White Matter N-Acylphosphatidylserines (NAPSs) and Myelin Dysfunction in Late-Onset Alzheimer’s Disease (LOAD): A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Human Brain Samples
2.2. Sample Preparation
2.3. Lipidomics Analysis
2.4. Data Reduction
3. Results
3.1. NAPS
3.2. Phosphatidylcholine (PC) 36:1 and Phosphatidylserine (PS) 36:1
3.3. Diacylglycerol (DG) 36:1
3.4. NASer 16:0 and NASer 18:1
3.5. Lyso-NAPS 36:1
3.6. NASer 16:0 Phosphoric Acid
4. Study Limitations
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoshita, M.; Fletcher, E.; Harvey, D.; Ortega, M.; Martinez, O.; Mungas, D.M.; Reed, B.R.; DeCarli, C.S. Extent and distribution of white matter hyperintensities in normal aging, MCI, and AD. Neurology 2006, 67, 2192–2198. [Google Scholar] [CrossRef] [PubMed]
- Dhamoon, M.S.; Cheung, Y.K.; Bagci, A.; Alperin, N.; Sacco, R.L.; Elkind, M.S.V.; Wright, C.B. Periventricular White Matter Hyperintensities and Functional Decline. J. Am. Geriatr. Soc. 2018, 66, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Nasrabady, S.E.; Rizvi, B.; Goldman, J.E.; Brickman, A.M. White matter changes in Alzheimer’s disease: A focus on myelin and oligodendrocytes. Acta Neuropathol. Commun. 2018, 6, 22. [Google Scholar] [CrossRef] [PubMed]
- Prins, N.D.; van Dijk, E.J.; den Heijer, T.; Vermeer, S.E.; Koudstaal, P.J.; Oudkerk, M.; Hofman, A.; Breteler, M.M. Cerebral white matter lesions and the risk of dementia. Arch. Neurol. 2004, 61, 15314. [Google Scholar] [CrossRef] [PubMed]
- Abd-Nikfarjam, B.; Dolati-Somarin, A.; Baradaran Rahimi, V.; Askari, V.R. Cannabinoids in neuroinflammatory disorders: Focusing on multiple sclerosis, Parkinsons, and Alzheimers diseases. BioFactors 2023, 49, 560–583. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Pinheiro-de-Sousa, I.; Slobodyanyuk, M.; Chen, F.; Huynh, T.; Kanyo, J.; Tang, P.; Fuentes, L.A.; Braker, A.; Welch, R.; et al. Myelin-axon interface vulnerability in Alzheimer’s disease revealed by subcellular proteomics and imaging of human and mouse brain. J. Nat. Neurosci. 2025, 28, 1418–1435. [Google Scholar] [CrossRef] [PubMed]
- Groh, J.; Simons, M. White matter aging and its impact on brain function. Neuron 2025, 113, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Jickling, G.C.; Ander, B.P.; Liu, D.; Stamova, B.; Cox, C.; Jin, L.W.; DeCarli, C.; Sharp, F.R. Myelin injury and degraded myelin vesicles in Alzheimer’s disease. Curr. Alzheimer Res. 2014, 11, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Ziar, R.; Tesar, P.J.; Clayton, B.L.L. Astrocyte and oligodendrocyte pathology in Alzheimer’s disease. Neurotherapeutics 2025, 22, e00540. [Google Scholar] [CrossRef] [PubMed]
- Roher, A.E.; Weiss, N.; Kokjohn, T.A.; Kuo, Y.M.; Kalback, W.; Anthony, J.; Watson, D.; Luehrs, D.C.; Sue, L.; Walker, D.; et al. Increased A beta peptides and reduced cholesterol and myelin proteins characterize white matter degeneration in Alzheimer’s disease. Biochemistry 2002, 41, 11080–11090. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, I.; Andrés-Benito, P. White matter alterations in Alzheimer’s disease without concomitant pathologies. Neuropathol. Appl. Neurobiol. 2020, 46, 654–672. [Google Scholar] [CrossRef]
