Rising Demand for Winter Crops Under Climate Change: Breeding for Winter Hardiness in Autumn-Sown Legumes
Abstract
1. Introduction
2. Agronomic and Ecological Analysis of Autumn-Sown Plants
2.1. Agronomic and Ecological Benefits of Autumn-Sown Plants
| Crop | Key Benefits of Autumn Sowing | Location | Reference |
|---|---|---|---|
| Triticale | produced higher aboveground dry matter yield, earlier harvest, greater tolerance to drought | Austria | [38] |
| Facultative Wheat | yield, energy output, grains ear−1, grains m−2, thousand-grain weight | Austria | [39,40] |
| Facultative Wheat + Pea (intercropping) | faster development, grew taller, higher aboveground dry matter production | Austria | [29] |
| Oats | better yield, cost-efficiency (in rice fields) | China | [41] |
| Poppy | higher seed and morphine yield | Austria and Turkey | [42,43] |
| Safflower | achene and oil yield | Greece | [44] |
| Sugar beet | higher yield (26%) | Germany | [48] |
| Camelina, Linseed | yield potential | Serbia and Italy | [49,50] |
2.2. Agronomic and Ecological Risks of Autumn-Sown Plants
3. Biotic Stress Factors Affecting Overwintering Plants
3.1. Diseases That Threaten Overwintering Plants
3.2. Pests Dangerous to Overwintering Plants
4. Mechanisms Playing a Role in Winter Hardiness of Annual, Herbaceous Plants Sown in Autumn
4.1. Mechanisms Involved in Frost Tolerance
4.2. Mechanisms Involved in Winter Hardiness
5. Changes Induced by Low Temperature
5.1. Cell Wall Structure Changes Under Low-Temperature Stress
5.2. Accumulation of Osmoprotectants
5.3. Changes in Membrane Lipids
6. Autumn-Sown Legume Crops Compared to Spring-Sown Plants
“Beans, as was said, are in other ways not a burdensome crop to the ground, they even seem to manure it, because the plant is of loose growth and rots easily”(Theophrastus, 3rd century BC)
6.1. The Economic and Ecological Benefits of Integrating Legumes into Cropping Systems
6.1.1. Effect of Sowing Time on Legume Crops
6.1.2. Effect of Sowing Time on Yield
6.1.3. Effect of Sowing Time on Developmental and Nitrogen Fixation Characteristics
| Crop | Key Benefits of Autumn Sowing | Location | Reference |
|---|---|---|---|
| Faba bean | Much higher biomass and grain yield; More seeds per pod and per shoot; More N left in soil after harvest; Ripens 1–2 weeks earlier. | Pannonian region, Austria | [13,17,128] |
| Pea | Up to 56% higher grain yield; Higher fresh forage and dry matter; Stronger N-fixation and N-yield; More branches, taller plants, more pods/seeds | Greece, Turkey, Pannonian | [114,117,118,129] |
| Lentil | 50–70% higher seed yield | Mediterranean | [115,116] |
| Chickpea | 50–70% higher seed yield; Higher biomass | Mediterranean | [115] |
| White lupine | Winter survival varies more within varieties than between species | Temperate | [51] |
| All legumes | Longer growing season; More biomass and yield; Deeper roots, better water use; Chickpea most frost-tolerant; Lentil and faba bean most sensitive | Temperate/Mediterranean | [17,112] |
7. Breeding of Legumes for Winter Hardiness
7.1. Assessing Winter Hardiness
7.2. Monitoring Biochemical Changes
7.3. Determining Antioxidant Activity
7.4. Factors Influencing Winter Hardiness
7.4.1. Crop Species
7.4.2. Genotype Variation
7.4.3. Acclimatization
7.4.4. Plant Structure and Phenology
7.4.5. Snow Cover
7.4.6. Winter Temperatures and Duration
| Factor | Key Effect | Crop(s) | Reference |
|---|---|---|---|
| Crop species | Faba bean and lentil most hardy. Pea LT50 equals −12.8 °C. White lupin LT50 equals −11.0 °C. Wild Cicer more tolerant than cultivated chickpea. | Faba bean, lentil, pea, lupin, chickpea | [112,150,151] |
| Genotype variation | Pea LT50 ranges from −11.6 to −14.5 °C. Wild faba more tolerant than cultivated. Australian lines more tolerant than Saudi local. Pea divided into three hardiness classes. | Pea, faba bean, lupin | [150,157,158] |
| Acclimatization | Shoot growth decreases. Sugars and proline increase. ICE-CBF-COR pathway is activated. Antioxidant system increases. De-/reacclimation is risky. | General | [136,160,161] |
| Plant structure, phenology | Rosette growth helps winter pea. Early flowering increases mortality (lupine). Delayed flowering avoids frost. | Pea, lupine | [171,173,174] |
| Snow cover | Snow insulates plants. Snow prevents soil heaving. | General | [28] |
| Osmoprotectants | Sugars (glucose, sucrose, raffinose) increase. Suberin increases. These protect cells from freezing. | General | [28] |
| Winter temperature and duration | More than 50% loss below −6 °C (forage legumes). Hardy species survive −23 or −29 °C (depending on duration). | Forage legumes, pinto bean | [133] |
8. Genetic Improvement of Winter Hardiness
8.1. Traditional Breeding and Selection
8.2. Evaluation of Genotype–Environment Interactions and Polygenic Control
8.2.1. Genotype–Environment Interactions Under Abiotic Stress
8.2.2. Genotype–Environment Interactions Under Biotic Stress
8.3. Genomics-Assisted Breeding (GAB)
8.4. Major Functional Genes Related to Winter Hardiness
9. Challenges and Progress in Breeding for Winter Hardiness in Grain Legumes
New Varieties Developed for Winter Hardiness
10. Future Prospects and Breeding Strategies for Enhanced Winter Hardiness
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malla, F.A.; Mushtaq, A.; Bandh, S.A.; Qayoom, I.; Hoang, A.T. Understanding climate change: Scientific opinion and public perspective. In Climate Change: The Social and Scientific Construct, 1st ed.; Bandh, S.A., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–20. [Google Scholar] [CrossRef]
- NASA. Global Climate Change, Global Temperature. Available online: https://climate.nasa.gov/vital-signs/global-temperature/ (accessed on 7 November 2025).
- Karl, T.R.; Trenberth, K.E. Modern global climate change. Science 2003, 302, 1719–1723. [Google Scholar] [CrossRef]
- Mikhaylov, A.; Moiseev, N.; Aleshin, K.; Burkhardt, T. Global climate change and greenhouse effect. Entrep. Sustain. Issues 2020, 7, 2897. [Google Scholar] [CrossRef]
- Gahlawat, I.N.; Lakra, P. Global Climate change and its effects. Int. J. Soc. Sci. 2020, 7, 14–23. [Google Scholar]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen-Sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Gao, J.; Yang, X.; Zheng, B.; Liu, Z.; Zhao, J.; Sun, S.; Li, K.; Dong, C. Effects of climate change on the extension of the potential double cropping region and crop water requirements in Northern China. Agr. For. Meteorol. 2019, 268, 146–155. [Google Scholar] [CrossRef]
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K.; et al. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Matsumoto, K.; Ohta, T.; Irasawa, M.; Nakamura, T. Climate change and extension of the Ginkgo biloba L. growing season in Japan. Glob. Change Biol. 2003, 9, 1634–1642. [Google Scholar] [CrossRef]
- Menzel, A. Trends in Phenological Phases in Europe Between 1951 and 1996. Int. J. Biometeorol. 2000, 44, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Bindi, M.; Eitzinger, J.; Ferrise, R.; Gaile, Z.; Gobin, A.; Holzkämper, A.; Kersebaum, K.-C.; Kozyra, J.; Kriaučiūnienė, Z.; et al. Priority for Climate Adaptation Measures in European Crop Production Systems. Eur. J. Agron. 2022, 138, 126516. [Google Scholar] [CrossRef]
- Grigorieva, E.; Livenets, A.; Stelmakh, E. Adaptation of Agriculture to Climate Change: A Scoping Review. Climate 2023, 11, 202. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Ziegler, K.V.; Kriegner, S.; Kaul, H.-P. Limited winter survival and compensation mechanisms of yield components constrain winter faba bean production in Central Europe. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2015, 65, 496–505. [Google Scholar] [CrossRef]
- Trnka, M.; Eitzinger, J.; Semerádová, D.; Hlavinka, P.; Balek, J.; Dubrovský, M.; Kubu, G.; Štěpánek, P.; Thaler, S.; Možný, M.; et al. Expected Changes in Agroclimatic Conditions in Central Europe. Clim. Chang. 2011, 108, 261–289. [Google Scholar] [CrossRef]
- Špika, A.K.; Mikić, S.M.; Trkulja, D.; Jeromela, A.M.; Rajković, D.; Radanović, A.; Cvejić, S.; Glogovać, S.; Dodig, D.; Bozinović, S.; et al. Crop breeding for a changing climate in the Pannonian region: Towards integration of modern phenotyping tools. J. Exp. Bot. 2022, 73, 5089–5110. [Google Scholar] [CrossRef]
