The Role of Urine F2-isoprostane Concentration in Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Haemorrhage—A Poor Prognostic Factor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Clinical Assessment
2.3. Specimen Collection
2.4. Detection of Free form of F2-IsoPs in Urine
2.5. Statistical Analysis
Power and Sample Size Analysis
3. Results
3.1. The Patients’ Clinical Condition
3.2. Urine F2-IsoP Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Macdonald, R.L. Cerebral Vasospasm: Advances in Research and Treatment, 1st ed.; Thieme: New York, NY, USA, 2004. [Google Scholar]
- Macdonald, R.L. Delayed neurological deterioration after subarachnoid haemorrhage. Nat. Rev. Neurol. 2014, 10, 44–58. [Google Scholar] [CrossRef] [PubMed]
- Soehle, M.; Czosnyka, M.; Pickard, J.D.; Kirkpatrick, P.J. Continuous assessment of cerebral autoregulation in subarachnoid hemorrhage. Anesth Analg. 2004, 98, 1133–1139. [Google Scholar] [CrossRef] [Green Version]
- Aldrich, E.F.; Higashida, R.; Hmissi, A.; Le, J.E.; Macdonald, R.L.; Marr, A.; Mayer, S.A.; Roux, S.; Bruder, N. Thick and diffuse cisternal clot independently predicts vasospasm-related morbidity and poor outcome after aneurysmal subarachnoid hemorrhage. J. Neurosurg. 2020, 22, 1–9. [Google Scholar] [CrossRef]
- Kumar, G.; Shahripour, R.B.; Harrigan, M.R. Vasospasm on transcranial Doppler is predictive of delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: A systematic review and meta-analysis. J. Neurosurg. 2016, 124, 1257–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; Lubrica, R.J.; Song, M.; Vandse, R.; Boling, W.; Pillai, P. The Role of Transcranial Doppler in Cerebral Vasospasm: A Literature Review. Acta Neurochir. Suppl. 2020, 127, 201–205. [Google Scholar] [PubMed]
- Ayer, R.E.; Zhang, J.H. Oxidative stress in subarachnoid haemorrhage: Significance in acute brain injury and vasospasm. Acta Neurochir. Suppl. 2008, 104, 33–41. [Google Scholar]
- Connolly, E.S.; Rabinstein, A.A.; Carhuapoma, J.R.; Derdeyn, C.P.; Dion, J.; Higashida, R.T.; Hoh, B.L.; Kirkness, C.J.; Naidech, A.M.; Ogilvy, C.S.; et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: A guideline for healthcare professionals from the American Heart Association/american Stroke Association. Stroke 2020, 43, 1711–1737. [Google Scholar] [CrossRef] [Green Version]
- Abulhasan, Y.B.; Ortiz Jimenez, J.; Teitelbaum, J.; Simoneau, G.; Angle, M.R. Milrinone for refractory cerebral vasospasm with delayed cerebral ischemia. J. Neurosurg. 2020, 27, 1–12. [Google Scholar] [CrossRef]
- de Zwart, L.L.; Meerman, J.H.; Commandeur, J.N.; Vermeulen, N.P. Biomarkers of free radical damage applications in experimental animals and in humans. Free Radic. Biol. Med. 1999, 26, 202–226. [Google Scholar] [CrossRef]
- Rokach, J.; Khanapure, S.P.; Hwang, S.W.; Adiyaman, M.; Lawson, J.A.; FitzGerald, G.A. The isoprostanes: A perspective. Prostaglandins 1997, 54, 823–851. [Google Scholar] [CrossRef]