- Mathys, H.; Davila-Velderrain, J.; Peng, Z.; Gao, F.; Mohammadi, S.; Young, J.Z.; Menon, M.; He, L.; Abdurrob, F.; Jiang, X.; et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 2019, 570, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Balado, J.; Corlier, F.; Habeck, C.; Stern, Y.; Eich, T. Effects of white matter hyperintensities distribution and clustering on late-life cognitive impairment. Sci. Rep. 2022, 12, 1955. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Choi, S.H.; Lee, Y.M.; Kim, M.J.; Kim, Y.D.; Kim, J.Y.; Park, J.H.; Myung, W.; Na, H.R.; Han, H.J.; et al. Periventricular white matter hyperintensities and the risk of dementia: A CREDOS study. Int. Psychogeriatr. 2015, 27, 2069–2077. [Google Scholar] [PubMed]
- Poitelon, Y.; Kopec, A.M.; Belin, S. Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism. Cells 2020, 9, 812. [Google Scholar] [CrossRef]
- Wood, P.L. Accumulation of N-Acylphosphatidylserines and N-Acylserines in the Frontal Cortex in Schizophrenia. Neurotransmitter 2015, 1, e263. [Google Scholar] [PubMed]
- Obis, E.; Sol, J.; Andres-Benito, P.; Martín-Gari, M.; Mota-Martorell, N.; Galo-Licona, J.D.; Piñol-Ripoll, G.; Portero-Otin, M.; Ferrer, I.; Jové, M.; et al. Lipidomic Alterations in the Cerebral Cortex and White Matter in Sporadic Alzheimer’s Disease. Aging Dis. 2023, 14, 18871916. [Google Scholar] [CrossRef] [PubMed]
- Blusztajn, J.K.; Aytan, N.; Rajendiran, T.; Mellott, T.J.; Soni, T.; Burant, C.F.; Serrano, G.E.; Beach, T.G.; Lin, H.; Stein, T.D. Cerebral Gray and White Matter Monogalactosyl Diglyceride Levels Rise with the Progression of Alzheimer’s Disease. J. Alzheimers Dis. 2023, 95, 1623–1634. [Google Scholar] [PubMed]
- Wood, P.L.; Cebak, J.E.; Beger, A.W. Alzheimer’s Disease Lipidome: Elevated Cortical Levels of Monogalactosyl Diacylglycerols (MGDG) in Subjects with Mild Cognitive Impairment (MCI) but not in Non-Demented Alzheimer’s Neuropathology (NDAN) Subjects. J. Dement. Alzheimer’s Dis. 2025, 2, 20. [Google Scholar]
- Beger, A.W.; Hauther, K.A.; Dudzik, B.; Woltjer, R.L.; Wood, P.L. Human Brain Lipidomics: Investigation of Formalin Fixed Brains. Front. Mol. Neurosci. 2022, 15, 835628. [Google Scholar] [CrossRef]
- Wood, P.L.; Cheney, D.L.; Costa, E. Interactions of neuropeptides with cholinergic septal-hippocampal pathway: Indication for a possible trans-synaptic regulation. Adv. Behav. Biol. 1981, 25, 715–722. [Google Scholar]
- Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018, 141, 1917–1933. [Google Scholar] [CrossRef] [PubMed]
- Bohnen, N.I.; Bogan, C.W.; Müller, M.L. Frontal and periventricular brain white matter lesions and cortical deafferentation of cholinergic and other neuromodulatory axonal projections. Eur. Neurol. J. 2009, 1, 33–50. [Google Scholar] [PubMed]
- Suridjan, I.; Pollock, B.G.; Verhoeff, N.P.; Voineskos, A.N.; Chow, T.; Rusjan, P.M.; Lobaugh, N.J.; Houle, S.; Mulsant, B.H.; Mizrahi, R. In-vivo imaging of grey and white matter neuroinflammation in Alzheimer’s disease: A positron emission tomography study with a novel radioligand, [18F]-FEPPA. Mol. Psychiatry 2015, 20, 1579–1587. [Google Scholar] [CrossRef] [PubMed]
- Wood, P.L.; Holderman, N.R. Dysfunctional glycosynapses in schizophrenia: Disease and regional specificity. Schizophr. Res. 2015, 166, 235–237. [Google Scholar] [CrossRef] [PubMed]
- Wood, P.L. Non-Targeted Lipidomics Utilizing Constant Infusion High Resolution ESI Mass Spectrometry. In Protocols, Neuromethods: Lipidomics; Wood, P.L., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 125, pp. 13–19. ISBN 978-1-0716-0863-0. ISBN eBook 978-1-0716-0864-0. [Google Scholar]