- Cooper, J.W. The Characterization of Low Temperature Tolerance in Legumes. Ph.D. Thesis, University of Leeds, Leeds, UK, 2016. [Google Scholar]
- Neugschwandtner, R.W.; Bernhuber, A.; Kammlander, S.; Wagentristl, H.; Klimek-Kopyra, A.; Kaul, H.-P. Agronomic potential of winter grain legumes for Central Europe: Development, soil coverage and yields. Field Crops Res. 2019, 241, 107576. [Google Scholar] [CrossRef]
- Stoddard, F.L. Grain Legumes: An Overview. In Legumes in Cropping Systems, 1st ed.; Murphy-Bokern, D., Stoddard, F.L., Watson, C.A., Eds.; CABI: London, UK, 2017. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Thami Alami, I.; Abbas, K.; Pecetti, L.; Melis, R.A.M.; Porqueddu, C. Performance of legume-based annual forage crops in three semi-arid Mediterranean environments. Crop Pasture Sci. 2017, 68, 932–941. [Google Scholar] [CrossRef]
- Liu, R.; Fang, L.; Yang, T.; Zhang, X.; Hu, J.; Zhang, H.; Han, W.; Hua, Z.; Hao, J.; Zong, X. Marker-trait association analysis of frost tolerance of 672 worldwide pea (Pisum sativum L.) collections. Sci. Rep. 2017, 7, 5919. [Google Scholar] [CrossRef] [PubMed]
- Mikić, A.; Mihailović, V.; Ćupina, B.; Đorđević, V.; Milić, D.; Duc, G.; Lejeune-Hénaut, I.; Marget, P.; Hanocq, É. Achievements in breeding autumn-sown annual legumes for temperate regions with emphasis on the continental Balkans. Euphytica 2011, 180, 57–67. [Google Scholar] [CrossRef]
- Stoddard, F.; Balko, C.; Erskine, W.; Khan, H.; Link, W.; Sarker, A. Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 2006, 147, 167–186. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Iannucci, A. Breeding strategy for faba bean in southern Europe based on cultivar responses across climatically contrasting environments. Crop Sci. 2008, 48, 983–991. [Google Scholar] [CrossRef]
- Kahraman, A.; Kusmenoglu, I.; Aydin, N.; Aydoğan, A.; Erskine, W.; Muehlbauer, F. QTL mapping of winter hardiness genes in lentil. Crop Sci. 2004, 44, 13–22. [Google Scholar] [CrossRef]
- Li, X.; Alarcón-Zúñiga, B.; Kang, J.; Tahir, H.M.; Jiang, Q.; Wei, Y.; Reyno, R.; Robins, J.G.; Brummer, E. Mapping fall dormancy and winter injury in tetraploid alfalfa. Crop Sci. 2015, 55, 1995–2011. [Google Scholar] [CrossRef]
- Erskine, W.; Sarker, A.; Kumar, S. Crops that feed the world 3. Investing in lentil improvement toward a food secure world. Food Secur. 2011, 3, 127–139. [Google Scholar] [CrossRef]
- Stoddard, F.; Hovinen, S.; Kontturi, M. Legumes in Finnish agriculture: History, present status and future prospects. Agricult. Food Sci. 2008, 18, 191–205. [Google Scholar] [CrossRef]
- Thapa, R.; Hanson, S.; Hua, J.; Moore, V.M. Breeding for Cold Tolerance in Common Annual Legume Cover Crops. Crop Sci. 2025, 65, e70059. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Herz, P.; Böck, A.; Wagentristl, H.; Moitzi, G.; Klimek-Kopyra, A.; Bernas, J.; Lošák, T.; Ghorbani, M.; Amirahmadi, E.; et al. Crop Growth Analysis of Autumn- and Spring-Sown Wheat–Pea Intercrops. Agronomy 2025, 15, 477. [Google Scholar] [CrossRef]
- O’Neill, C.; Lu, X.; Calderwood, A.; Tudor, E.; Robinson, P.; Wells, R.; Morris, R.; Penfield, S. Vernalization and Floral Transition in Autumn Drive Winter Annual Life History in Oilseed Rape. Curr. Biol. 2019, 29, 4300–4306. [Google Scholar] [CrossRef]
- Holland, J.; Brown, J.L.; MacKenzie, K.; Neilson, R.; Piras, S.; McKenzie, B.M. Over winter cover crops provide yield benefits for spring barley and maintain soil health in northern Europe. Eur. J. Agron. 2021, 130, 126363. [Google Scholar] [CrossRef]
- Kanapickas, A.; Vagusevičienė, I.; Sujetovienė, G. The Effects of Different Sowing Dates on the Autumn Development and Yield of Winter Wheat in Central Lithuania. Atmosphere 2024, 15, 738. [Google Scholar] [CrossRef]
- Altai, D.S.; Noaema, A.H.; Alhasany, A.R.; Hadházy, Á.; Mendler-Drienyovszki, N.; Abido, W.A.E.; Magyar-Tábori, K. Effect of sowing date on some agronomical characteristics of rye cultivars in Iraq. Agronomy 2024, 14, 1995. [Google Scholar] [CrossRef]
- Baenziger, P.S. Wheat Breeding and Genetics. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–8. ISBN 9780081005965. [Google Scholar] [CrossRef]
- Debener, T. Inheritance of Characteristics. In Encyclopedia of Rose Science; Roberts, A.V., Debener, T., Gudin, S., Eds.; Elsevier: Gainesville, FL, USA, 2003; pp. 286–292. [Google Scholar] [CrossRef]
- Mureșan, D.; Varadi, A.; Racz, I.; Kadar, R.; Duda, M.M. The Behavior of Several Facultative Wheat Genotypes Sown in Spring. Res. J. Agric. Sci. 2019, 51, 72–79. [Google Scholar]
- Prášil, I.T.; Musilová, J.; Prášilová, P.; Janáček, J.; Coufová, M.; Kosová, K.; Klíma, M.; Hermuth, J.; Holubec, V.; Vítámvás, P. Effect of Geographical Origin, Regional Adaptation, Genotype, and Release Year on Winter Hardiness of Wheat and Triticale Accessions Evaluated for Six Decades in Trials. Sci. Rep. 2025, 15, 5961. [Google Scholar] [CrossRef]
- Koppensteiner, L.J.; Obermayer-Böhm, K.; Hall, R.M.; Kaul, H.-P.; Wagentristl, H.; Neugschwandtner, R.W. Autumn sowing of facultative triticale results in higher biomass production and nitrogen uptake compared to spring sowing. Acta Agric. Scand. B Soil Plant Sci. 2021, 71, 806–814. [Google Scholar] [CrossRef]
- Moitzi, G.; Koppensteiner, L.J.; Klimek-Kopyra, A.; Bernas, J.; Kaul, H.-P.; Wagentristl, H.; Euteneuer, P.; Neugschwandtner, R.W. Effects of sowing date and nitrogen applications on the energy efficiency of facultative wheat (Triticum aestivum L.) in a Pannonian environment. Heliyon 2024, 10, e37923. [Google Scholar] [CrossRef]
- Koppensteiner, L.K.; Kaul, H.-P.; Piepho, H.-P.; Barta, N.; Euteneuer, P.; Bernas, J.; Klimek-Kopyra, A.; Gronauer, A.; Neugschwandtner, R.W. Yield and yield components of facultative wheat are affected by sowing time, nitrogen fertilization and environment. Europ. J. Agron. 2022, 140, 126591. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Dong, X.; Mou, Q.; Li, J.; Zhang, X.; Lin, M.; Yu, K.; Zhou, P.; Liu, X.; et al. Evaluation of oat (Avena sativa L.) populations for autumn sowing production in Southwest China. Grass Forage Sci. 2024, 79, 37–46. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Dobos, G.; Wagentristl, H.; Lošák, T.; Klimek-Kopyra, A.; Kaul, H.-P. Yield and yield components of winter poppy (Papaver somniferum L.) are affected by sowing date and sowing rate under Pannonian climate conditions. Agriculture 2023, 13, 997. [Google Scholar] [CrossRef]
- Yazici, L. Influence of different sowing times on yield and biochemical characteristics of different opium poppy (Papaver somniferum L.) genotypes. J. King Saud. Univ.-Sci. 2022, 34, 102337. [Google Scholar] [CrossRef]
- Koutroubas, S.D.; Damalas, C.A.; Fotiadis, S. Safflower Assimilate Remobilization, Yield, and Oil Content in Response to Nitrogen Availability, Sowing Time, and Genotype. Field Crops Res. 2021, 274, 108313. [Google Scholar] [CrossRef]
- Rezaei, J.; Fasahat, P. Autumn-Sown Sugar Beet Cultivation in Semiarid Regions. In Sugar Beet Cultivation, Management and Processing; Misra, V., Srivastava, S., Mall, A.K., Eds.; Springer: Singapore, 2022; pp. 275–290. [Google Scholar] [CrossRef]
- Hoffmann, C.M.; Kluge-Severin, S. Growth analysis of autumn and spring sown sugar beet. Eur. J. Agron. 2011, 34, 1–9. [Google Scholar] [CrossRef]
- Kluge-Severin, S.; Hoffmann, K.; Märländer, B. Ertrag und Qualität von Winterrüben—Vision für den Zuckerrübenanbau. Zuckerindustrie 2009, 134, 366–376. [Google Scholar]
- Hoffmann, C.M.; Kluge-Severin, S. Light absorption and radiation use efficiency of autumn and spring sown sugar beets. Field Crops Res. 2010, 119, 238–244. [Google Scholar] [CrossRef]
- Kuzmanović, B.; Petrović, S.; Nagl, N.; Mladenov, V.; Grahovac, N.; Zanetti, F.; Eynck, C.; Vollmann, J.; Jeromela, A.M. Yield-related traits of 20 spring camelina genotypes grown in a multi-environment study in Serbia. Agronomy 2021, 11, 858. [Google Scholar] [CrossRef]