- Janssen, L.J. Isoprostanes and lung vascular pathology. Am. J. Respir. Cell Mol. Biol. 2008, 39, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Montuschi, P.; Barnes, P.; Roberts, L.J. Insights into oxidative stress: The isoprostanes. Curr. Med. Chem. 2007, 14, 703–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiśniewski, K.; Bieńkowski, M.; Tomasik, B.; Braun, M.; Bobeff, E.J.; Liberski, P.P.; Jaskólski, D.J. Urinary F2-Isoprostane Concentration as a Poor Prognostic Factor After Subarachnoid Hemorrhage. World Neurosurg. 2017, 107, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Mallat, Z.; Philip, I.; Lebret, M.; Chatel, D.; Maclouf, J.; Tedgui, A. Elevated levels of 8-iso-prostaglandin F2alpha in pericardial fluid of patients with heart failure: A potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation 1998, 28, 1536–1539. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Mas, E.; Mori, T.A.; Croft, K.D.; Barden, A.E. A significant proportion of F2-isoprostanes in human urine are excreted as glucuronide conjugates. Anal. Biochem. 2010, 403, 126–128. [Google Scholar] [CrossRef]
- Fisher, C.M.; Kistler, J.P.; Davis, J.M. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 1980, 6, 1–9. [Google Scholar] [CrossRef]
- Mayberg, M.R.; Batjer, H.H.; Dacey, R.; Diringer, M.; Haley, E.C.; Heros, R.C.; Sternau, L.L.; Torner, J.; Adams, H.P.; Feinberg, W. Guidelines for the management of aneurysmal subarachnoid hemorrhage. A statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 1994, 25, 2315–2328. [Google Scholar] [CrossRef] [Green Version]
- Jennett, B.; Bond, M. Assessment of outcome after severe brain damage. Lancet 1975, 1, 480–484. [Google Scholar] [CrossRef]
- Teasdale, G.; Jennett, B. Assessment of coma and impaired consciousness. A practical scale. Lancet 1974, 2, 81–84. [Google Scholar] [CrossRef]
- Core Team, R. A Language and Environment for Statistical Computing. 2013. Available online: https://www.R-project.org/ (accessed on 20 May 2020).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 2nd ed.; SAGE Publications: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Marschner I glm2. Fitting Generalized Linear Models. R Package Version 1.1.2.. 2018. Available online: http://CRAN.R-project.org/package1/4glm2 (accessed on 20 March 2020).
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M. pROC: An open source package for R and Sþ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2009. [Google Scholar]
- Bauer, A.M.; Rasmussen, P.A. Treatment of intracranial vasospasm following subarachnoid hemorrhage. Front. Neurol. 2014, 5, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treggiari-Venzi, M.M.; Suter, P.M.; Romand, J.A. Review of medical prevention of vasospasm after aneurysmal subarachnoid hemorrhage: A problem of neurointensive care. Neurosurgery 2001, 48, 249–261. [Google Scholar] [PubMed]
- Ferguson, S.; Macdonald, R.L. Predictors of cerebral infarction in patients with aneurysmal subarachnoid hemorrhage. Neurosurgery 2007, 60, 658–667; discussion 667. [Google Scholar] [CrossRef]
