Profiling of Circulating microRNAs in Prostate Cancer Reveals Diagnostic Biomarker Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohort Characteristic
2.2. Statistical Analysis
3. Results
3.1. Dysregulated miRNAs in Plasma
3.2. Plasma miRNAs Associated with Prostate Cancer Aggressiveness
3.3. Diagnostic Potential of Plasma miRNAs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PC | Prostate Cancer |
BPH | Benign Prostatic Hyperplasia |
LPC | Localized Prostate Cancer |
APC | Advanced Prostate Cancer |
PSA | Prostate Specific Antigen |
AUC | Area Under the Curve |
MPC | Metastatic Prostate Cancer |
DRE | Digital Rectal Examination |
mpMRI | Multiparametric MRI |
TRUS | Transrectal Ultrasound |
TRUSbx | Transrectal Ultrasound Guided Biopsies |
miRNA | MicroRNA |
BH | Benjamini–Hochberg |
ROC | Receiver Operating Characteristic |
ADT | Androgen Deprivation Therapy |
BCR | Biochemical Recurrence |
SVI | Seminal Vesicle Invasion |
SM | Surgical Margin |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Mason, M.; Metcalfe, C.; Holding, P.; Davis, M.; Peters, T.J.; Turner, E.L.; Martin, R.M.; et al. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N. Engl. J. Med. 2016, 375, 1415–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helgstrand, J.T.; Roder, M.A.; Klemann, N.; Toft, B.G.; Lichtensztajn, D.Y.; Brooks, J.D.; Brasso, K.; Vainer, B.; Iversen, P. Trends in incidence and 5-year mortality in men with newly diagnosed, metastatic prostate cancer-A population-based analysis of 2 national cohorts. Cancer 2018, 124, 2931–2938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barry, M.J. Clinical practice. Prostate-specific-antigen testing for early diagnosis of prostate cancer. N. Engl. J. Med. 2001, 344, 1373–1377. [Google Scholar] [CrossRef]
- Bolla, M.; van Poppel, H. Management of Prostate Cancer: A Multidisciplinary Approach; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Naji, L.; Randhawa, H.; Sohani, Z.; Dennis, B.; Lautenbach, D.; Kavanagh, O.; Bawor, M.; Banfield, L.; Profetto, J. Digital Rectal Examination for Prostate Cancer Screening in Primary Care: A Systematic Review and Meta-Analysis. Ann. Fam. Med. 2018, 16, 149–154. [Google Scholar] [CrossRef]
- Varenhorst, E.; Berglund, K.; Lofman, O.; Pedersen, K. Inter-observer variation in assessment of the prostate by digital rectal examination. Br. J. Urol. 1993, 72, 173–176. [Google Scholar] [CrossRef]
- Elkjaer, M.C.; Andersen, M.H.; Hoyer, S.; Pedersen, B.G.; Borre, M. Multi-parametric magnetic resonance imaging monitoring patients in active surveillance for prostate cancer: A prospective cohort study. Scand. J. Urol. 2018, 52, 8–13. [Google Scholar] [CrossRef]
- Futterer, J.J.; Briganti, A.; De Visschere, P.; Emberton, M.; Giannarini, G.; Kirkham, A.; Taneja, S.S.; Thoeny, H.; Villeirs, G.; Villers, A. Can Clinically Significant Prostate Cancer Be Detected with Multiparametric Magnetic Resonance Imaging? A Systematic Review of the Literature. Eur. Urol. 2015, 68, 1045–1053. [Google Scholar] [CrossRef]
- Moldovan, P.C.; Van den Broeck, T.; Sylvester, R.; Marconi, L.; Bellmunt, J.; van den Bergh, R.C.N.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; Fossati, N.; et al. What Is the Negative Predictive Value of Multiparametric Magnetic Resonance Imaging in Excluding Prostate Cancer at Biopsy? A Systematic Review and Meta-analysis from the European Association of Urology Prostate Cancer Guidelines Panel. Eur. Urol. 2017, 72, 250–266. [Google Scholar] [CrossRef]
- EAU. Available online: https://uroweb.org/guideline/prostate-cancer/ (accessed on 1 November 2019).