- Rossi, A.; Clemente, C.; Tavarini, S.; Angelini, L.G. Variety and Sowing Date Affect Seed Yield and Chemical Composition of Linseed Grown under Organic Production System in a Semiarid Mediterranean Environment. Agronomy 2022, 13, 45. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Iannucci, A. Winter survival of pea, faba bean and white lupin cultivars across contrasting Italian locations and sowing times, and implications for selection. J. Agric. Sci. 2007, 145, 611–622. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Carroni, A. Diversity of white and narrow-leafed lupin genotype adaptive response across climatically-contrasting Italian environments and implications for selection. Euphytica 2008, 166, 71–81. [Google Scholar] [CrossRef]
- Franchini, M.; Flemmer, A.; Lindström, L.; Carrín, M.; Constenla, D.; Johnson, R. How sowing date affects development and performance of safflower through climate variables. Crop Sci. 2021, 61, 2775–2786. [Google Scholar] [CrossRef]
- Johnson, R.; Petrie, S.; Franchini, M.; Evans, M. Yield and yield components of winter-type safflower. Crop Sci. 2012, 52, 2358–2364. [Google Scholar] [CrossRef]
- Gesch, R.; Cermak, S. Sowing date and tillage effects on fall-seeded camelina in the Northern corn belt. Agron. J. 2011, 103, 980–987. [Google Scholar] [CrossRef]
- Tsapik, T.F.; Usova, N.M.; Dudareva, G.F. The impact of mineral nutrition on winter barley yields while using mustard as a precursor crop. Sci. Tech. Bull. Inst. Oilseed Crops NAAS 2021, 31, 98–108. [Google Scholar] [CrossRef]
- Gentsch, N.; Heuermann, D.; Boy, J.; Schierding, S.; Wirén, N.; Schweneker, D.; Feuerstein, U.; Kümmerer, R.; Bauer, B.; Guggenberger, G. Soil nitrogen and water management by winter-killed catch crops. Soil 2021, 8, 269–281. [Google Scholar] [CrossRef]
- DeKrey, D.; Klodd, A.; Clark, M.; Blanchette, R. Grapevine trunk diseases of cold-hardy varieties grown in Northern Midwest vineyards coincide with canker fungi and winter injury. PLoS ONE 2022, 17, e0269555. [Google Scholar] [CrossRef]
- Jonak, C.; Kiegerl, S.; Ligterink, W.; Barker, P.; Huskisson, N.; Hirt, H. Stress signalling in plants: A mitogen-activated protein kinase pathway is activated by cold and drought. Proc. Natl. Acad. Sci. USA 1996, 93, 11274–11279. [Google Scholar] [CrossRef]
- Mikołajczyk, M.; Awotunde, O.; Muszyńska, G.; Klessig, D.; Dobrowolska, G. Osmotic stress induces rapid activation of a salicylic acid–induced protein kinase and a homolog of protein kinase ask1 in tobacco cells. Plant Cell 2000, 12, 165–178. [Google Scholar] [CrossRef]
- Hardin, S.; Wolniak, S. Molecular cloning and characterization of maize zmmek1, a protein kinase with a catalytic domain homologous to mitogen- and stress-activated protein kinase kinases. Planta 1998, 206, 577–584. [Google Scholar] [CrossRef]
- Larsen, J.; Hollingsworth, C.; Flor, J.; Dornbusch, M.; Simpson, N.; Samac, D. Distribution of Phoma sclerotioides on alfalfa and winter wheat crops in the North Central United States. Plant Dis. 2007, 91, 551–558. [Google Scholar] [CrossRef]
- Takemoto, S.; Nakamura, H.; Imamura, Y.; Shimane, T. Schizophyllum commune as a ubiquitous plant parasite. Jpn. Agric. Res. Q. JARQ 2010, 44, 357–364. [Google Scholar] [CrossRef]
- Cooper, B.; Campbell, K. Protection against common bean rust conferred by a gene-silencing method. Phytopathology 2017, 107, 920–927. [Google Scholar] [CrossRef]
- Hao, W.; Gray, M.; Förster, H.; Adaskaveg, J. Evaluation of new oomycota fungicides for management of phytophthora root rot of citrus in California. Plant Dis. 2019, 103, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.; Bright, D.; McCoy, C. Phytophthora-Diaprepes weevil complex: Phytophthora spp. relationship with citrus rootstocks. Plant Dis. 2003, 87, 85–90. [Google Scholar] [CrossRef]
- Gerard, P.; Goldson, S.; Hardwick, S.; Addison, P.; Willoughby, B. The bionomics of an invasive species Sitona lepidus during its establishment in New Zealand. Bull. Entomol. Res. 2009, 100, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Ryan, G.; Sylvester, E.; Shelp, B.; Newman, J. Towards an understanding of how phloem amino acid composition shapes elevated CO2-induced changes in aphid population dynamics. Ecol. Entomol. 2015, 40, 247–257. [Google Scholar] [CrossRef]
- Ryan, G.; Shukla, K.; Rasmussen, S.; Shelp, B.; Newman, J. Phloem phytochemistry and aphid responses to elevated CO2, nitrogen fertilization and endophyte infection. Agric. For. Entomol. 2014, 16, 273–283. [Google Scholar] [CrossRef]
- Sudderth, E.; Stinson, K.; Bazzaz, F. Host-specific aphid population responses to elevated CO2 and increased N availability. Glob. Change Biol. 2005, 11, 1997–2008. [Google Scholar] [CrossRef]
- Cocco, A.; Marras, P.; Muscas, E.; Mura, A.; Lentini, A. Variation of life-history parameters of Planococcus ficus (Hemiptera: Pseudococcidae) in response to grapevine nitrogen fertilization. J. Appl. Entomol. 2014, 139, 519–528. [Google Scholar] [CrossRef]
- Zvereva, E.; Kozlov, M. Consequences of simultaneous elevation of carbon dioxide and temperature for plant–herbivore interactions: A metaanalysis. Glob. Change Biol. 2005, 12, 27–41. [Google Scholar] [CrossRef]
- Mukherjee, D. Food security under the era of climate change threat. J. Adv. Agric. Horti. Res. 2021, 1, 1–4. [Google Scholar] [CrossRef]
- Fowler, D.B.; Gusta, L.V. Influence of fall growth and development on cold tolerance of rye and wheat. Can. J. Plant Sci. 1977, 57, 751–755. [Google Scholar] [CrossRef]
- Ambroise, V.; Legay, S.; Guerriero, G.; Hausman, J.-F.; Cuypers, A.; Sergeant, K. The Roots of Plant Frost Hardiness and Tolerance. Plant Cell Physiol. 2020, 61, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Sardoei, A.S.; Fazeli-Nasab, B. Physiological and Molecular Mechanisms of Freezing in Plants. Phyton-Int. J. Exp. Bot. 2025, 94, 1601–1630. [Google Scholar] [CrossRef]
- Rihan, H.Z.; Al-Issawi, M.; Fuller, M.P. Advances in physiological and molecular aspects of plant cold tolerance. J. Plant Interact. 2017, 12, 143–157. [Google Scholar] [CrossRef]
- Guy, C.L. Freezing tolerance of plants: Current understanding and selected emerging concepts. Can. J. Bot. 2003, 81, 1216–1223. [Google Scholar] [CrossRef]
- Link, W.; Balko, C.; Stoddard, F.L. Winter hardiness in faba bean: Physiology and breeding. Field Crops Res. 2010, 115, 287–296. [Google Scholar] [CrossRef]
- Stanca, A.M.; Romagosa, I.; Takeda, K.; Lundborg, T.; Terzi, V.; Cattivelli, L. Chapter 9. Diversity in Abiotic Stress Tolerances. In Developments in Plant Genetics and Breeding; von Bothmer, R., van Hintum, T., Knüpffer, H., Sato, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 7, pp. 179–199. [Google Scholar] [CrossRef]
- Weiser, L.R.; Wallner, J.S.; Waddell, W.J. Cell wall and extensin mRNA changes during cold acclimation of pea seedlings. Plant Physiol. 1990, 93, 1021–1026. [Google Scholar] [CrossRef]
- Schütte, D.; Remmo, A.; Baier, M.; Griebel, T. Cold exposure transiently increases resistance of Arabidopsis thaliana against the fungal pathogen Botrytis cinerea. bioRxiv 2024. [Google Scholar] [CrossRef]
- Yin, Q.; Qin, W.; Zhou, Z.; Wu, A.M.; Deng, W.; Li, Z.; Shan, W.; Chen, J.; Kuang, J.; Lu, W. Banana MaNAC1 activates secondary cell wall cellulose biosynthesis to enhance chilling resistance in fruit. Plant Biotech. J. 2023, 22, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Houston, K.; Tucker, M.; Chowdhury, J.; Shirley, N.; Little, A. The plant cell wall: A complex and dynamic structure as revealed by the responses of genes under stress conditions. Front. Plant Sci. 2016, 7, 984. [Google Scholar] [CrossRef]
- Tenhaken, R. Cell wall remodeling under abiotic stress. Front. Plant Sci. 2015, 5, 771. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Li, Z.; Tong, Z.; He, F.; Li, X. Metabolomic analyses reveal substances that contribute to the increased freezing tolerance of alfalfa (Medicago sativa L.) after continuous water deficit. BMC Plant Biol. 2020, 20, 15. [Google Scholar] [CrossRef]
- Anzano, A.; Bonanomi, G.; Mazzoleni, S.; Lanzotti, V. Plant metabolomics in biotic and abiotic stress: A critical overview. Phytochem. Rev. 2022, 21, 503–524. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, W.; Huang, Y.; Li, P. Research Progress on Plant Anti-Freeze Proteins. Phyton-Int. J. Exp. Bot. 2024, 93, 1263–1274. [Google Scholar] [CrossRef]
- Yadav, S.K. Cold stress tolerance mechanisms in plants. A review. Agron. Sustain. Dev. 2010, 30, 515–527. [Google Scholar] [CrossRef]