- Kumagai, K.; Tomiyama, A.; Takeuchi, S.; Otani, N.; Fujita, M.; Fujii, K.; Wada, K.; Mori, K. New endovascular perforation subarachnoid hemorrhage model for investigating the mechanisms of delayed brain injury. J. Neurosurg. 2019, 22, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Roos, Y.B.; de Haan, R.J.; Beenen, L.F.; Groen, R.J.; Albrecht, K.W.; Vermeulen, M. Complications and outcome in patients with aneurysmal subarachnoid haemorrhage: A prospective hospital based cohort study in the Netherlands. J. Neurol. Neurosurg. Psychiatry 2000, 68, 337–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stienen, M.N.; Smoll, N.R.; Weisshaupt, R.; Fandino, J.; Hildebrandt, G.; Studerus-Germann, A.; Schatlo, B. Delayed cerebral ischemia predicts neurocognitive impairment following aneurysmal subarachnoid hemorrhage. World Neurosurg. 2014, 82, 599–605. [Google Scholar] [CrossRef]
- Helbok, R.; Madineni, R.C.; Schmidt, M.J.; Kurtz, P.; Fernandez, L.; Ko, S.B.; Choi, A.; Stuart, M.R.; Connolly, E.S.; Lee, K.; et al. Intracerebral monitoring of silent infarcts after subarachnoid hemorrhage. Neurocrit. Care 2011, 14, 162–167. [Google Scholar] [CrossRef]
- Schmidt, J.M.; Ko, S.B.; Helbok, R.; Kurtz, P.; Stuart, R.M.; Presciutti, M.; Fernandez, L.; Lee, K.; Badjatia, N.; Connolly, E.S.; et al. Cerebral perfusion pressure thresholds for brain tissue hypoxia and metabolic crisis after poor-grade subarachnoid hemorrhage. Stroke 2011, 42, 1351–1356. [Google Scholar] [CrossRef] [Green Version]
- Khatibi, K.; Szeder, V.; Blanco, M.B.; Tateshima, S.; Jahan, R.; Duckwiler, G.; Vespa, P. Role of Bedside Multimodality Monitoring in the Detection of Cerebral Vasospasm Following Subarachnoid Hemorrhage. Acta Neurochir. Suppl. 2020, 127, 141–144. [Google Scholar]
- de Oliveira, J.G.; Beck, J.; Ulrich, C.; Rathert, J.; Raabe, A.; Seifert, V. Comparison between clipping and coiling on the incidence of cerebral vasospasm after aneurysmal subarachnoid hemorrhage: A systematic review and meta-analysis. Neurosurg. Rev. 2007, 30, 22–30; discussion 21–30. [Google Scholar] [CrossRef]
- Kolias, A.G.; Sen, J.; Belli, A. Pathogenesis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage: Putative mechanisms and novel approaches. J. Neurosci. Res. 2009, 87, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Morrow, J.D.; Roberts, L.J.; Daniel, V.C.; Awad, J.A.; Mirochnitchenko, O.; Swift, L.L.; Burk, R.F. Comparison of formation of D2/E2- isoprostanes and F2-isoprostanes in vitro and in vivo-effects of oxygen tension and glutathione. Arch Biochem. Biophy. 1998, 353, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Montine, T.J.; Markesbery, W.R.; Morrow, J.D.; Roberts, L.J., 2nd. Cerebrospinal fluid F2-isoprostane levels are increased in Alzheimer’s disease. Ann. Neurol. 1998, 44, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Praticò, D.; Clark, C.M.; Lee, V.M.; Trojanowski, J.Q.; Rokach, J.; FitzGerald, G.A. Increased 8,12-iso-iPF2alpha-VI in Alzheimer’s disease: Correlation of a noninvasive index of lipid peroxidation with disease severity. Ann. Neurol. 2000, 48, 809–812. [Google Scholar] [CrossRef]
- Montine, T.J.; Beal, M.F.; Robertson, D.; Cudkowicz, M.E.; Biaggioni, I.; O’Donnell, H.; Zackert, W.E.; Roberts, L.J.; Morrow, J.D. Cerebrospinal fluid F2-isoprostanes are elevated in Huntington’s disease. Neurology 1999, 52, 1104–1105. [Google Scholar] [CrossRef]
