Nam, H.S.; Heo, J.H. Machine Learning-Based Model for Prediction of Outcomes in Acute Stroke. Stroke 2019, 50, 1263–1265. [Google Scholar] [CrossRef]
- Van Os, H.J.A.; Ramos, L.A.; Hilbert, A.; van Leeuwen, M.; van Walderveen, M.A.A.; Kruyt, N.D.; Dippel, D.W.J.; Steyerberg, E.W.; van der Schaaf, I.C.; Lingsma, H.F.; et al. Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: Potential Value of Machine Learning Algorithms. Front. Neurol 2018, 9, 784. [Google Scholar] [CrossRef]
- Bacchi, S.; Zerner, T.; Oakden-Rayner, L.; Kleinig, T.; Patel, S.; Jannes, J. Deep Learning in the Prediction of Ischaemic Stroke Thrombolysis Functional Outcomes: A Pilot Study. Acad. Radiol. 2020, 27, e19–e23. [Google Scholar] [CrossRef]
- Monteiro, M.; Fonseca, A.C.; Freitas, A.T.; Pinho, E.M.T.; Francisco, A.P.; Ferro, J.M.; Oliveira, A.L. Using Machine Learning to Improve the Prediction of Functional Outcome in Ischemic Stroke Patients. IEEE/ACM Trans. Comput. Biol. Bioinform. 2018, 15, 1953–1959. [Google Scholar] [CrossRef]
- Lin, C.H.; Hsu, K.C.; Johnson, K.R.; Fann, Y.C.; Tsai, C.H.; Sun, Y.; Lien, L.M.; Chang, W.L.; Chen, P.L.; Lin, C.L.; et al. Evaluation of machine learning methods to stroke outcome prediction using a nationwide disease registry. Comput. Methods Progr. Biomed. 2020, 190, 105381. [Google Scholar] [CrossRef]
- Kwon, S.; Hartzema, A.G.; Duncan, P.W.; Min-Lai, S. Disability measures in stroke: Relationship among the Barthel Index, the Functional Independence Measure, and the Modified Rankin Scale. Stroke 2004, 35, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Strbian, D.; Meretoja, A.; Ahlhelm, F.J.; Pitkäniemi, J.; Lyrer, P.; Kaste, M.; Engelter, S.; Tatlisumak, T. Predicting outcome of IV thrombolysis–treated ischemic stroke patients. Neurology 2012, 78, 427. [Google Scholar] [CrossRef] [PubMed]
- Strbian, D.; Seiffge, D.J.; Breuer, L.; Numminen, H.; Michel, P.; Meretoja, A.; Coote, S.; Bordet, R.; Obach, V.; Weder, B.; et al. Validation of the DRAGON score in 12 stroke centers in anterior and posterior circulation. Stroke 2013, 44, 2718–2721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ntaios, G.; Gioulekas, F.; Papavasileiou, V.; Strbian, D.; Michel, P. ASTRAL, DRAGON and SEDAN scores predict stroke outcome more accurately than physicians. Eur. J. Neurol. 2016, 23, 1651–1657. [Google Scholar] [CrossRef]
- van Swieten, J.C.K.P.; Visser, M.C.; Schouten, H.J.; van Gijn, J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke 1988, 19, 604–607. [Google Scholar] [CrossRef] [Green Version]
- Adams, H.P.; Davis, P.H.; Leira, E.C.; Chang, K.C.; Bendixen, B.H.; Clarke, W.R.; Woolson, R.F.; Hansen, M.D. Baseline NIH Stroke Scale score strongly predicts outcome after stroke: A report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST). Neurology 1999, 53, 126–131. [Google Scholar] [CrossRef]
- Barber, P.A.; Demchuk, A.M.; Zhang, J.; Buchan, A.M. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. Lancet 2000, 355, 1670–1674. [Google Scholar] [CrossRef]
- Bastanlar, Y.; Ozuysal, M. Introduction to machine learning. Methods Mol. Biol. 2014, 1107, 105–128. [Google Scholar] [CrossRef] [Green Version]
- Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. arXiv 2016, arXiv:1603.02754. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Seiffge, D.J.; Karagiannis, A.; Strbian, D.; Gensicke, H.; Peters, N.; Bonati, L.H.; Kotisaari, K.; Leppa, M.; Kejda-Scharler, J.; Tranka, C.; et al. Simple variables predict miserable outcome after intravenous thrombolysis. Eur. J. Neurol. 2014, 21, 185–191. [Google Scholar] [CrossRef] [PubMed]
Parameter | Category | Points |
---|---|---|
(Hyper) Dense cerebral artery sign or early infarct signs on admission CT head scan | None | 0 |
Either of them | 1 | |
mRS > 1, pre-stroke | Both | 2 |
No | 0 | |
Yes | 1 | |
Age | <65 years | 0 |
65 to 79 years | 1 | |
≥80 years | 2 | |
Glucose level on admission | <144 mg/dL | 0 |
>144 mg/dL | 1 | |
Onset-to-treatment time | ≤90 min | 0 |
>90 min | 1 | |