- Mann, A.; Smoum, R.; Trembovler, V.; Alexandrovich, A.; Breuer, A.; Mechoulam, R.; Shohami, E. Palmitoyl Serine: An Endogenous Neuroprotective Endocannabinoid-Like Entity After Traumatic Brain Injury. J. Neuroimmune Pharmacol. 2015, 10, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Wood, P.L.; Hauther, K.A.; Scarborough, J.H.; Craney, D.J.; Dudzik, B.; Cebak, J.E.; Woltjer, R.L. Human Brain Lipidomics: Utilities of Chloride Adducts in Flow Injection Analysis. Life 2021, 11, 403. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Li, S.; Smith, D.C.; Shaw, W.A.; Raetz, C.R. Identification of Nacylphosphatidylserine molecules in eukaryotic cells. Biochemistry 2007, 46, 14500–14513. [Google Scholar] [CrossRef] [PubMed]
- Wood, P.L.; Woltjer, R.L. Serine ether glycerophospholipids: Decrements in the frontal cortex associated with dementia. Front. Ageing Neurosci. 2022, 14, 981868. [Google Scholar] [PubMed]
- Liliom, K.; Bittman, R.; Swords, B.; Tigyi, G. N-palmitoyl-serine and N-palmitoyltyrosine phosphoric acids are selective competitive antagonists of the lysophosphatidic acid receptors. Mol. Pharmacol. 1996, 50, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Donohue, T.J.; Cain, B.D.; Kaplan, S. Purification and characterization of an Nacylphosphatidylserine from Rhodopseudomonas sphaeroides. Biochemistry 1982, 21, 2765–2773. [Google Scholar] [CrossRef] [PubMed]
- Řezanka, T.; Vítová, M.; Lukavský, J.; Sigler, K. Lipidomic Study of Precursors of Endocannabinoids in Freshwater Bryozoan Pectinatella magnifica. Lipids 2018, 53, 413–427. [Google Scholar] [CrossRef] [PubMed]
- Morillo, M.; Sagristá, M.L.; de Madariaga, M.A. N-stearoyl-phosphatidylserine: Synthesis and role in divalent-cation-induced aggregation and fusion. Lipids 1998, 33, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; O’Dell, D.K.; Yu, Y.W.; Monn, M.F.; Hughes, H.V.; Burstein, S.; Walker, J.M. Identification of endogenous acyl amino acids based on a targeted lipidomics approach. J. Lipid Res. 2010, 51, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Battista, N.; Bari, M.; Bisogno, T. N-Acyl amino acids: Metabolism, molecular targets, and role in biological processes. Biomolecules 2019, 9, 822. [Google Scholar] [CrossRef] [PubMed]
- Uyama, T.; Sasaki, S.; Sikder, M.M.; Okada-Iwabu, M.; Ueda, N. The PLAAT family as phospholipid-related enzymes. Prog. Lipid Res. 2025, 98, 101331. [Google Scholar] [CrossRef] [PubMed]
- Hunt, M.C.; Siponen, M.I.; Alexson, S.E. The emerging role of acyl-CoA thioesterases and acyltransferases in regulating peroxisomal lipid metabolism. Biochim. Biophys. Acta 2012, 1822, 1397–1410. [Google Scholar] [CrossRef] [PubMed]
- Binte Mustafiz, S.S.; Uyama, T.; Morito, K.; Takahashi, N.; Kawai, K.; Hussain, Z.; Tsuboi, K.; Araki, N.; Yamamoto, K.; Tanaka, T.; et al. Intracellular Ca2+-dependent formation of N-acylphosphatidylethanolamines by human cytosolic phospholipase A2ε. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 158515. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.Y.; Geng, X.; Teng, T.; Yang, B.; Appenteng, M.K.; Greenlief, C.M.; Lee, J.C. Dynamic Role of Phospholipases A2 in Health and Diseases in the Central Nervous System. Cells 2021, 10, 2963. [Google Scholar] [CrossRef] [PubMed]