- Seet, R.C.; Lee, C.Y.; Lim, E.C.; Tan, J.J.; Quek, A.M.; Chong, W.L.; Looi, W.F.; Huang, S.H.; Wang, H.; Chan, Y.H.; et al. Oxidative damage in Parkinson disease: Measurement using accurate biomarkers. Free Radic. Biol. Med. 2010, 48, 560–566. [Google Scholar] [CrossRef]
- D’Amico, E.; Factor-Litvak, P.; Santella, R.M.; Mitsumoto, H. Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis. Free Radic. Biol. Med. 2013, 65, 509–527. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Millard, S.P.; Peskind, E.R.; Zhang, J.; Yu, C.E.; Leverenz, J.B.; Mayer, C.; Shofer, J.S.; Raskind, M.A.; Quinn, J.F.; et al. Cross-sectional and longitudinal relationships between cerebrospinal fluid biomarkers and cognitive function in people without cognitive impairment from across the adult life span. JAMA Neurol. 2014, 71, 742–751. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.L.; Hsu, Y.T.; Lin, T.K.; Morrow, J.D.; Hsu, J.C.; Hsu, Y.H.; Hsieh, T.C.; Tsay, P.K.; Yen, H.C. Increased levels of F2-isoprostanes following aneurysmal subarachnoid hemorrhage in humans. Free Radic. Biol. Med. 2006, 15, 1466–1473. [Google Scholar] [CrossRef]
- Roberts, L.J.; Morrow, J.D. The generation and actions of isoprostanes. Biochim. Biophys. Acta 1997, 1345, 121–135. [Google Scholar] [CrossRef]
- Morrow, J.D.; Harris, T.M.; Roberts, L.J. Noncyclooxygenase oxidative formation of a series of novel prostaglandins: Analytical ramifications for measurement of eicosanoids. Anal. Biochem. 1990, 184, 1–10. [Google Scholar] [CrossRef]
- Taylor, A.W.; Bruno, R.S.; Traber, M.G. Women and smokers have elevated urinary F(2)- isoprostane metabolites: A novel extraction and LC-MS methodology. Lipids 2008, 43, 925–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaetani, P.; Lombardi, D. Brain damage following subarachnoid hemorrhage: The imbalance between anti-oxidant systems and lipid peroxidative processes. J. Neurosurg. Sci. 1992, 36, 1–10. [Google Scholar] [PubMed]
- Tian, W.N.; Braunstein, L.D.; Pang, J.; Stuhlmeier, K.M.; Xi, Q.C.; Tian, X.; Stanton, R.C. Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J. Biol. Chem. 1998, 273, 10609–10617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bessard, J.; Cracowski, J.L.; Stanke-Labesque, F.; Bessard, G. Determination of isoprostaglandin F2alpha type III in human urine by gas chromatography-electronic impact mass spectrometry. Comparison with enzyme immunoassay. J. Chromatogr. B Biomed. Sci. Appl. 2001, 754, 333–343. [Google Scholar] [CrossRef]
- Dahl, J.H.; van Breemen, R.B. Rapid quantitative analysis of 8-iso-prostaglandin- F(2alpha) using liquid chromatography-tandem mass spectrometry and comparison with an enzyme immunoassay method. Anal. Biochem. 2001, 404, 211–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proudfoot, J.; Barden, A.; Mori, T.A.; Burke, V.; Croft, K.D.; Beilin, L.J.; Puddey, I.B. Measurement of urinary F2-isoprostanes as markers of in vivo lipid peroxidation—A comparison of enzyme immunoassay with gas chromatography/mass spectrometry. Anal. Biochem 1999, 272, 209–215. [Google Scholar] [CrossRef]
