High Genetic Diversity and No Evidence of Clonal Relation in Synchronous Thyroid Carcinomas Associated with Hashimoto’s Thyroiditis: A Next-Generation Sequencing Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue Samples and Histological Workup
2.2. DNA Isolation
2.3. BRAF Mutation Testing
2.4. Library Preparation for NGS
2.5. Next-Generation Sequencing
2.6. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Sipos, J.A.; Mazzaferri, E.L. Thyroid cancer epidemiology and prognostic variables. Clin. Oncol. 2010, 22, 395–404. [Google Scholar] [CrossRef]
- La Vecchia, C.; Malvezzi, M.; Bosetti, C.; Garavello, W.; Bertuccio, P.; Levi, F.; Negri, E. Thyroid cancer mortality and incidence: A global overview. Int. J. Cancer 2015, 136, 2187–2195. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Devesa, S.S.; Sosa, J.A.; Check, D.; Kitahara, C.M. Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974–2013. JAMA 2017, 317, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.C.; Sidhu, S.B. Papillary thyroid cancer: The most common endocrine malignancy. Endocrinol. Today. 2013, 2, 15–20. [Google Scholar]
- Lee, J.-H.; Kim, Y.; Choi, J.-W.; Kim, Y.-S. The association between papillary thyroid carcinoma and histologically proven Hashimoto’s thyroiditis: A meta-analysis. Eur. J. Endocrinol. 2013, 168, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Ehlers, M.; Schott, M. Hashimoto’s thyroiditis and papillary thyroid cancer: Are they immunologically linked? Trends Endocrinol. Metab. 2014, 25, 656–664. [Google Scholar] [CrossRef]
- Ajjan, R.A.; Weetman, A.P. The Pathogenesis of Hashimoto’s Thyroiditis: Further Developments in our Understanding. Horm. Metab. Res. 2015, 47, 702–710. [Google Scholar] [CrossRef] [Green Version]
- Pyzik, A.; Grywalska, E.; Matyjaszek-Matuszek, B.; Roliński, J. Immune Disorders in Hashimoto’s Thyroiditis: What Do We Know So Far? J. Immunol. Res. 2015, 2015, 979167. [Google Scholar] [CrossRef]
- Molnár, C.; Molnár, S.; Bedekovics, J.; Mokánszki, A.; Győry, F.; Nagy, E.; Méhes, G. Thyroid Carcinoma Coexisting with Hashimoto’s Thyreoiditis: Clinicopathological and Molecular Characteristics Clue up Pathogenesis. Pathol. Oncol. Res. 2019, 25, 1191–1197. [Google Scholar] [CrossRef] [Green Version]
- Cha, Y.J.; Koo, J.S. Next-generation sequencing in thyroid cancer. J. Transl. Med. 2016, 14, 322. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.S.; Lim, J.A.; Park, Y.J. Mutation Profile of Well-Differentiated Thyroid Cancer in Asians. Endocrinol. Metab. (Seoul) 2015, 30, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Tiedje, V.; Ting, S.; Herold, T.; Synoracki, S.; Latteyer, S.; Moeller, L.C.; Zwanziger, D.; Stuschke, M.; Fuehrer, D.; Schmid, K.W. NGS based identification of mutational hotspots for targeted therapy in anaplastic thyroid carcinoma. Oncotarget 2017, 8, 42613–42620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pstrąg, N.; Ziemnicka, K.; Bluyssen, H.; Wesoły, J. Thyroid cancers of follicular origin in a genomic light: In-depth overview of common and unique molecular marker candidates. Mol. Cancer. 2018, 17, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, Z.; Liu, Y.; Zhang, Y.; Li, J.; Kuang, M.; Peng, S.; Liang, J.; Yu, S.; Su, L.; Chen, L.; et al. Diagnostic value and lymph node metastasis prediction of a custom-made panel (thyroline) in thyroid cancer. Oncol. Rep. 2018, 40, 659–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, S.-K.; Song, Y.S.; Lee, E.K.; Hwang, J.; Kim, H.H.; Jung, G.; Kim, Y.A.; Kim, S.-J.; Cho, S.W.; Won, J.-K.; et al. Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. Nat. Commun. 2019, 10, 2764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witt, R.L. Targeted Next Generation Sequencing with ThyroSeq v2.1 for Indeterminate Thyroid Nodules in Clinical Practice. Del. Med. J. 2016, 88, 366–372. [Google Scholar]
- Gilani, A.; Donson, A.; Davies, K.D.; Whiteway, S.L.; Lake, J.; DeSisto, J.; Hoffman, L.; Foreman, N.K.; Kleinschmidt-DeMasters, B.K.; Green, A.L. Targetable molecular alterations in congenital glioblastoma. J. Neurooncol. 2019, 1–6. [Google Scholar] [CrossRef]