- Uyama, T.; Sasaki, S.; Okada-Iwabu, M.; Murakami, M. Recent Progress in NAcylethanolamine Research: Biological Functions and Metabolism Regulated by Two Distinct N-Acyltransferases: cPLA(2)epsilon and PLAAT Enzymes. Int. J. Mol. Sci. 2025, 26, 3359. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; Uyama, T.; Tsuboi, K.; Ueda, N. Mammalian enzymes responsible for the biosynthesis of N-acylethanolamines. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 1546–1561. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; Uyama, T.; Kawai, K.; Binte Mustafiz, S.S.; Tsuboi, K.; Araki, N.; Ueda, N. Phosphatidylserine-stimulated production of N-acyl-phosphatidylethanolamines by Ca2+-dependent N-acyltransferase. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2018, 1863, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.C.; Simon, G.M.; Cravatt, B.F. ABHD4 regulates multiple classes of N-acyl phospholipids in the mammalian central nervous system. Biochemistry 2015, 54, 2539–2549. [Google Scholar] [CrossRef] [PubMed]
- Giusto, N.M.; Salvador, G.A.; Castagnet, P.I.; Pasquaré, S.J.; Ilincheta de Boschero, M.G. Age associated changes in central nervous system glycerolipid composition and metabolism. Neurochem. Res. 2002, 27, 1513–1523. [Google Scholar] [CrossRef] [PubMed]
- Erkell, L.J.; De Medio, G.E.; Haglid, K.; Porcellati, G. Increased activity of a phospholipid base-exchange system by the differentiation of neoplastic cells from the nervous system. J. Neurosci. Res. 1980, 5, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Filler, D.A.; Weinhold, P.A. Base-exchange reactions of the phospholipids in cardiac membranes. Biochim. Biophys. Acta 1980, 618, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Kanfer, J.N. The base exchange enzymes and phospholipase D of mammalian tissue. Can. J. Biochem. 1980, 58, 1370–1380. [Google Scholar] [CrossRef] [PubMed]
- Waluk, D.P.; Schultz, N.; Hunt, M.C. Identification of glycine N-acyltransferase-like 2 (GLYATL2) as a transferase that produces N-acyl glycines in humans. FASEB J. 2010, 24, 2795–2803. [Google Scholar] [CrossRef] [PubMed]
- Ueda, N.; Tsuboi, K.; Uyama, T. Metabolism of endocannabinoids and related Nacylethanolamines: Canonical and alternative pathways. FEBS J. 2013, 280, 1874–1894. [Google Scholar] [CrossRef] [PubMed]
- Waluk, D.P.; Sucharski, F.; Sipos, L.; Silberring, J.; Hunt, M.C. Reversible lysine acetylation regulates activity of human glycine N-acyltransferase-like 2 (hGLYATL2): Implications for production of glycine-conjugated signaling molecules. J. Biol. Chem. 2012, 287, 16158–16167. [Google Scholar] [CrossRef] [PubMed]
- van der Westhuizen, F.H.; Pretorius, P.J.; Erasmus, E. The utilization of alanine, glutamic acid, and serine as amino acid substrates for glycine N-acyltransferase. J. Biochem. Mol. Toxicol. 2000, 14, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Farina, N.; Rusted, J.; Tabet, N. The effect of exercise interventions on cognitive outcome in Alzheimer’s disease: A systematic review. Int. Psychogeriatr. 2014, 26, 9–18. [Google Scholar] [CrossRef] [PubMed]