- Wang, X.; Yu, C.; Liu, Y.; Yang, L.; Li, Y.; Yao, W.; Cai, Y.; Yan, X.; Li, S.; Cai, Y.; et al. GmFAD3A, A ω-3 Fatty Acid Desaturase Gene, Enhances Cold Tolerance and Seed Germination Rate under Low Temperature in Rice. Int. J. Mol. Sci. 2019, 20, 3796. [Google Scholar] [CrossRef]
- Gill, S.S.; Willette, S.; Dungan, B.; Jarvis, J.M.; Schaub, T.; VanLeeuwen, D.M.; St. Hilaire, R.; Holguin, F.O. Suboptimal Temperature Acclimation Affects Kennedy Pathway Gene Expression, Lipidome and Metabolite Profile of Nannochloropsis salina during PUFA Enriched TAG Synthesis. Mar. Drugs 2018, 16, 425. [Google Scholar] [CrossRef]
- García, P.; Pordomingo, A.; Pérez, C.; Ríos, M.; Sancho, A.; Lagreca, G.; Casal, J.J. Influence of cultivar and cutting date on the fatty acid composition of forage crops for grazing beef production in Argentina. Grass Forage Sci. 2015, 71, 235–244. [Google Scholar] [CrossRef]
- Chauhan, A.; Dasari, D.; Singhania, R.; Chang, J.; Dong, C.; Patel, A. Bioprocess engineering to revolutionize polyunsaturated fatty acid production by suppressing undesirable fatty acids flux. J. Sci. Food Agricult. 2025, 105, 7730–7742. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, S.; Wu, J.; Liu, H.; Wang, P.; Xu, L. Insights into membrane lipids modification in barley leaves as an adaptation mechanism to cold stress. Plant Growth Regul. 2024, 103, 369–388. [Google Scholar] [CrossRef]
- Hazel, J.R. Effects of temperature on the structure and metabolism of cell membranes in fish. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1984, 246, R460–R470. [Google Scholar] [CrossRef]
- Firdaus-Raih, M.; Hashim, N.H.F.; Bharudin, I.; Bakar, M.F.A.; Huang, K.K.; Alias, H.; Lee, B.K.B.; Isa, M.N.M.; Mat-Sharani, S.; Sulaiman, S.; et al. The Glaciozyma antarctica genome reveals an array of systems that provide sustained responses towards temperature variations in a persistently cold habitat. PLoS ONE 2018, 13, e0189947. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, F.; Vollheyde, A.L.; Cebrián-Piqueras, M.A.; von Haaren, C.; Lorenzetti, E.; Barberi, P.; Loreto, F.; Piergiovanni, A.R.; Totev, V.V.; Bedini, A.; et al. LEGU-MED: Developing biodiversity-based agriculture with legume cropping systems in the mediterranean basin. Agronomy 2022, 12, 132. [Google Scholar] [CrossRef]
- Wang, R.; Wu, J.; Wang, Y.; Sun, Z.; Ma, W.; Xue, C.; Xu, H. Legacy Effects of Different Preceding Crops on Grain Yield, Protein Fractions and Soil Nutrients in Subsequent Winter Wheat. Plants 2025, 14, 2598. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, J.; Beillouin, D.; Lambers, H.; Yang, Y.; Smith, P.; Zeng, Z.; Olsen, J.E.; Zang, H. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers. Nat. Com. 2022, 13, 4926. [Google Scholar] [CrossRef]
- Rezgui, C.; Riah-Anglet, W.; Benoît, M.; Bernard, P.; Laval, K.; Trinsoutrot-Gattin, I. Impacts of the winter pea crop (instead of rapeseed) on soil microbial communities, nitrogen balance and wheat yield. Agriculture 2020, 10, 548. [Google Scholar] [CrossRef]
- Maidl, F.; Haunz, F.; Panse, A.; Fischbeck, G. Transfer of grain legume nitrogen within a crop rotation containing winter wheat and winter barley. J. Agron. Crop Sci. 1996, 176, 47–57. [Google Scholar] [CrossRef]
- Henke, J.; Böttcher, U.; Neukam, D.; Sieling, K.; Kage, H. Evaluation of different agronomic strategies to reduce nitrate leaching after winter oilseed rape (Brassica napus L.) using a simulation model. Nutr. Cycl. Agroecosyst. 2008, 82, 299–314. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Y.; Steenhuis, T.; Pacenka, S.; Gao, W.; Ma, L.; Zhang, M.; Sui, P. Mitigating groundwater depletion in north china plain with cropping system that alternate deep and shallow rooted crops. Front. Plant Sci. 2017, 8, 980. [Google Scholar] [CrossRef]
- Singh, D.; Strahan, R.; Christodoulou, N.; Cawley, S. Validating economic and environmental sustainability of a short-term summer forage legume in dryland wheat cropping systems in south-west Queensland. Anim. Prod. Sci. 2009, 49, 816–825. [Google Scholar] [CrossRef]
- Mariotti, M.; Masoni, A.; Ercoli, L.; Arduini, I. Forage potential of winter cereal/legume intercrops in organic farming. Ital. J. Agron. 2006, 1, 403–412. [Google Scholar] [CrossRef]
- Ghanbari-Bonjar, A.; Lee, H. Intercropped wheat (Triticum aestivum L.) and bean (Vicia faba L.) as a whole-crop forage: Effect of harvest time on forage yield and quality. Grass Forage Sci. 2003, 58, 28–36. [Google Scholar] [CrossRef]
- Silim, S.N.; Hebblethwaite, P.D.; Heath, M.C. Comparison of the Effects of Autumn and Spring Sowing Date on Growth and Yield of Combining Peas (Pisum sativum L.). Agric. Sci. 1985, 104, 35–46. [Google Scholar] [CrossRef]
- Chikowo, R.; Mapfumo, P.; Nyamugafata, P.; Giller, K.E. Woody legume fallow productivity, biological N2-fixation and residual benefits to two successive maize crops in Zimbabwe. Plant Soil 2004, 262, 303–315. [Google Scholar] [CrossRef]
- Semba, R.D.; Ramsing, R.; Rahman, N.; Kraemer, K.; Bloem, M.W. Legumes as a sustainable source of protein in human diets. Glob. Food Secur. 2021, 28, 100520. [Google Scholar] [CrossRef]
- McDermott, J.; Wyatt, A.J. The role of pulses in sustainable and healthy food systems. Ann. N. Y. Acad. Sci. 2017, 1392, 30–42. [Google Scholar] [CrossRef]
- Casler, M.D.; Undersander, D.J. Chapter 2—Identification of Temperate Pasture Grasses and Legumes. In Horse Pasture Management, 2nd ed.; Sharpe, P.H., Ed.; Academic Press: Cambridge, MA, USA, 2025; pp. 11–35. [Google Scholar] [CrossRef]
- Murray, G.A.; Eser, D.; Gusta, L.V.; Eteve, G. Winterhardiness in pea, lentil, faba bean and chickpea. In World Crops: Cool Season Food Legumes; Summerfield, R.J., Ed.; Springer: Dordrecht, The Netherlands, 1988; pp. 831–843. [Google Scholar] [CrossRef]
- Almeida, T.A.; Giancotti, P.R.F.; Lima, B.A.D.; Nora, D.D.; Goulart, R. Grain yield of different soybean genotypes cultivated in lowland soils in three sowing times. Rev. Ciência Agric. 2019, 17, 1–6. [Google Scholar] [CrossRef]
- Ceyhan, E.; Karadaş, S. Forage Pea Pure Lines: Winter Hardiness, High Seed and Biological Yield. Selcuk Agric. Food Sci. 2023, 37, 487–496. [Google Scholar] [CrossRef]
- Singh, K.B.; Malhotra, R.S.; Saxena, M.C.; Bejiga, G. Superiority of winter sowing over traditional spring sowing of chickpea in the Mediterranean region. Agron. J. 1997, 89, 112–118. [Google Scholar] [CrossRef]
- Hassaneian Khoshro, H.; Lotfi, R. Advanced Breeding Approaches for Cold-Tolerant Chickpea and Lentil in Dryland Areas. In Legumes Research; Jimenez-Lopez, J.C., Clemente, A., Eds.; IntechOpen: Rijeka, Croatia, 2022. [Google Scholar] [CrossRef]
- Karkanis, A.; Ntatsi, G.; Kontopoulou, C.-K.; Pristeri, A.; Bilalis, D.; Savvas, D. Field Pea in European Cropping Systems: Adaptability, Biological Nitrogen Fixation and Cultivation Practices. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 325–336. [Google Scholar] [CrossRef]
- İleri, O.; Avcı, S.; Koç, A. Forage Yield and Quality Differences of Autumn and Spring-Sown Pea Genotypes under Central Anatolia Conditions. Turk. J. Field Crops 2021, 26, 253–261. [Google Scholar] [CrossRef]
- Soltani, A.; Torabi, B.; Zeinali, E.; Sarparast, R. Response of chickpea to photoperiod as a qualitative long-day plant. Asian J. Plant Sci. 2004, 6, 705–708. [Google Scholar] [CrossRef]
- Adhikari, K.N.; Buirchell, B.J.; Sweetingham, M.W. Length of vernalization period affects flowering time in three lupin species. Plant Breed. 2012, 131, 631–636. [Google Scholar] [CrossRef]
- Confalone, A.; Lizaso, J.I.; Ruiz-Nogueira, B.; López-Cedrón, F.X.; Sau, F. Growth, PAR use efficiency, and yield components of field-grown Vicia faba L. under different temperature and photoperiod regimes. Field Crops Res. 2010, 115, 140–148. [Google Scholar] [CrossRef]
- Flores, F.; Hybl, M.; Knudsen, J.C.; Marget, P.; Muel, F.; Nadal, S.; Narits, L.; Raffiot, B.; Sass, O.; Solis, I.; et al. Adaptation of spring faba bean types across European climates. Field Crops Res. 2013, 145, 1–9. [Google Scholar] [CrossRef]
- González, A.M.; Pesqueira, A.M.; García, L.; Santalla, M. Effects of Photoperiod and Drought on Flowering and Growth Development of Protein-Rich Legumes under Atlantic Environments. Agronomy 2023, 13, 1025. [Google Scholar] [CrossRef]