- Mikeladze, K.G.; Okishev, D.N.; Belousova, O.B.; Konovalov, A.N.; Pilipenko, Y.V.; Ageev, I.S.; Kaftanov, A.N.; Shekhtman, O.D.; Kurdyumova, N.V.; Tabasaransky, T.F.; et al. Intra-arterial Administration of Verapamil for the Prevention and Treatment of Cerebral Angiospasm. Acta Neurochir. Suppl. 2020, 127, 179–183. [Google Scholar]
Study Group | Control Group | |
---|---|---|
Inclusion criteria |
|
|
Exclusion criteria |
|
|
Admission * | Discharge † | 1 Month ‡ | 12 Months § | F2-IsoPs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Case | Age (years) | Sex | H/H | Fisher | GOS | GOS | GOS | GOS | mRS | DCI (day) | Day 1 | Day 2 | Day 3 | Day 4 | Day 5 |
1 | 73 | M | 2 | 4 | 3 | 1 | 1 | 1 | 6 | Yes | 13.3 | 14.1 | 27.7 | 20.2 | 17 |
2 | 64 | M | 3 | 4 | 2 | 2 | 2 | 2 | 5 | Yes | 20.2 | 22.5 | 23.8 | 7.4 | 0.7 |
3 | 60 | F | 3 | 2 | 3 | 3 | 3 | 3 | 4 | Yes | 11.5 | 14.1 | 9.8 | 7.4 | 10.2 |
4 | 48 | M | 3 | 2 | 3 | 3 | 3 | 3 | 4 | No | 19.8 | 7.4 | 6.1 | 11.7 | 8 |
5 | 82 | F | 1 | 2 | 3 | 3 | 3 | 3 | 3 | No | 8.7 | 9.3 | 12.3 | 13.7 | 25.2 |
6 | 57 | F | 3 | 3 | 3 | 4 | 4 | 4 | 2 | No | 29.2 | 39.4 | 31.5 | 23.3 | 17.4 |
7 | 66 | F | 3 | 2 | 4 | 4 | 4 | 4 | 2 | No | N/A | 16.3 | 7.0 | 5.6 | 23.4 |
8 | 45 | F | 2 | 4 | 4 | 4 | 4 | 5 | 1 | No | 24.1 | 13.1 | 15.5 | 13.1 | N/A |
9 | 36 | M | 3 | 3 | 2 | 3 | 4 | 4 | 3 | No | 17 | 12.9 | 13.4 | 9.9 | 17.6 |
10 | 65 | F | 2 | 4 | 4 | 4 | 4 | 4 | 2 | No | N/A | 5.6 | 6.2 | 8.5 | 4.2 |
11 | 61 | F | 2 | 4 | 4 | 4 | 4 | 4 | 2 | No | 20.5 | 16.9 | 21.8 | 19.6 | 24.7 |
12 | 59 | M | 3 | 3 | 3 | 4 | 4 | 4 | 2 | No | 20.7 | 12 | 8.4 | 8.8 | 10.4 |
13 | 60 | M | 3 | 4 | 3 | 2 | 2 | 2 | 5 | Yes | 12.7 | 11.9 | 14 | 13.2 | 18.3 |
14 | 27 | F | 1 | 1 | 4 | 4 | 4 | 4 | 2 | No | 12.2 | 11 | 8.6 | 19.3 | N/A |
15 | 87 | F | 3 | 4 | 2 | 2 | 2 | 2 | 5 | Yes | 8.7 | 8 | 16.8 | 5.8 | 9.5 |
16 | 61 | F | 3 | 4 | 3 | 4 | 4 | 4 | 2 | Yes | 86.5 | 16 | 17.4 | 16.2 | 19.9 |
17 | 73 | F | 3 | 3 | 3 | 3 | 4 | 4 | 3 | Yes | 16.3 | 14.9 | 13.8 | 9.3 | 6 |
18 | 65 | F | 3 | 4 | 3 | 3 | 4 | 4 | 3 | Yes | 24.5 | 30.5 | 21.5 | 13.6 | 18.8 |
19 | 39 | M | 1 | 2 | 4 | 4 | 4 | 4 | 2 | No | 26.9 | 14.9 | 8.1 | 7.7 | 6.2 |
20 | 47 | M | 2 | 4 | 3 | 4 | 4 | 4 | 2 | Yes | 17.5 | 20 | 17.5 | 20.8 | 22 |
21 | 52 | M | 3 | 4 | 3 | 4 | 4 | 4 | 2 | Yes | 19.8 | 23.1 | 16.8 | 14 | 14.3 |
22 | 35 | F | 3 | 4 | 3 | 3 | 4 | 4 | 3 | Yes | 38.4 | 26.2 | 26.8 | 26.8 | 34.5 |
23 | 68 | M | 3 | 4 | 3 | 2 | 2 | 2 | 5 | Yes | 31.2 | 37 | 40.7 | 36.5 | 22.9 |
24 | 60 | F | 3 | 4 | 2 | 2 | 1 | 1 | 6 | Yes | 12.3 | 36.2 | 14.5 | 19 | 11.6 |
25 | 60 | F | 3 | 3 | 3 | 3 | 4 | 4 | 3 | Yes | 11.8 | 12 | 11.1 | 16.7 | 9.9 |
26 | 90 | M | 2 | 3 | 4 | 3 | 1 | 1 | 6 | Yes | 11.5 | 9.9 | 9.9 | 9.3 | 11.4 |
27 | 79 | F | 3 | 3 | 3 | 4 | 4 | 4 | 2 | Yes | 15.1 | 9.6 | 8.8 | 12.7 | N/A |
28 | 62 | F | 2 | 2 | 2 | 2 | 1 | 1 | 6 | No | 11.6 | 13 | 11 | 10.6 | 13.7 |
29 | 48 | M | 3 | 4 | 3 | 3 | 3 | 3 | 4 | No | 9.5 | 10.5 | 10.9 | 9.6 | 9.2 |
30 | 47 | M | 3 | 4 | 3 | 1 | 1 | 1 | 6 | Yes | N/A | 12.6 | 21.7 | 15.1 | N/A |
31 | 86 | F | 3 | 3 | 3 | 3 | 4 | 4 | 3 | No | 9.8 | N/A | 12.7 | 10.3 | 9.5 |
32 | 65 | F | 1 | 1 | 4 | 5 | 5 | 5 | 0 | No | 15.5 | 11 | 10.2 | 13 | 9.8 |
33 | 68 | F | 3 | 3 | 4 | 3 | 4 | 4 | 3 | Yes | 8.5 | 9 | 14.2 | 11.5 | 9.5 |