- Boesen, L.; Norgaard, N.; Logager, V.; Balslev, I.; Bisbjerg, R.; Thestrup, K.C.; Winther, M.D.; Jakobsen, H.; Thomsen, H.S. Assessment of the Diagnostic Accuracy of Biparametric Magnetic Resonance Imaging for Prostate Cancer in Biopsy-Naive Men: The Biparametric MRI for Detection of Prostate Cancer (BIDOC) Study. JAMA Netw. Open 2018, 1, e180219. [Google Scholar] [CrossRef] [Green Version]
- Fabris, L.; Ceder, Y.; Chinnaiyan, A.M.; Jenster, G.W.; Sorensen, K.D.; Tomlins, S.; Visakorpi, T.; Calin, G.A. The Potential of MicroRNAs as Prostate Cancer Biomarkers. Eur. Urol. 2016, 70, 312–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fredsoe, J.; Rasmussen, A.K.I.; Thomsen, A.R.; Mouritzen, P.; Hoyer, S.; Borre, M.; Orntoft, T.F.; Sorensen, K.D. Diagnostic and prognostic microRNA biomarkers for prostate cancer in cell-free urine. Eur. Urol. Focus 2017, 4, 825–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boerrigter, E.; Groen, L.N.; Van Erp, N.P.; Verhaegh, G.W.; Schalken, J.A. Clinical utility of emerging biomarkers in prostate cancer liquid biopsies. Expert Rev. Mol. Diagn. 2019, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonpavde, G.; Agarwal, N.; Pond, G.R.; Nagy, R.J.; Nussenzveig, R.H.; Hahn, A.W.; Sartor, O.; Gourdin, T.S.; Nandagopal, L.; Ledet, E.M.; et al. Circulating tumor DNA alterations in patients with metastatic castration-resistant prostate cancer. Cancer 2019, 125, 1459–1469. [Google Scholar] [CrossRef] [PubMed]
- Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef]
- Lin, S.; Gregory, R.I. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer 2015, 15, 321–333. [Google Scholar] [CrossRef]
- Movahedpour, A.; Ahmadi, N.; Ghasemi, Y.; Savardashtaki, A.; Shabaninejad, Z. Circulating microRNAs as potential diagnostic biomarkers and therapeutic targets in prostate cancer: Current status and future perspectives. J. Cell. Biochem. 2019, 120, 16316–16329. [Google Scholar] [CrossRef]
- Laursen, E.B.; Fredsoe, J.; Schmidt, L.; Strand, S.; Kristensen, H.; Ildor Rasmussen, A.K.; Daugaard, T.F.; Mouritzen, P.; Hoyer, S.; Kristensen, G.; et al. Elevated miR-615-3p Expression Predicts Adverse Clinical Outcome and Promotes Proliferation and Migration of Prostate Cancer Cells. Am. J. Pathol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Fredsoe, J.; Rasmussen, A.K.I.; Laursen, E.B.; Cai, Y.; Howard, K.A.; Pedersen, B.G.; Borre, M.; Mouritzen, P.; Orntoft, T.; Sorensen, K.D. Independent Validation of a Diagnostic Noninvasive 3-MicroRNA Ratio Model (uCaP) for Prostate Cancer in Cell-Free Urine. Clin. Chem. 2019, 65, 540–548. [Google Scholar] [CrossRef] [Green Version]
- Urabe, F.; Matsuzaki, J.; Yamamoto, Y.; Kimura, T.; Hara, T.; Ichikawa, M.; Takizawa, S.; Aoki, Y.; Niida, S.; Sakamoto, H.; et al. Large-scale Circulating microRNA Profiling for the Liquid Biopsy of Prostate Cancer. Clin. Cancer Res. 2019, 25, 3016–3025. [Google Scholar] [CrossRef] [Green Version]
- Fredsoe, J.; Rasmussen, A.K.I.; Mouritzen, P.; Borre, M.; Orntoft, T.; Sorensen, K.D. A five-microRNA model (pCaP) for predicting prostate cancer aggressiveness using cell-free urine. Int. J. Cancer 2019, 145, 2558–2567. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, L.; Fredsoe, J.; Kristensen, H.; Strand, S.H.; Rasmussen, A.; Hoyer, S.; Borre, M.; Mouritzen, P.; Orntoft, T.; Sorensen, K.D. Training and validation of a novel 4-miRNA ratio model (MiCaP) for prediction of postoperative outcome in prostate cancer patients. Ann. Oncol. 2018, 29, 2003–2009. [Google Scholar] [CrossRef] [PubMed]
- Glinge, C.; Clauss, S.; Boddum, K.; Jabbari, R.; Jabbari, J.; Risgaard, B.; Tomsits, P.; Hildebrand, B.; Kaab, S.; Wakili, R.; et al. Stability of Circulating Blood-Based MicroRNAs-Pre-Analytic Methodological Considerations. PLoS ONE 2017, 12, e0167969. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. 2017. Available online: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=2144573 (accessed on 25 March 2020).
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Andersen, C.L.; Jensen, J.L.; Orntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [Green Version]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Muller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Therneau, T.M. A Package for Survival Analysis in S. Version 2.38. Available online: https://CRAN.R-project.org/package=survival (accessed on 1 March 2015).