- Rychel-Bielska, S.; Bielski, W.; Surma, A.; Annicchiarico, P.; Belter, J.; Kozak, B.; Galek, R.; Harzic, N.; Książkiewicz, M. A GWAS study highlights significant associations between a series of indels in a FLOWERING LOCUS T gene promoter and flowering time in white lupin (Lupinus albus L.). BMC Plant Biol. 2024, 24, 722. [Google Scholar] [CrossRef]
- Amo, A.; Serikbay, D.; Song, L.; Chen, L.; Hu, Y. Vernalization and Photoperiod Alleles Greatly Affected Phenological and Agronomic Traits in Bread Wheat under Autumn and Spring Sowing Conditions. Crop Environ. 2022, 1, 241–250. [Google Scholar] [CrossRef]
- Homer, A.; Şahin, M.; Küçüközdemir, Ü. Evaluation of pea (Pisum sativum L.) germplasm for winter hardiness in Central Anatolia Turkey using field controlled environment Czech. J. Genet. Plant Breed. 2016, 52, 55–63. [Google Scholar] [CrossRef]
- Vasileva, V.; Kosev, V.; Kaya, Y. Phenological Development and Grain Yield Productivity of Winter Pea Genotypes in Two Locations. In Proceedings of the IV International Agricultural, Biological & Life Science Conference, Edirne, Turkey, 29–31 August 2022; pp. 1169–1177. [Google Scholar]
- Neugschwandtner, R.W.; Bernhuber, A.; Kammlander, S.; Wagentristl, H.; Klimek-Kopyra, A.; Lošák, T.; Bernas, J.; Koppensteiner, L.J.; Zholamanov, K.K.; Ghorbani, M.; et al. Effect of Two Seeding Rates on Nitrogen Yield and Nitrogen Fixation of Winter and Spring Faba Bean. Plants 2023, 12, 1711. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Bernhuber, A.; Kammlander, S.; Wagentristl, H.; Klimek-Kopyra, A.; Lošák, T.; Zholamanov, K.K.; Kaul, H.-P. Nitrogen Yields and Biological Nitrogen Fixation of Winter Grain Legumes. Agronomy 2021, 11, 681. [Google Scholar] [CrossRef]
- Cutforth, H.W.; McGinn, S.M.; McPhee, K.E.; Miller, P.R. Adaptation of Pulse Crops to the Changing Climate of the Northern Great Plains. Agron. J. 2007, 99, 1684–1699. [Google Scholar] [CrossRef]
- Peltonen-Sainio, P.; Jauhiainen, L. Large zonal and temporal shifts in crops and cultivars coincide with warmer growing seasons in Finland. Reg. Environ. Chang. 2020, 20, 89. [Google Scholar] [CrossRef]
- Michel, S.; Löschenberger, F.; Hellinger, J.; Strasser, V.; Ametz, C.; Pachler, B.; Sparry, E.; Bürstmayr, H. Improving and Maintaining Winter Hardiness and Frost Tolerance in Bread Wheat by Genomic Selection. Front. Plant Sci. 2019, 10, 1195. [Google Scholar] [CrossRef]
- Meyer, D.W.; Badaruddin, M. Frost tolerance of ten seedling legume species at four growth stages. Crop Sci. 2001, 41, 1838–1842. [Google Scholar] [CrossRef]
- Sallam, A.; Ghanbari, M.; Martsch, R. Genetic analysis of winter hardiness and effect of sowing date on yield traits in winter faba bean. Sci. Hortic. 2017, 224, 296–301. [Google Scholar] [CrossRef]
- Havilah, E.J. Forages and Pastures: Annual Forage and Pasture Crops—Species and Varieties. In Encyclopedia of Dairy Sciences; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2011; pp. 552–562. [Google Scholar]
- Arbaoui, M.; Balko, C.; Link, W. Study of faba bean (Vicia faba L.) winter-hardiness and development of screening methods. Field Crop. Res. 2008, 106, 60–67. [Google Scholar] [CrossRef]
- Londo, J.; Moyer, M.; Mireles, M.; Mills, L.; Keller, M.; Workmaster, B.; Atucha, A.; Kovaleski, A.P. Evaluation of sample preparation practices common with differential thermal analysis of grapevine bud cold hardiness. Am. J. Enol. Viticult. 2022, 74, 0740002. [Google Scholar] [CrossRef]
- Rajashekar, C.; Lafta, A. Cell-wall changes and cell tension in response to cold acclimation and exogenous abscisic acid in leaves and cell cultures. Plant Physiol. 1996, 111, 605–612. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, D.; Hou, X.; Shen, J.; Liu, J.; Cen, X.; Fu, J.; Li, X.; Hu, H.; Xiong, L. Ostmf attenuates cold tolerance by affecting cell wall properties in rice. New Phytol. 2020, 227, 498–512. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Ma, Y.; Chen, N.; Guo, S.; Liu, H.; Guo, X.; Chong, K.; Xu, Y. Overexpression of stress-inducible osburp16, the β subunit of polygalacturonase 1, decreases pectin content and cell adhesion and increases abiotic stress sensitivity in rice. Plant Cell Environ. 2013, 37, 1144–1158. [Google Scholar] [CrossRef]
- Sawicki, M.; Rondeau, M.; Courteaux, B.; Rabenoelina, F.; Guerriero, G.; Gomès, E.; Soubigou-Taconnat, L.; Balzergue, S.; Clément, C.; Ait Barka, E.; et al. On a Cold Night: Transcriptomics of Grapevine Flower Unveils Signal Transduction and Impacted Metabolism. Int. J. Mol. Sci. 2019, 20, 1130. [Google Scholar] [CrossRef]
- Takahashi, D.; Górka, M.; Erban, A.; Graf, A.; Kopka, J.; Zuther, E.; Hincha, D. Both cold and sub-zero acclimation induce cell wall modification and changes in the extracellular proteome in Arabidopsis thaliana. Sci. Rep. 2019, 9, 2289. [Google Scholar] [CrossRef]
- Kutsuno, T.; Chowhan, S.; Kotake, T.; Takahashi, D. Temporal cell wall changes during cold acclimation and deacclimation and their potential involvement in freezing tolerance and growth. Physiol. Plant. 2022, 175, e13837. [Google Scholar] [CrossRef]
- Bilska-Kos, A.; Pietrusińska, A.; Suski, S.; Niedziela, A.; Linkiewicz, A.M.; Majtkowski, W.; Żurek, G.; Zebrowski, J. Cell Wall Properties Determine Genotype-Specific Response to Cold in Miscanthus × giganteus Plants. Cells 2022, 11, 547. [Google Scholar] [CrossRef]
- Martineau-Côté, D.; Achouri, A.; Karboune, S.; L’Hocine, L. Faba Bean: An Untapped Source of Quality Plant Proteins and Bioactives. Nutrients 2022, 14, 1541. [Google Scholar] [CrossRef]
- Debnath, S.; Meetei, N.; Rai, M. Advancement in genomics and molecular marker technologies for breeding of faba bean with low vicine-convicine content: A review. Legume Res. Int. J. 2024, 47, 684–694. [Google Scholar] [CrossRef]
- Abid, G.; Hessini, K.; Aouida, M.; Aroua, I.; Baudoin, J.; Muhovski, Y.; Mergeai, G.; Sassi, K.; Machraoui, M.; Souissi, F.; et al. Agro-physiological and biochemical responses of faba bean (Vicia faba L. var. ‘minor’) genotypes to water deficit stress. Biotechnol. Agron. Société Environ. 2017, 21, 146–159. [Google Scholar] [CrossRef]
- Lippolis, A.; Roland, W.; Bocova, O.; Pouvreau, L.; Trindade, L. The challenge of breeding for reduced off-flavor in faba bean ingredients. Front. Plant Sci. 2023, 14, 803. [Google Scholar] [CrossRef] [PubMed]
- Wiering, N.P.; Flavin, C.; Sheaffer, C.C.; Heineck, G.C.; Sadok, W.; Ehlke, N.J. Winter Hardiness and Freezing Tolerance in a Hairy Vetch Collection. Crop Sci. 2018, 58, 1594–1604. [Google Scholar] [CrossRef]
- Franguelli, N.; Cavalli, D.; Notario, T.; Pecetti, L.; Annicchiarico, P. Frost tolerance improvement in pea and white lupin by a high-throughput phenotyping platform. Front. Plant Sci. 2024, 15, 1490577. [Google Scholar] [CrossRef]
- Wery, J.; Turc, O.; Lecoeur, J. Mechanism of Resistance to Cold, Heat and Drought in Cool-Season Legumes, with Special Reference to Chickpea and Pea. In Food Legumes; Singh, K.B., Saxena, M.C., Eds.; Wiley: Hoboken, NJ, USA, 1993; pp. 271–291. [Google Scholar]
- Landry, E.; Coyne, C.; McGee, R.; Hu, J. Adaptation of autumn-sown faba bean germplasm to Southeastern Washington. Agron. J. 2016, 108, 301–308. [Google Scholar] [CrossRef]
- Windhorst, A.; Skovbjerg, C.; Angra, D.; O’Sullivan, D.; Andersen, S.; Link, W. Genome-wide association studies identify promising qtl for freezing tolerance in winter and early spring as a basis for in-depth genetic analysis and implementation in winter faba bean (Vicia faba L.) breeding. bioRxiv 2024. [Google Scholar] [CrossRef]
- El-Abssi, M.; Awaad, H.; Qabil, N.; Mansour, E. Assessing agronomic performance, chocolate spot resistance, and heat tolerance for diverse Vicia faba genotypes under varying environmental conditions. Sci. Rep. 2024, 14, 9224. [Google Scholar] [CrossRef]
- Agegn, A.; Bitew, Y.; Ayalew, D. Response of yield and quality of soybean [Glycine max (L.) merrill] varieties to blended NPSZnB fertilizer rates in Northwestern Ethiopia. Heliyon 2022, 8, e09499. [Google Scholar] [CrossRef]
- Arbaoui, M.; Link, W.; Šatović, Z.; Torres, A. Quantitative trait loci of frost tolerance and physiologically related trait in faba bean (Vicia faba L.). Euphytica 2008, 164, 93–104. [Google Scholar] [CrossRef]