NIHSS on admission | 0–4 | 0 |
5–9 | 1 | |
10–15 | 2 | |
>15 | 3 |
Variables | All Patients (n = 590) |
---|---|
Mean Age ± SD (years) | 67.9 ± 12.4 |
Male, n (%) | 357 (60.5) |
Onset to treatment in minutes, median (IQR) | 158 (74–249) |
Clinical Characteristics | |
NIHSS, median (IQR) | 15 (10–21) |
ASPECT, median (IQR) | 9 (8–10) |
Sugar (mg/dL), mean ± SD | 141 ± 57 |
SBP (mmHg), mean ± SD | 161 ± 32 |
DBP (mmHg), mean ± SD | 92 ± 19 |
Underlying Medical Condition, N (%) | |
Pre-Stroke mRS > 2 | 34 (5.8%) |
Old stroke | 162 (27.5) |
Atrial fibrillation | 227 (38.5) |
Diabetes mellitus | 209 (35.4) |
Hypertension | 463 (78.4) |
Dyslipidemia | 436 (73.9) |
Coronary artery disease | 134 (22.7) |
Heart failure | 81 (13.7) |
Smoking | 162 (27.5) |
Medical Treatment, N (%) | |
tPA | 248 (42.0) |
EVT | 175 (29.7) |
Outcomes, N (%) | |
mRS 0–2 | 180 (30.5) |
mRS 3–4 | 258 (43.7) |
mRS 5–6 | 152 (25.8) |
Score Variables | Number (%) |
---|---|
DRAGON score, median (IQR) | 5 (4–6) |
Hyperdense cerebral artery or early infarct sign | 229 (38.8%) |
Pre-stroke mRS >1 | 48 (8.1%) |
Age (year-old) | |
65–79 | 273 (46.3%) |
≥80 | 109 (18.5%) |
Glucose (mg/dL) > 144 | 176 (29.8%) |
Onset to Treatment > 90 min | 412 (69.8%) |
NIHSS | |
0–4 | 32 (5.4%) |
5–9 | 112 (19.0%) |
10–15 | 162 (27.5%) |
≥16 | 284 (48.1%) |
Rank | LR | SVM | RF | XGB |
---|---|---|---|---|
1st | NIHSS | NIHSS | NIHSS | NIHSS |
2nd | Pre-stroke mRS | DM | DM | SBP |
3rd | Onset to treatment | Af | Pre-stroke mRS | CAD |
4th | DBP | Pre-stroke mRS | Old stroke | Pre-stroke mRS |
5th | Age | Old stroke | Sugar | DM |
6th | EVT | EVT | SBP | Af |
7th | ASPECT | EVT | EVT | |
8th | tPA | DBP | Smoking | |
9th | Af | HTN |
Models | DRAGON | LR | SVM | RF | XGB | p-Value |
---|---|---|---|---|---|---|
Accuracy | 0.51 ± 0.033 | 0.70 ± 0.041 ** | 0.67 ± 0.039 ** | 0.69 ± 0.039 ** | 0.67 ± 0.040 ** | <0.001 |
mRS 0–2 | ||||||
PPV | 0.48 ± 0.047 | 0.74 ± 0.080 ** | 0.71 ± 0.068 ** | 0.77 ± 0.068 ** | 0.73 ± 0.064 ** | <0.001 |
Sensitivity | 0.67 ± 0.058 | 0.71 ± 0.084 * | 0.70 ± 0.083 | 0.70 ± 0.068 | 0.70 ± 0.079 | 0.015 |
specificity | 0.66 ± 0.041 | 0.89 ± 0.040 ** | 0.87 ± 0.034 ** | 0.90 ± 0.032 ** | 0.88 ± 0.031 ** | <0.001 |
mRS 3–4 | ||||||
PPV | 0.49 ± 0.057 | 0.65 ± 0.056 ** | 0.64 ± 0.061 ** | 0.63 ± 0.057 ** | 0.62 ± 0.060 ** | <0.001 |
Sensitivity | 0.44 ± 0.058 | 0.74 ± 0.063 ** | 0.71 ± 0.059 ** | 0.80 ± 0.050 ** | 0.75 ± 0.060 ** | <0.001 |
specificity | 0.65 ± 0.044 | 0.68 ± 0.050 * | 0.70 ± 0.059 ** | 0.63 ± 0.053 | 0.65 ± 0.058 | <0.001 |
mRS 5–6 | ||||||
PPV | 0.63 ± 0.086 | 0.74 ± 0.091 ** | 0.70 ± 0.095 ** | 0.79 ± 0.090 ** | 0.75 ± 0.093 ** | <0.001 |
Sensitivity | 0.43 ± 0.070 | 0.59 ± 0.077 ** | 0.58 ± 0.093 ** | 0.51 ± 0.082 ** | 0.52 ± 0.077 ** | <0.001 |
specificity | 0.91 ± 0.024 | 0.93 ± 0.029 ** | 0.92 ± 0.031 | 0.95 ± 0.022 ** | 0.94 ± 0.029 ** | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, I.-M.; Zeng, W.-H.; Cheng, C.-Y.; Chen, S.-H.; Lin, C.-H.R. Using a Multiclass Machine Learning Model to Predict the Outcome of Acute Ischemic Stroke Requiring Reperfusion Therapy. Diagnostics 2021, 11, 80. https://doi.org/10.3390/diagnostics11010080
Chiu I-M, Zeng W-H, Cheng C-Y, Chen S-H, Lin C-HR. Using a Multiclass Machine Learning Model to Predict the Outcome of Acute Ischemic Stroke Requiring Reperfusion Therapy. Diagnostics. 2021; 11(1):80. https://doi.org/10.3390/diagnostics11010080
Chicago/Turabian StyleChiu, I-Min, Wun-Huei Zeng, Chi-Yung Cheng, Shih-Hsuan Chen, and Chun-Hung Richard Lin. 2021. "Using a Multiclass Machine Learning Model to Predict the Outcome of Acute Ischemic Stroke Requiring Reperfusion Therapy" Diagnostics 11, no. 1: 80. https://doi.org/10.3390/diagnostics11010080
APA StyleChiu, I.-M., Zeng, W.-H., Cheng, C.-Y., Chen, S.-H., & Lin, C.-H. R. (2021). Using a Multiclass Machine Learning Model to Predict the Outcome of Acute Ischemic Stroke Requiring Reperfusion Therapy. Diagnostics, 11(1), 80. https://doi.org/10.3390/diagnostics11010080