- Ilyas, M. Next-Generation Sequencing in Diagnostic Pathology. Pathobiology 2017, 84, 292–305. [Google Scholar] [CrossRef] [Green Version]
- Aziz, N.; Zhao, Q.; Bry, L.; Driscoll, D.K.; Funke, B.; Gibson, J.S.; Grody, W.W.; Hegde, M.R.; Hoeltge, G.A.; Leonard, D.G.B.; et al. College of American Pathologists’ laboratory standards for next-generation sequencing clinical tests. Arch. Pathol. Lab. Med. 2015, 139, 481–493. [Google Scholar] [CrossRef] [Green Version]
- Nikiforov, Y.E.; Carty, S.E.; Chiosea, S.I.; Coyne, C.; Duvvuri, U.; Ferris, R.L.; Gooding, W.E.; LeBeau, S.O.; Ohori, N.P.; Seethala, R.R.; et al. Impact of the Multi-Gene ThyroSeq Next-Generation Sequencing Assay on Cancer Diagnosis in Thyroid Nodules with Atypia of Undetermined Significance/Follicular Lesion of Undetermined Significance Cytology. Thyroid 2015, 25, 1217–1223. [Google Scholar] [CrossRef]
- Chen, H.; Luthra, R.; Routbort, M.J.; Patel, K.P.; Cabanillas, M.E.; Broaddus, R.R.; Williams, M.D. Molecular Profile of Advanced Thyroid Carcinomas by Next-Generation Sequencing: Characterizing Tumors Beyond Diagnosis for Targeted Therapy. Mol. Cancer Ther. 2018, 17, 1575–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Kim, J.-W.; Park, H.; Park, S.Y.; Kim, T.H.; Kim, S.W.; Oh, Y.L.; Chung, J.H. Multifocality in a Patient with Cribriform-Morular Variant of Papillary Thyroid Carcinoma Is an Important Clue for the Diagnosis of Familial Adenomatous Polyposis. Thyroid 2019, 29, 1606–1614. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Zhou, X.; Huang, F.; Wang, W.; Qi, Y.; Xu, H.; Shu, Y.; Shen, L.; Fei, X.; Xie, J.; et al. The genetic landscape of benign thyroid nodules revealed by whole exome and transcriptome sequencing. Nat. Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ciampi, R.; Romei, C.; Pieruzzi, L.; Tacito, A.; Molinaro, E.; Agate, L.; Bottici, V.; Casella, F.; Ugolini, C.; Materazzi, G.; et al. Classical point mutations of RET, BRAF and RAS oncogenes are not shared in papillary and medullary thyroid cancer occurring simultaneously in the same gland. J. Endocrinol. Investig. 2017, 40, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Qadri, Q.; Makhdoomi, M.J.; Wani, M.A.; Malik, A.A.; Niyaz, M.; Masoodi, S.R.; Andrabi, K.I.; Ahmad, R.; Mudassar, S. RET/PTC Gene Rearrangements in Thyroid Carcinogenesis: Assessment and Clinico-Pathological Correlations. Pathol. Oncol. Res. 2018. [Google Scholar] [CrossRef]
- Abdullah, M.I.; Junit, S.M.; Ng, K.L.; Jayapalan, J.J.; Karikalan, B.; Hashim, O.H. Papillary Thyroid Cancer: Genetic Alterations and Molecular Biomarker Investigations. Int. J. Med. Sci. 2019, 16, 450–460. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Hu, M.; Zhao, H.; Niu, L.; Rong, X.; Li, W.; Zhu, Q.; Ying, J.; Lyu, N. Precise Detection of Gene Mutations in Fine-Needle Aspiration Specimens of the Papillary Thyroid Microcarcinoma Using Next-Generation Sequencing. Int. J. Endocrinol. 2019, 19, 4723958. [Google Scholar] [CrossRef]
- Schopper, H.K.; Stence, A.; Ma, D.; Pagedar, N.A.; Robinson, R.A. Single thyroid tumour showing multiple differentiated morphological patterns and intramorphological molecular genetic heterogeneity. J. Clin. Pathol. 2017, 70, 116–119. [Google Scholar] [CrossRef]
- Handkiewicz-Junak, D.; Swierniak, M.; Rusinek, D.; Oczko-Wojciechowska, M.; Dom, G.; Maenhaut, C.; Unger, K.; Detours, V.; Bogdanova, T.; Thomas, G.; et al. Gene signature of the post-Chernobyl papillary thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1267–1277. [Google Scholar] [CrossRef] [Green Version]
- Goldenberg, D.; Russo, M.; Houser, K.; Crist, H.; Derr, J.B.; Walter, V.; Warrick, J.I.; Sheldon, K.E.; Broach, J.; Bann, D.V. Altered molecular profile in thyroid cancers from patients affected by the Three Mile Island nuclear accident. Laryngoscope 2017, 127, S1–S9. [Google Scholar] [CrossRef]