- Inci, N.E.; Toker, C. Screening and selection of faba beans (Vicia faba L.) for cold tolerance and comparison to wild relatives. Genet. Resour. Crop Evol. 2011, 58, 1169–1175. [Google Scholar] [CrossRef]
- Alharbi, N.H.; Alghamdi, S.S.; Migdadi, H.M.; El-Harty, E.H.; Adhikari, K.N. Evaluation of frost damage and pod set in faba bean (Vicia faba L.) under field conditions. Plants 2021, 10, 1925. [Google Scholar] [CrossRef]
- Hekneby, M.; Antolín, M.C.; Sánchez-Díaz, M. Frost Resistance and Biochemical Changes during Cold Acclimation in Different Annual Legumes. Environ. Exp. Bot. 2006, 55, 305–314. [Google Scholar] [CrossRef]
- Bhat, K.A.; Mahajan, R.; Pakhtoon, M.M.; Urwat, U.; Bashir, Z.; Shah, A.A.; Agrawal, A.; Baht, A.; Sofi, P.A.; Masi, A.; et al. Low Temperature Stress Tolerance: An Insight into the Omics Approaches for Legume Crops. Front. Plant Sci. 2022, 13, 888710. [Google Scholar] [CrossRef]
- Vaitkevičiūtė, G.; Aleliūnas, A.; Gibon, Y.; Armonienė, R. The effect of cold acclimation, deacclimation and reacclimation on metabolite profiles and freezing tolerance in winter wheat. Front. Plant Sci. 2022, 13, 959118. [Google Scholar] [CrossRef]
- Lee, B.; Henderson, D.; Zhu, J. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 2005, 17, 3155–3175. [Google Scholar] [CrossRef]
- Dong, C.; Agarwal, M.; Zhang, Y.; Xie, Q.; Zhu, J. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc. Natl. Acad. Sci. USA 2006, 103, 8281–8286. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Ohta, M.; Kanrar, S.; Lee, B.; Hong, X.; Agarwal, M.; Zhu, J. ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 2003, 17, 1043–1054. [Google Scholar] [CrossRef]
- Qian, Z.; He, L.; Li, F. Understanding cold stress response mechanisms in plants: An overview. Front. Plant Sci. 2024, 15, 1443317. [Google Scholar] [CrossRef]
- Gilmour, S.; Zarka, D.; Stockinger, E.; Salazar, M.; Houghton, J.; Thomashow, M. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 1998, 16, 433–442. [Google Scholar] [CrossRef]
- Ding, Y.; Li, H.; Zhang, X.; Xie, Q.; Gong, Z.; Yang, S. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev. Cell 2015, 32, 278–289. [Google Scholar] [CrossRef]
- Hu, Y.; Jiang, L.; Wang, F.; Yu, D. Jasmonate regulates the inducer of CBF expression–C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell 2013, 25, 2907–2924. [Google Scholar] [CrossRef]
- Pennycooke, J.; Cheng, H.; Roberts, S.; Yang, Q.; Rhee, S.; Stockinger, E. The low temperature-responsive, solanum CBF1 genes maintain high identity in their upstream regions in a genomic environment undergoing gene duplications, deletions, and rearrangements. Plant Mol. Biol. 2008, 67, 483–497. [Google Scholar] [CrossRef]
- Lee, H.; Seo, P. The MYB96–HHP module integrates cold and abscisic acid signaling to activate the CBF–COR pathway in Arabidopsis. Plant J. 2015, 82, 962–977. [Google Scholar] [CrossRef]
- Bielski, W.; Surma, A.; Belter, J.; Kozak, B.; Książkiewicz, M.; Rychel-Bielska, S. Molecular Dissection of the Genetic Architecture of Phenology Underlying Lupinus hispanicus Early Flowering and Adaptation to Winter- or Spring Sowing. Sci. Rep. 2025, 15, 15324. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chai, H.; Xu, Y.; Li, S.; Wu, Y.; Wang, R.; Yang, Z. Analysis of Physiological Characteristics and Gene Co-Expression Networks in Medicago sativa Roots under Low-Temperature Stress. Front. Plant Sci. 2025, 16, 1597949. [Google Scholar] [CrossRef] [PubMed]
- Urbatzka, P.; Graß, R.; Haase, T.; Schüler, C.; Heß, J. Influence of Different Sowing Dates of Winter Pea Genotypes on Winter Hardiness and Productivity as Either Winter Catch Crop or Seed Legume. Eur. J. Agron. 2012, 40, 112–119. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Manunza, P.; Proietti, S. White Lupin Tolerance to Winter Cold, Terminal Drought and Soil Lime: Patterns of Genetic Variation and Their Exploitation in Breeding for Southern Europe; International Lupin Association: Canterbury, New Zealand, 2011; pp. 99–103. [Google Scholar]
- Huyghe, C.; Papineau, J. Winter development of autumn-sown white lupin: Agronomic and breeding consequences. Agronomie 1990, 10, 709–716. [Google Scholar] [CrossRef]
- Prieur, R.; Cousin, R. Contribution à la mise au point d’une technique de sélection pour la résistance au froid des pois d’hiver. Ann. Amélior. Plantes 1978, 28, 157–163. [Google Scholar]
- Dumont, E.; Bahrman, N.; Goulas, E.; Valot, B.; Sellier, H.; Hilbert, J.L.; Vuylsteker, C.; Lejeune-Hénaut, I.; Delbreil, B. A proteomic approach to decipher chilling response from cold acclimation in pea (Pisum sativum L.). Plant Sci. 2011, 180, 86–98. [Google Scholar] [CrossRef]
- Limenie, A.D. Advancement of Genetic Engineering Applications for Enhancing Legume Crop Improvement in Agriculture. Cogent Food Agric. 2024, 11, 2446652. [Google Scholar] [CrossRef]
- ICARDA. ICARDA Annual Report 1981; ICARDA: Aleppo, Syria, 1981. [Google Scholar]
- Tutwiler, R.N. The Great Chickpea Challenge: Introducing Winter Sowing in the Mediterranean Region; ICARDA Social Science Paper No. 4; ICARDA: Aleppo, Syria, 1995; 30p, Available online: https://mel.cgiar.org/reporting/downloadmelspace/hash/kGfZbYmJ/v/cb4433723ff20528d11a0f6b27c4b437 (accessed on 7 November 2025).
- Mazid, A.; Amegbeto, K.; Shideed, K.; Malhotra, R. Impact of Crop Improvement and Management: Winter-Sown Chickpea in Syria; ICARDA: Aleppo, Syria, 2009; 52p. [Google Scholar]
- ICARDA. ICARDA Annual Report 1987; ICARDA: Aleppo, Syria, 1987. [Google Scholar]
- Aydoğan, A. Winter lentil for cold highland areas. Grain Legumes 2011, 57, 32–34. [Google Scholar]
- Muehlbauer, F.J.; McPhee, K.E. Registration of ‘Morton’ Winter-Hardy Lentil. Crop Sci. 2007, 47, 438–439. [Google Scholar] [CrossRef]
- Sarker, A.; Aydogan, A.; Sabaghpour, S.H.; Kusmenoglu, I.; Sakr, B.; Erskine, W.; Muehlbauer, F.J. Lentil Improvement for the Benefit of Highland Farmers. In Proceedings of the 4th International Crop Science Congress, Brisbane, QLD, Australia, 26 September–1 October 2004; Volume 26. [Google Scholar]
- Abdelmonim, Z.; Mohammed, M.; Aziz, B.; Hanane, O.; Sanae, K.B.; Zahra, I.E.M.F.; Omar, I. Lentil Resilience to Climate Change in Morocco: Main Achievements in Breeding, Biotechnology and Crop Management. Afr. Mediterr. Agric. J. 2024, 143, 89–103. [Google Scholar]
- Zhou, R.; Hyldgaard, B.; Yu, X.; Rosenqvist, E.; Ugarte, R.M.; Yu, S.; Wu, Z.; Ottosen, C.-O.; Zhao, T. Phenotyping of faba beans (Vicia faba L.) under cold and heat stresses using chlorophyll fluorescence. Euphytica 2018, 214, 68. [Google Scholar] [CrossRef]
- Dumont, E.; Fontaine, V.; Vuylsteker, C.; Sellier, H.; Bodèle, S.; Voedts, N.; Devaux, R.; Frise, M.; Avia, K.; Hilbert, J.L.; et al. Association of sugar content QTL and PQL with physiological traits relevant to frost damage resistance in pea under field and controlled conditions. Theor. Appl. Genet. 2009, 118, 1561–1571. [Google Scholar] [CrossRef] [PubMed]
- Lejeune-Hénaut, I.; Hanocq, E.; Béthencourt, L.; Fontaine, V.; Delbreil, B.; Morin, J.; Petit, A.; Devaux, R.; Boilleau, M.; Stempniak, J.J.; et al. The flowering locus Hr colocalizes with a major QTL affecting winter frost tolerance in Pisum sativum L. Theor. Appl. Genet. 2008, 116, 1105–1116. [Google Scholar] [CrossRef]
- Tejaswini, V.; Dey, S.; Goud, G.B.; Pujar, D.M.; Harshitha, K.D. Legumes: Breeding Strategies and Adaptive Traits for Drought Tolerance. Int. J. Environ. Clim. Chang. 2025, 15, 278–298. [Google Scholar]
- Zaman, M.; Malik, A.; Kaur, P.; Ribalta, F.; Erskine, W. Waterlogging tolerance at germination in field pea: Variability, genetic control, and indirect selection. Front. Plant Sci. 2019, 10, 953. [Google Scholar] [CrossRef]
- Yan, W.; Tinker, N. Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci. 2006, 86, 623–645. [Google Scholar] [CrossRef]
- Revilla, P.; Rodríguez, V.; Ordás, A.; Rincent, R.; Charcosset, A.; Giauffret, C.; Melchinger, A.E.; Schön, C.C.; Bauer, E.; Altmann, T.; et al. Cold tolerance in two large maize inbred panels adapted to European climates. Crop Sci. 2014, 54, 1981–1991. [Google Scholar] [CrossRef]
- Yan, W.; Kang, M.; L, B.; Woods, S.; Cornelius, P. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 2007, 47, 643–653. [Google Scholar] [CrossRef]