34 | 80 | F | 3 | 2 | 2 | 1 | 1 | 1 | 6 | No | 32.7 | 37.4 | 32.7 | 20.8 | N/A |
35 | 46 | F | 2 | 3 | 4 | 4 | 5 | 5 | 1 | No | 8.5 | 9.7 | 11.5 | 7.8 | 6.8 |
36 | 42 | F | 2 | 2 | 4 | 4 | 5 | 5 | 0 | No | 10.7 | 30.5 | 8 | 7.4 | 10.3 |
37 | 44 | F | 2 | 1 | 4 | 4 | 5 | 5 | 1 | No | 6.8 | 9.3 | 11.8 | 9.6 | 8.9 |
38 | 43 | M | 2 | 2 | 4 | 4 | 4 | 4 | 2 | No | 8.7 | 6 | 7.4 | 4.9 | 6 |
Day 3 | Mean | Peak | |
---|---|---|---|
SAH (N = 38) | 15.3 ± 6.2 | 15.5 ± 1.6 | 18.6 ± 8.6 |
Female sex (N = 24) | 14.8 ± 5.4 | 15.8 ± 2 | 19.2 ± 11 |
Male sex (N = 14) | 16.1 ± 7.3 | 15 ± 1.5 | 17.6 ± 5 |
≤60 years old (N = 16) | 14 ± 5.7 | 14.8 ± 1.7 | 17.9 ± 7 |
≥60 years old (N = 22) | 16.2 ± 6.5 | 15.9 ± 1.7 | 19.1 ± 10 |
SAH—CVS (N = 18) | 18 ± 5.9 | 17.5 ± 1.9 | 21.1 ± 11.2 |
SAH—no CVS (N = 20) | 12.7 ± 5.1 | 13.6 ± 1.6 | 16.2 ± 6.7 |
GOS 12 months = 4/5 (N = 24) | 13.7 ± 4.9 | 15.3 ± 2.2 | 20.4 ± 9.7 |
GOS 12 months = 1/2/3 (N = 14) | 17.9 ± 8 | 15.7 ± 1.6 | 17.9 ± 8 |
mRS 12 months = 0/1/2 (N = 17) | 12.7 ± 5.1 | 21.5 ± 2.7 | 21.5 ± 10.7 |
mRS 12 months = 3/4/5/6 (N = 21) | 17.4 ± 6.9 | 15.8 ± 1.4 | 17.5 ± 8.5 |
Anterior circulation bleeding (N = 33) | 14.8 ± 6 | 15.2 ± 1.6 | 17.2 ± 8.1 |
Posterior circulation bleeding (N = 5) | 18.2 ± 5.2 | 17.3 ± 4.4 | 27.5 ± 23.5 |
H/H = 1/2 (N = 15) | 12.4 ± 4.3 | 12.9 ± 0.4 | 14 ± 4.9 |
H/H = 3 (N = 23) | 17.1 ± 6.8 | 17.2 ± 3.2 | 21.7 ± 10.6 |
Fisher = 1/2 (N = 12) | 11 ± 3.9 | 12.8 ± 1.7 | 15 ± 6.3 |
Fisher = 3/4 (N = 26) | 17.2 ± 5.9 | 16.7 ± 1.8 | 20.3 ± 9.3 |
Controls (N = 13) | mean 7.1 ± 0.9 | ||
Acute hydrocephalus group (N = 8) | mean 11.7 ± 0.5 | ||
Intracerebral hemorrhage group (N = 5) | mean 11.8 ± 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiśniewski, K.; Popęda, M.; Tomasik, B.; Bieńkowski, M.; Bobeff, E.J.; Stefańczyk, L.; Tybor, K.; Hupało, M.; Jaskólski, D.J. The Role of Urine F2-isoprostane Concentration in Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Haemorrhage—A Poor Prognostic Factor. Diagnostics 2021, 11, 5. https://doi.org/10.3390/diagnostics11010005
Wiśniewski K, Popęda M, Tomasik B, Bieńkowski M, Bobeff EJ, Stefańczyk L, Tybor K, Hupało M, Jaskólski DJ. The Role of Urine F2-isoprostane Concentration in Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Haemorrhage—A Poor Prognostic Factor. Diagnostics. 2021; 11(1):5. https://doi.org/10.3390/diagnostics11010005
Chicago/Turabian StyleWiśniewski, Karol, Marta Popęda, Bartłomiej Tomasik, Michał Bieńkowski, Ernest J. Bobeff, Ludomir Stefańczyk, Krzysztof Tybor, Marlena Hupało, and Dariusz J. Jaskólski. 2021. "The Role of Urine F2-isoprostane Concentration in Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Haemorrhage—A Poor Prognostic Factor" Diagnostics 11, no. 1: 5. https://doi.org/10.3390/diagnostics11010005
APA StyleWiśniewski, K., Popęda, M., Tomasik, B., Bieńkowski, M., Bobeff, E. J., Stefańczyk, L., Tybor, K., Hupało, M., & Jaskólski, D. J. (2021). The Role of Urine F2-isoprostane Concentration in Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Haemorrhage—A Poor Prognostic Factor. Diagnostics, 11(1), 5. https://doi.org/10.3390/diagnostics11010005