- Ameziane El Hassani, R.; Buffet, C.; Leboulleux, S.; Dupuy, C. Oxidative stress in thyroid carcinomas: Biological and clinical significance. Endocr. Relat. Cancer 2019, 26, R131–R143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzza, M.; Colombo, C.; Cirello, V.; Perrino, M.; Vicentini, L.; Fugazzola, L. Oxidative stress and the subcellular localization of the telomerase reverse transcriptase (TERT) in papillary thyroid cancer. Mol. Cell. Endocrinol. 2016, 431, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Rostami, R.; Aghasi, M.R.; Mohammadi, A.; Nourooz-Zadeh, J. Enhanced oxidative stress in Hashimoto’s thyroiditis: Inter-relationships to biomarkers of thyroid function. Clin. Biochem. 2013, 46, 308–312. [Google Scholar] [CrossRef] [PubMed]
Case No. | Sample | Tumor Size (mm) | TNM Class | Histology Subtype | Grade of Inflammation | MIB1 IHC (%) | BRAF VE IHC | |
---|---|---|---|---|---|---|---|---|
BRAF +/+ | 1 * | A | 10 | pT2 | DS | m | <1% | pos |
B | 6 | pT2 | cP | m | <1% | pos | ||
2 | A | 7 | pT3 | cP | h | <5% | pos | |
B | 5 | pT3 | cP | h | <5% | pos | ||
3 | A | 7 | pT1b | DS | m | <5% | pos | |
B | 5 | pT1b | cP | m | <5% | pos | ||
4 | A | 12 | pT1b | DS | h | <5% | pos | |
B | 2 | pT1b | cP | h | <5% | pos | ||
BRAF −/− | 5 | A | 5 | pT1a | cP | m | <1% | neg |
B | 3 | pT1a | cP | m | <1% | neg | ||
6 | A | 4 | pT1a | O | m | <5% | neg | |
B | 6 | pT1a | cP | m | <5% | neg | ||
7 | A | 6 | pT1a | cP | m | <5% | neg | |
B | 3 | pT1a | cP | m | <5% | neg | ||
8 * | A | 11 | pT1a | cP | m | <1% | neg | |
B | 12 | pT1a | O | m | <1% | neg | ||
9 * | A | 10 | pT1b | PF | h | <1% | neg | |
B | 6 | pT1b | PF | m | <1% | neg | ||
10 * | A | 11 | pT1a | DS | h | <1% | neg | |
B | 8 | pT1a | DS | h | <1% | neg | ||
11 * | A | 13 | pT1b | PF | h | 1–2% | neg | |
B | 6 | pT1b | O | h | <1% | neg | ||
12 | A | 5 | pT1a | cP | m | <5% | neg | |
B | 4 | pT1a | cP | m | <5% | neg | ||
13 | A | 4 | pT1a | PF | h | <5% | neg | |
B | 2 | pT1a | PF | h | <5% | neg | ||
BRAF +/− | 14 * | A | 23 | pT3 | PF | m | 1% | pos |
B | 17 | pT3 | PF | m | <1% | neg |
Case No. | Sample | Total no. of Variants | No. of Identical Variants | Identical Gene | Type of Identical Variants | AF of Identical Variants (%) |
---|---|---|---|---|---|---|
1 | A | 12 | 1 | BRAF | p.Val600Glu (c.1799T>A) | 23 |
B | 9 | 9 | ||||
8 | A | 18 | 0 | - | - | - |
B | 5 | - | ||||
9 | A | 9 | 0 | - | - | - |
B | 15 | - | ||||
10 | A | 11 | 0 | - | - | - |
B | 10 | - | ||||
11 | A | 3 | 1 | JAK3 | p.Val722Ile (c.2164G>A) | 30 |
B | 7 | 44 | ||||
14 | A | 13 | 0 | - | - | - |
B | 8 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molnár, C.; Bádon, E.S.; Mokánszki, A.; Mónus, A.; Beke, L.; Győry, F.; Nagy, E.; Méhes, G. High Genetic Diversity and No Evidence of Clonal Relation in Synchronous Thyroid Carcinomas Associated with Hashimoto’s Thyroiditis: A Next-Generation Sequencing Analysis. Diagnostics 2020, 10, 48. https://doi.org/10.3390/diagnostics10010048
Molnár C, Bádon ES, Mokánszki A, Mónus A, Beke L, Győry F, Nagy E, Méhes G. High Genetic Diversity and No Evidence of Clonal Relation in Synchronous Thyroid Carcinomas Associated with Hashimoto’s Thyroiditis: A Next-Generation Sequencing Analysis. Diagnostics. 2020; 10(1):48. https://doi.org/10.3390/diagnostics10010048
Chicago/Turabian StyleMolnár, Csaba, Emese Sarolta Bádon, Attila Mokánszki, Anikó Mónus, Lívia Beke, Ferenc Győry, Endre Nagy, and Gábor Méhes. 2020. "High Genetic Diversity and No Evidence of Clonal Relation in Synchronous Thyroid Carcinomas Associated with Hashimoto’s Thyroiditis: A Next-Generation Sequencing Analysis" Diagnostics 10, no. 1: 48. https://doi.org/10.3390/diagnostics10010048
APA StyleMolnár, C., Bádon, E. S., Mokánszki, A., Mónus, A., Beke, L., Győry, F., Nagy, E., & Méhes, G. (2020). High Genetic Diversity and No Evidence of Clonal Relation in Synchronous Thyroid Carcinomas Associated with Hashimoto’s Thyroiditis: A Next-Generation Sequencing Analysis. Diagnostics, 10(1), 48. https://doi.org/10.3390/diagnostics10010048