- Charlson, D.; Bailey, T.; Cianzio, S.; Shoemaker, R. Molecular marker Satt481 is associated with iron-deficiency chlorosis resistance in a soybean breeding population. Crop Sci. 2005, 45, 2394–2399. [Google Scholar] [CrossRef]
- Gauch, H.; Piepho, H.; Annicchiarico, P. Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Sci. 2008, 48, 866–889. [Google Scholar] [CrossRef]
- Saxesena, R.; Yadav, O.; Gaur, L. AP2/ERF transcription factors in crop plants’ disease resistance response. Asian J. Adv. Agric. Res. 2024, 24, 65–74. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, L.; Wu, H.; Jiang, L.; Liu, S. Genome-wide identification and transcriptional expression analysis of cucumber superoxide dismutase (SOD) family in response to various abiotic stresses. Int. J. Genom. 2017, 2017, 7243973. [Google Scholar] [CrossRef]
- Räisänen, M.; Repo, T.; Lehto, T. Cold acclimation was partially impaired in boron deficient norway spruce seedlings. Plant Soil. 2007, 292, 271–282. [Google Scholar] [CrossRef]
- Kayum, M.; Park, J.; Nath, U.; Saha, G.; Biswas, M.; Kim, H.; Nou, I. Genome-wide characterization and expression profiling of PDI family gene reveals function as abiotic and biotic stress tolerance in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genom. 2017, 18, 885. [Google Scholar] [CrossRef]
- Mittler, R.; Blumwald, E. Genetic engineering for modern agriculture: Challenges and perspectives. Annu. Rev. Plant Biol. 2010, 61, 443–462. [Google Scholar] [CrossRef]
- Zhu, P.; Yu, X.H.; Wang, C.; Zhang, Q.; Liu, W.; McSweeney, S.; Shanklin, J.; Lam, E.; Liu, Q. Structural basis for Ca2+-dependent activation of a plant metacaspase. Nat. Commun. 2020, 11, 2249. [Google Scholar] [CrossRef]
- Zhu, J. Abiotic stress signaling and responses in plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef]
- Reisch, B. Breeding fruit crops for cold climates: Introduction to the colloquium. HortScience 1991, 26, 500–501. [Google Scholar] [CrossRef]
- Strigens, A.; Freitag, N.; Gilbert, X.; Grieder, C.; Riedelsheimer, C.; Schrag, T.; Messmer, R.; Melchinger, A. Association mapping for chilling tolerance in elite flint and dent maize inbred lines evaluated in growth chamber and field experiments. Plant Cell Environ. 2013, 36, 1871–1887. [Google Scholar] [CrossRef]
- Kapanigowda, M.; Perumal, R.; Aiken, R.; Herald, T.; Bean, S.; Little, C. Analyses of sorghum [Sorghum bicolor (L.) Moench] lines and hybrids in response to early-season planting and cool conditions. Can. J. Plant Sci. 2013, 93, 773–784. [Google Scholar] [CrossRef]
- Bekele, W.; Fiedler, K.; Shiringani, A.; Schnaubelt, D.; Windpassinger, S.; Uptmoor, R.; Friedt, W.; Snowdon, R. Unravelling the genetic complexity of sorghum seedling development under low-temperature conditions. Plant Cell Environ. 2013, 37, 707–723. [Google Scholar] [CrossRef]
- Asakaviciute, R.; Zelya, A.; Andriychuk, T.; Razukas, A. Evaluation of Potato Varieties for Yield, Quality, and Late Blight Resistance. Life 2025, 15, 1378. [Google Scholar] [CrossRef]
- Shamuyarira, K.; Shimelis, H.; Figlan, S.; Chaplot, V. Combining ability analysis of yield and biomass allocation related traits in newly developed wheat populations. Sci. Rep. 2023, 13, 11832. [Google Scholar] [CrossRef]
- Mangal, V.; Verma, L.K.; Singh, S.K.; Saxena, K.; Roy, A.; Karn, A.; Rohit, R.; Kashyap, S.; Bhatt, A.; Sood, S. Triumphs of genomic-assisted breeding in crop improvement. Heliyon 2024, 10, e35513. [Google Scholar] [CrossRef]
- Wang, K.; Xia, L.; Yang, X.; Du, C.; Tang, T.; Yang, Z.; Zhang, J. Integrating Artificial Intelligence and Biotechnology to Enhance Cold Stress Resilience in Legumes. Plants 2025, 14, 2784. [Google Scholar] [CrossRef]
- Ravikiran, K.T.; Thribhuvan, R.; Anilkumar, C.; Kallugudi, J.; Prakash, N.R.; Adavi, B.S.; Sunitha, N.C.; Abhijith, K.P. Harnessing the Power of Genomics to Develop Climate-Smart Crop Varieties: A Comprehensive Review. J. Environ. Manag. 2025, 373, 123461. [Google Scholar] [CrossRef]
- Franguelli, N.; Cavalli, D.; Nazzicari, N.; Pecetti, L.; Notario, T.; Annicchiarico, P. Genetic Variation and Genome-Enabled Prediction of White Lupin Frost Resistance in Different Reference Populations. Int. J. Mol. Sci. 2025, 26, 10224. [Google Scholar] [CrossRef]
- Sallam, A.; Moursi, Y.S.; Martsch, R.; Eltaher, S. Genome-wide association mapping for root traits associated with frost tolerance in faba beans using KASP-SNP markers. Front. Genet. 2022, 13, 907267. [Google Scholar] [CrossRef]
- Salgotra, R.K.; Stewart, C.N., Jr. Genetic Augmentation of Legume Crops Using Genomic Resources and Genotyping Platforms for Nutritional Food Security. Plants 2022, 11, 1866. [Google Scholar] [CrossRef]
- Perdomo, E.; Magnin-Robert, J.; Raffiot, B.; Deulvot, C.; Floriot, M.; Lejeune-Hénaut, I.; Marget, P.; Burstin, J.; Tayeh, N.; Aubert, G. A QTL approach in faba bean highlights the conservation of genetic control of frost tolerance among legume species. Front. Plant Sci. 2022, 13, 970865. [Google Scholar] [CrossRef]
- Jayakodi, M.; Zhang, H.; Windhorst, A.; Bornhofen, E.; Tulpová, Z.; Novák, P.; Macas, J.; Simkova, H.; Nadzieja, M.; Kim, J.M.; et al. Allelic variation at a single locus distinguishes spring and winter faba beans. Nat. Portf. 2024; under review. [Google Scholar] [CrossRef]
- Robins, J.; Bauchan, G.; Brummer, E. Genetic mapping forage yield, plant height, and regrowth at multiple harvests in tetraploid alfalfa (Medicago sativa L.). Crop Sci. 2007, 47, 11–18. [Google Scholar] [CrossRef]
- Adhikari, L.; Makaju, S.; Lindstrom, O.; Missaoui, A. Mapping freezing tolerance QTL in alfalfa: Based on indoor phenotyping. BMC Plant Biol. 2021, 21, 403. [Google Scholar] [CrossRef]
- Sallam, A.; Arbaoui, M.; El-Esawi, M.; Abshire, N.; Martsch, R. Identification and verification of QTL associated with frost tolerance using linkage mapping and GWAS in winter faba bean. Front. Plant Sci. 2016, 7, 1098. [Google Scholar] [CrossRef]
- Ali, M.B.M.; Welna, G.C.; Sallam, A.; Martsch, R.; Balko, C.; Gebser, B.; Sass, O.; Link, W. Association analyses to genetically improve drought and freezing tolerance of faba bean (Vicia faba L.). Crop Sci. 2016, 56, 1036–1048. [Google Scholar] [CrossRef]
- Skovbjerg, C.; Angra, D.; Robertson-Shersby-Harvie, T.; Kreplak, J.; Keeble-Gagnère, G.; Kaur, S.; Ecke, W.; Windhorst, A.; Nielsen, L.K.; Schiemann, A.; et al. Genetic analysis of global faba bean diversity, agronomic traits and selection signatures. Theor. Appl. Gen. 2023, 136, 114. [Google Scholar] [CrossRef]
- Özdemir, S.; Karadavut, U. Comparison of the performance of autumn and spring sowing of chickpeas in a temperate region. Turk. J. Agric. Forest. 2003, 27, 345–352. [Google Scholar]
- Aski, M.S.; Dikshit, H.K.; Mishra, G.P.; Yadav, P.S.; Iquebal, M.A.; Sarika; Bansal, R.; Gayacharan; Singh, A.; Kumar, S.; et al. Current and Future Strategies in Breeding Lentil for Abiotic Stresses. In Legumes: Physiology and Molecular Biology of Abiotic Stress Tolerance; Muthu Arjuna Samy, P., Ramasamy, A., Chinnusamy, V., Sunil Kumar, B., Eds.; Springer: Singapore, 2023; pp. 235–257. [Google Scholar] [CrossRef]
- Tayed, N.; Aubert, G.; Pilet-Nayel, M.L.; Lejeune-Hénaut, I.; Warkentin, T.D.; Burstin, J. Genomic tools in pea breeding programs: Status and perspectives. Front. Plant Sci. 2015, 6, 1037. [Google Scholar] [CrossRef]
- Arriagada, O.; Cacciuttolo, F.; Cabeza, R.A.; Carrasco, B.; Schwember, A.R. A Comprehensive Review on Chickpea (Cicer arietinum L.) Breeding for Abiotic Stress Tolerance and Climate Change Resilience. Int. J. Mol. Sci. 2022, 23, 6794. [Google Scholar] [CrossRef]
- Jimenez-Lopez, J.C.; Clemente, A. (Eds.) Legumes Research; IntechOpen: Rijeka, Croatia, 2022; Volume 1, 480p. [Google Scholar] [CrossRef]
- Gholami Rezvani, N.; Nezami, A.; Kafi, M. Evaluation of Lentil (Lens culinaris) Genotypes for Autumn Sowing in Cold Temperate Regions under Field Conditions. Crop Prod. 2019, 11, 142–147. [Google Scholar] [CrossRef]
- Richard, M.; Allison, J. Evaluation of Cool Season Cover Crops in the Mid-South; United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2020. Available online: https://www.nrcs.usda.gov/plantmaterials/mspmcsr13607.pdf (accessed on 7 November 2025).