- Cooperberg, M.R.; Hilton, J.F.; Carroll, P.R. The CAPRA-S score: A straightforward tool for improved prediction of outcomes after radical prostatectomy. Cancer 2011, 117, 5039–5046. [Google Scholar] [CrossRef]
- Endzelins, E.; Berger, A.; Melne, V.; Bajo-Santos, C.; Sobolevska, K.; Abols, A.; Rodriguez, M.; Santare, D.; Rudnickiha, A.; Lietuvietis, V.; et al. Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer 2017, 17, 730. [Google Scholar] [CrossRef]
- Haldrup, C.; Kosaka, N.; Ochiya, T.; Borre, M.; Hoyer, S.; Orntoft, T.F.; Sorensen, K.D. Profiling of circulating microRNAs for prostate cancer biomarker discovery. Drug. Deliv. Transl. Res. 2014, 4, 19–30. [Google Scholar] [CrossRef]
- He, S.; Shi, J.; Mao, J.; Luo, X.; Liu, W.; Liu, R.; Yang, F. The expression of miR-375 in prostate cancer: A study based on GEO, TCGA data and bioinformatics analysis. Pathol. Res. Pract. 2019, 215, 152375. [Google Scholar] [CrossRef]
- Luu, H.N.; Lin, H.Y.; Sorensen, K.D.; Ogunwobi, O.O.; Kumar, N.; Chornokur, G.; Phelan, C.; Jones, D.; Kidd, L.; Batra, J.; et al. miRNAs associated with prostate cancer risk and progression. BMC Urol. 2017, 17, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Tao, T.; Liu, C.; Guan, H.; Zhang, G.; Ling, Z.; Zhang, L.; Lu, K.; Chen, S.; Xu, B.; et al. Upregulation of miR-146a by YY1 depletion correlates with delayed progression of prostate cancer. Int. J. Oncol. 2017, 50, 421–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.T.; Fang, L.; Cheng, Y.X.; Sun, Q. LncRNA PVT1 regulates prostate cancer cell growth by inducing the methylation of miR-146a. Cancer Med. 2016, 5, 3512–3519. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhao, X.; Liu, X.; Wang, Y.; Huang, J.; Jiang, B.; Chen, Q.; Yu, J. miR-146a functions as a tumor suppressor in prostate cancer by targeting Rac1. Prostate 2014, 74, 1613–1621. [Google Scholar] [CrossRef]
- Al-Qatati, A.; Akrong, C.; Stevic, I.; Pantel, K.; Awe, J.; Saranchuk, J.; Drachenberg, D.; Mai, S.; Schwarzenbach, H. Plasma microRNA signature is associated with risk stratification in prostate cancer patients. Int. J. Cancer 2017, 141, 1231–1239. [Google Scholar] [CrossRef] [Green Version]
- Ell, B.; Mercatali, L.; Ibrahim, T.; Campbell, N.; Schwarzenbach, H.; Pantel, K.; Amadori, D.; Kang, Y. Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 2013, 24, 542–556. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Wu, Z.; Lang, C.; Zhang, X.; He, S.; Yang, Q.; Guo, W.; Lai, Y.; Du, H.; Peng, X.; et al. Copy number gain of ZEB1 mediates a double-negative feedback loop with miR-33a-5p that regulates EMT and bone metastasis of prostate cancer dependent on TGF-beta signaling. Theranostics 2019, 9, 6063–6079. [Google Scholar] [CrossRef]
- Josson, S.; Gururajan, M.; Sung, S.Y.; Hu, P.; Shao, C.; Zhau, H.E.; Liu, C.; Lichterman, J.; Duan, P.; Li, Q.; et al. Stromal fibroblast-derived miR-409 promotes epithelial-to-mesenchymal transition and prostate tumorigenesis. Oncogene 2015, 34, 2690–2699. [Google Scholar] [CrossRef]
BPH | LPC | APC | TRUSbx Benign | TRUSbx Malignant | |
---|---|---|---|---|---|
Number of Samples | n = 144 | n = 407 | n = 57 | n = 63 | n = 82 |
Median Age (range) | 70 (46–87) | 64 (36–77) | 78 (47–86) | 66 (43–80) | 68 (43–80) |
Serum PSA levels, n (%) | |||||
≤10 ng/mL | 114 (79.2%) | 155 (38.1%) | 5 (8.8%) | 41 (65.1%) | 43 (52.4%) |