- De la Rosa, A.; Olaso-Gonzalez, G.; Arc-Chagnaud, C.; Millan, F.; Salvador-Pascual, A.; GarcíaLucerga, C.; Blasco-Lafarga, C.; Garcia-Dominguez, E.; Carretero, A.; Correas, A.G.; et al. Physical exercise in the prevention and treatment of Alzheimer’s disease. J. Sport. Health Sci. 2020, 9, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Graciani, A.L.; Gutierre, M.U.; Coppi, A.A.; Arida, R.M.; Gutierre, R.C. Myelin, aging, and physical exercise. Neurobiol. Aging 2023, 127, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Ornish, D.; Madison, C.; Kivipelto, M.; Kemp, C.; McCulloch, C.E.; Galasko, D.; Artz, J.; Rentz, D.; Lin, J.; Norman, K.; et al. Effects of intensive lifestyle changes on the progression of mild cognitive impairment or early dementia due to Alzheimer’s disease: A randomized, controlled clinical trial. Alzheimers Res. Ther. 2024, 16, 122. [Google Scholar] [CrossRef] [PubMed]
- Mendez Colmenares, A.; Voss, M.W.; Fanning, J.; Salerno, E.A.; Gothe, N.P.; Thomas, M.L.; McAuley, E.; Kramer, A.F.; Burzynska, A.Z. White matter plasticity in healthy older adults: The effects of aerobic exercise. Neuroimage 2021, 239, 118305. [Google Scholar] [CrossRef] [PubMed]
- Kujawa, M.J.; Marcinkowska, A.B.; Grzywińska, M.; Waśkow, M.; Romanowski, A.; Szurowska, E.; Winklewski, P.J.; Szarmach, A. Physical activity and the brain myelin content in humans. Front. Cell Neurosci. 2023, 17, 1198657. [Google Scholar] [CrossRef] [PubMed]






| Age | Gender | Race | PMI (h) | |
|---|---|---|---|---|
| A. Controls | ||||
| 57 | M | Black or African American | 31.95 | |
| 64 | M | White | 10.4 | |
| 97 | F | White | 3.3 | |
| 85 | F | White | 8 | |
| 58 | M | Not Reported | 12.3 | |
| 54 | M | White | 8.4 | |
| 95 | F | White | 10 | |
| 67 | M | White | 16.3 | |
| B. LOAD | ||||
| 85 | F | Black or African American | 48.5 | |
| 89 | F | White | 3.3 | |
| 90 | F | Not Reported | 15.5 | |
| 83 | F | White | 50.1 | |
| 92 | M | White | 4.3 | |
| 83 | F | White | 19.9 | |
| 92 | F | White | 2.3 | |
| 89 | F | White | 3.6 | |
| Lipid | Exact Mass | Ions |
|---|---|---|
| [2H31]PG 34:1 | 779.72001 | [M-H]−: 778.7127 |
| NAPS 52:1 | 1027.78165 | [M-H]−: 1026.7743 |
| NAPS 54:2 | 1053.7973 | [M-H]−: 1052.7900 |
| PS 36:1 | 789.55198 | [M-H]−: 788.5447 |
| PC 36:1 | 787.6091 | [M + Cl]−: 822.5789 |
| [2H54]PC 28:0 | 729.8257 | [M + H]+: 730.8329 |
| DG 36:1 | 622.5536 | [M + NH4]+: 650.58745 |
| Ser-16:0 | 343.27225 | [M-H]−: 342.26 → Ser (104.0353/74.02475) |
| Ser 18:1 | 369.28790 | [M-H]−: 368.28 → Ser (104.0353/74.02475) |
| [2H31]PG 34:1 | 779.72001 | [M-H]−: 778.71 → FA 18:1 (281.2486) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wood, P.L.; Lagos, A.K.; Kastigar, A.R. White Matter N-Acylphosphatidylserines (NAPSs) and Myelin Dysfunction in Late-Onset Alzheimer’s Disease (LOAD): A Pilot Study. Life 2026, 16, 22. https://doi.org/10.3390/life16010022
Wood PL, Lagos AK, Kastigar AR. White Matter N-Acylphosphatidylserines (NAPSs) and Myelin Dysfunction in Late-Onset Alzheimer’s Disease (LOAD): A Pilot Study. Life. 2026; 16(1):22. https://doi.org/10.3390/life16010022
Chicago/Turabian StyleWood, Paul L., Annika K. Lagos, and Alexis R. Kastigar. 2026. "White Matter N-Acylphosphatidylserines (NAPSs) and Myelin Dysfunction in Late-Onset Alzheimer’s Disease (LOAD): A Pilot Study" Life 16, no. 1: 22. https://doi.org/10.3390/life16010022
APA StyleWood, P. L., Lagos, A. K., & Kastigar, A. R. (2026). White Matter N-Acylphosphatidylserines (NAPSs) and Myelin Dysfunction in Late-Onset Alzheimer’s Disease (LOAD): A Pilot Study. Life, 16(1), 22. https://doi.org/10.3390/life16010022