- Küçüközcü, G.; Avcı, S. Effects of Low Temperature and Sowing Date on the Germination and Seedling Characteristics of Forage Peas. Yuzuncu Yil Univ. J. Agric. Sci. 2020, 30, 620–627. [Google Scholar] [CrossRef]
- Coyne, C.J.; Kumar, S.; von Wettberg, E.J.B.; Marques, E.; Berger, J.D.; Redden, R.J.; Ellis, T.H.N.; Brus, J.; Zablatzká, L.; Smýkal, P. Potential and limits of exploitation of crop wild relatives for pea, lentil, and chickpea improvement. Legume Sci. 2020, 2, e36. [Google Scholar] [CrossRef]
- Jain, S.K.; Wettberg, E.J.V.; Punia, S.S.; Parihar, A.K.; Lamichaney, A.; Kumar, J.; Gupta, D.S.; Ahmad, S.; Pant, N.C.; Dixit, G.P. Genomic-mediated breeding strategies for global warming in chickpeas (Cicer arietinum L.). Agriculture 2023, 13, 1721. [Google Scholar] [CrossRef]
- Rani, A.; Devi, P.; Jha, U.C.; Sharma, K.D.; Siddique, K.H.M.; Nayyar, H. Developing Climate-Resilient Chickpea Involving Physiological and Molecular Approaches with a Focus on Temperature and Drought Stresses. Front. Plant Sci. 2020, 10, 1759. [Google Scholar] [CrossRef]
- Maleki, H.H.; Khoshro, H.H.; Kanouni, H.; Shobeiri, S.S.; Ashour, B.M. Identifying Dryland-Resilient Chickpea Genotypes for Autumn Sowing, with a Focus on Multi-Trait Stability Parameters and Biochemical Enzyme Activity. BMC Plant Biol. 2024, 24, 750. [Google Scholar] [CrossRef]
- Duc, G.; Petitjean, F. Study on the Inheritance of Freezing Tolerance in Vicia faba L. In Proceedings of the AEP Conference 1995, Copenhagen, Denmark, 6–12 March 1995; AEP: Paris, France, 1995; pp. 130–131. [Google Scholar]
- Landry, E.J.; Coyne, C.J.; McGee, R.J.; Hu, J. A Modified Mass Selection Scheme for Creating Winter-Hardy Faba Bean (Vicia faba L.) Lines with a Broad Genetic Base. Euphytica 2017, 213, 72. [Google Scholar] [CrossRef]
- Castonguay, Y.; Laberge, S.; Brummer, E.C.; Volencec, J.J. Alfalfa winter hardiness: A research retrospective and integrated perspective. Adv. Agron. 2006, 90, 203–265. [Google Scholar] [CrossRef]
- Xu, L.; Liu, Q.; Nie, Y.; Li, F.; Yang, G.; Tao, Y.; Lv, S.; Wu, X.; Ye, L. A multi-site evaluation of winter hardiness in indigenous lucerne cultivars in northern China. Atmosphere 2021, 12, 1538. [Google Scholar] [CrossRef]
- Zong, X.; Yang, T.; Liu, R.; Zhu, Z.; Zhang, H.; Li, L.; Zhang, X.; He, Y.; Sun, S.; Liu, Q.; et al. Genomic Designing for Climate-Smart Pea. In Genomic Designing of Climate-Smart Pulse Crops; Kole, C., Ed.; Springer: Cham, Switzerland, 2019; pp. 265–358. [Google Scholar] [CrossRef]
- Rubiales, D.; González-Bernal, M.J.; Warkentin, T.; Bueckert, R.; Vaz Patto, M.C.; McPhee, K.; McGee, R.; Smýkal, P. Advances in pea breeding. In Achieving Sustainable Cultivation of Vegetables; Hochmuth, G., Ed.; Burleig Dodds Science Publishing Limited: Cambridge, UK, 2019; pp. 575–606. [Google Scholar] [CrossRef]
- Bărbieru, A. New Results of the Winter Peas Breeding Program at Nardi Fundulea. Sci. Pap. Ser. A Agron. 2020, 63, 63–66. [Google Scholar]
- Vann, R.A.; Reberg-Horton, S.C.; Castillo, M.S.; Murphy, J.P.; Martins, L.B.; Mirsky, S.B.; Saha, U.; McGee, R.J. Differences among eighteen winter pea genotypes for forage and cover crop use in the southeastern United States. Crop Sci. 2020, 61, 947–965. [Google Scholar] [CrossRef]
- Surma, A.; Książkiewicz, M.; Bielski, W.; Kozak, B.; Galek, R.; Rychel-Bielska, S. Development and validation of PCR marker array for molecular selection towards spring, vernalization-independent and winter, vernalization-responsive ecotypes of white lupin (Lupinus albus L.). Sci. Rep. 2025, 15, 2659. [Google Scholar] [CrossRef]
- D’Amours, E.; Bertrand, A.; Cloutier, J.; Claessens, A.; Rocher, S.; Seguin, P. Metabolic and genetic responses to simulated overwintering conditions of alfalfa-rhizobia associations contrasted in their freezing tolerance. Symbiosis 2023, 90, 321–343. [Google Scholar] [CrossRef]
- Bărbieru, A. Lavinia F—The First Romanian Winter Pea Cultivar Created at National Agricultural Research and Development Institute Fundulea, Romania. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2020, 20, 89–94. [Google Scholar]
- Mihailović, V.; Vasiljević, S.; Karagić, Đ.; Milošević, B.; Radojević, V.; Popović, V.; Đalović, I. The First Serbian Cultivar of Winter Pea for Grain, NS-Mraz. Acta Agric. Serb. 2019, 24, 3–11. [Google Scholar] [CrossRef]
- Kenenbayev, S.; Yessenbayeva, G.; Zhanbyrbayev, Y.; Yelnazarkyzy, R.; Nurgaziev, R.; Seitkadyr, K.; Muzdybayeva, K.; Seilkhan, A. Adaptation of Serbian Winter Pea (Pisum sativum) Varieties in the Foothills Zone of Southeast Regions of Kazakhstan. Res. Crops 2022, 23, 149–155. [Google Scholar] [CrossRef]
- Landry, E.; Lafferty, J.; Coyne, C.; Pan, W.; Hu, J. Registration of Four Winter-Hardy Faba Bean Germplasm Lines for Use in Winter Pulse and Cover Crop Development. J. Plant Regist. 2015, 9, 367–370. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Bernhuber, A.; Kammlander, S.; Wagentristl, H.; Klimek-Kopyra, A.; Kaul, H.P. Yield structure components of autumn- and spring-sown pea (Pisum sativum L.). Acta Agric. Scand. B Soil Plant Sci. 2020, 70, 109–116. [Google Scholar] [CrossRef]
- Zhang, X.; Wan, S.; Hao, J.; Hu, J.; Yang, T.; Zong, X. Large-scale evaluation of pea (Pisum sativum L.) germplasm for cold tolerance in the field during winter in Qingdao. Crop J. 2016, 4, 377–383. [Google Scholar] [CrossRef]
- Sichkar, V.; Kryvenko, A.; Solomonov, R.; Karpuk, L. An effective method of pea yield increasing in the Steppe Zone of Ukraine. Plant Arch. 2020, 20, 4595–4600. [Google Scholar] [CrossRef]
- Baxevanos, D.; Kargiotidou, A.; Noulas, C.; Kouderi, A.-M.; Aggelakoudi, M.; Petsoulas, C.; Tigka, E.; Mavromatis, A.; Tokatlidis, I.; Beslemes, D.; et al. Lentil Cultivar Evaluation in Diverse Organic Mediterranean Environments. Agronomy 2024, 14, 790. [Google Scholar] [CrossRef]
- Barrios, A.; Aparicio, T.; Rodríguez, M.J.; Pérez de la Vega, M.; Caminero, C. Winter sowing of adapted lines as a potential yield increase strategy in lentil (Lens culinaris Medik.). Span. J. Agric. Res. 2016, 14, e0702. [Google Scholar] [CrossRef]
- Gholami, N.; Nezami, A.; Kafi, M.; Nabati, J. Lentil accession (Lens culinaris) screening for autumn sowing in cold and highland regions. Iran. J. Field Crop Sci. 2022, 52, 15–33. [Google Scholar] [CrossRef]
- Nabati, J.; Mirmiran, S.M.; Nezami, A.; Ahmadi-Lahijani, M.J.; Boroumand Rezazadeh, E. Screening lentil (Lens culinaris Medik.) genotypes for fall sowing and low temperature tolerance. Arch. Agron. Soil Sci. 2021, 69, 275–289. [Google Scholar] [CrossRef]
- Nabati, J.; Nezami, A.; Mirmiran, S.M.; Hojjat, S.S. Evaluation of freezing tolerance of selected lentil (Lens culinaris Medik.) genotypes in field conditions. Iran. J. Field Crop Sci. 2020, 51, 89–101. [Google Scholar] [CrossRef]
- Nezami, A.; Mahmoodi, A.A.; Nabati, J.; Mohammadi, M.; Hasanfard, A. Feasibility Study of Cultivating Desi-Type Chickpea Genotypes in Cold and Temperate Regions. Legume Sci. 2023, 5, e179. [Google Scholar] [CrossRef]

| Cultivar | Quality | Type | Seed Price € per kg * | Seed Demand kg per ha | Seed Cost € per ha |
|---|---|---|---|---|---|
| Bobas | Organic | Spring | 2.5 | 150 | 375 |
| n.a. | Organic | Winter | 2.95 | 150–200 | 442.5–590 |
| Irena | Traditional | Winter | 1.4 | 200–250 | 280–350 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Magyar-Tábori, K.; Udupa, S.M.; Hanász, A.; Juhász, C.; Mendler-Drienyovszki, N. Rising Demand for Winter Crops Under Climate Change: Breeding for Winter Hardiness in Autumn-Sown Legumes. Life 2026, 16, 17. https://doi.org/10.3390/life16010017
Magyar-Tábori K, Udupa SM, Hanász A, Juhász C, Mendler-Drienyovszki N. Rising Demand for Winter Crops Under Climate Change: Breeding for Winter Hardiness in Autumn-Sown Legumes. Life. 2026; 16(1):17. https://doi.org/10.3390/life16010017
Chicago/Turabian StyleMagyar-Tábori, Katalin, Sripada M. Udupa, Alexandra Hanász, Csaba Juhász, and Nóra Mendler-Drienyovszki. 2026. "Rising Demand for Winter Crops Under Climate Change: Breeding for Winter Hardiness in Autumn-Sown Legumes" Life 16, no. 1: 17. https://doi.org/10.3390/life16010017
APA StyleMagyar-Tábori, K., Udupa, S. M., Hanász, A., Juhász, C., & Mendler-Drienyovszki, N. (2026). Rising Demand for Winter Crops Under Climate Change: Breeding for Winter Hardiness in Autumn-Sown Legumes. Life, 16(1), 17. https://doi.org/10.3390/life16010017