>10 ng/mL | 20 (13.9%) | 252 (61.9%) | 55 (96.5%) | 22 (34.9%) | 39 (47.6%) |
Unknown | 10 (6.9%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Median PSA, ng/mL (range) | 4.1 (.2–141) | 11.40 (2–61) | 78 (4.1–1147) | 8.4 (3.3–54.7) | 8.6 (4–466) |
Pre-biopsy DRE status, n (%) | |||||
Positive | NA | NA | NA | 14 (22.2%) | 45 (54.9%) |
Negative | NA | NA | NA | 42 (66.7%) | 30 (36.6%) |
Unknown | NA | NA | NA | 7 (11.1%) | 7 (8.5%) |
T-stage, n (%) * | |||||
T1 | NA | 0 (0%) | 3 (5.3%) | NA | 26 (31.7%) |
T2 | NA | 276 (67.8%) | 12 (21.1%) | NA | 17 (20.7%) |
T3 | NA | 131 (32.2%) | 35 (61.4%) | NA | 36 (43.9%) |
T4 | NA | 0 (0%) | 5 (8.8%) | NA | 0 (0%) |
Unknown | NA | 0 (0%) | 2 (3.5%) | NA | 3 (3.7%) |
Gleason Grade Group, n (%) * | |||||
1 | NA | 149 (36.6%) | 2 (3.5%) | NA | 21 (25.6%) |
2 | NA | 188 (46.2%) | 6 (10.5%) | NA | 23 (28%) |
3 | NA | 4 (1%) | 8 (14%) | NA | 5 (6.1%) |
4 | NA | 52 (12.8%) | 15 (26.3%) | NA | 15 (18.3%) |
5 | NA | 14 (3.4%) | 24 (42.1%) | NA | 18 (22%) |
Unknown | NA | 0 (0%) | 2 (3.5%) | NA | 0 (0%) |
Surgical margin status, n (%) | |||||
Negative | NA | 282 (69.3%) | NA | NA | NA |
Positive | NA | 122 (30%) | NA | NA | NA |
Unknown | NA | 3 (0.7%) | NA | NA | NA |
Downregulated miRNAs in APC | Fold Change BPH vs. APC | BH Corrected p Value | Fold Change LPC vs. APC | BH Corrected p Value |
hsa-miR-146a-5p | −1.73 | 1.61 × 10−10 | −1.82 | 2.45 × 10−16 |
hsa-miR-376c-3p | −1.64 | 1.66 × 10−3 | −1.71 | 8.12 × 10−5 |
hsa-miR-410-3p | −1.59 | 1.66 × 10−3 | −1.65 | 9.64 × 10−5 |
hsa-miR-154-5p | −1.51 | 7.89 × 10−3 | −1.69 | 1.01 × 10−4 |
hsa-miR-130a-3p | −1.48 | 2.19 × 10−5 | −1.37 | 8.93 × 10−6 |
Upregulated miRNAs in APC | Fold Change BPH vs. APC | BH Corrected p value | Fold Change LPC vs. APC | BH Corrected p value |
hsa-miR-375 | 3.70 | 3.44 × 10−6 | 3.27 | 3.56 × 10−6 |
hsa-miR-26a-5p | 1.89 | 2.51 × 10−10 | 2.55 | 2.52 × 10−19 |
hsa-miR-142-3p | 1.89 | 6.39 × 10−8 | 2.76 | 1.06 × 10−16 |
hsa-miR-451a | 1.84 | 1.21 × 10−4 | 3.33 | 1.76 × 10−16 |
hsa-miR-215-5p | 1.75 | 2.36 × 10−5 | 1.82 | 2.50 × 10−7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fredsøe, J.; Rasmussen, A.K.I.; Mouritzen, P.; Bjerre, M.T.; Østergren, P.; Fode, M.; Borre, M.; Sørensen, K.D. Profiling of Circulating microRNAs in Prostate Cancer Reveals Diagnostic Biomarker Potential. Diagnostics 2020, 10, 188. https://doi.org/10.3390/diagnostics10040188
Fredsøe J, Rasmussen AKI, Mouritzen P, Bjerre MT, Østergren P, Fode M, Borre M, Sørensen KD. Profiling of Circulating microRNAs in Prostate Cancer Reveals Diagnostic Biomarker Potential. Diagnostics. 2020; 10(4):188. https://doi.org/10.3390/diagnostics10040188
Chicago/Turabian StyleFredsøe, Jacob, Anne K. I. Rasmussen, Peter Mouritzen, Marianne T. Bjerre, Peter Østergren, Mikkel Fode, Michael Borre, and Karina D. Sørensen. 2020. "Profiling of Circulating microRNAs in Prostate Cancer Reveals Diagnostic Biomarker Potential" Diagnostics 10, no. 4: 188. https://doi.org/10.3390/diagnostics10040188
APA StyleFredsøe, J., Rasmussen, A. K. I., Mouritzen, P., Bjerre, M. T., Østergren, P., Fode, M., Borre, M., & Sørensen, K. D. (2020). Profiling of Circulating microRNAs in Prostate Cancer Reveals Diagnostic Biomarker Potential. Diagnostics, 10(4), 188. https://doi.org/10.3390/diagnostics10040188