Diffusion Tensor Imaging Biomarkers to Predict Neurological Outcomes in Brain Surgery: A Systematic Review
Abstract
1. Introduction
- The following summarizes the use of quantitative DTI metrics to characterize lesions and surgery-related white matter changes in patients undergoing brain surgery.
- To evaluate the evidence for DTI based prediction of motor, language, gait and cognitive outcomes across neurosurgical conditions; and
- To identify the methodological limitations and priorities for future research needed to establish DTI as a reliable prognostic biomarker in neurosurgical practice.
2. Materials and Methods
2.1. Study Design and Search Strategy
2.2. Study Selection and Data Extraction
3. Results
3.1. Search Results
3.2. Characteristics of Included Studies
3.3. DTI Metrics and Technical Approaches
- Motor pathways: CST from the precentral gyrus through the corona radiata, posterior limb of the internal capsule, cerebral peduncle, pons, and medulla; frontal aslant tract (FAT); premotor and SMA connections, and corpus callosum segments connecting right and left SMAs [20,21,22,23,24,25,26,27,28,34,36,41,42,44,47,48,50,52,53].
3.4. Imaging Timepoints
3.5. Predictive Value for Motor Function Outcomes
3.5.1. Preoperative DTI-Derived CST Integrity Predicting Postoperative Motor Deficits
3.5.2. Early Postoperative DTI Changes and Longitudinal Monitoring of Motor Recovery
3.5.3. Supplementary Motor Area Syndrome: Interhemispheric DTI Metrics and Recovery
3.6. Language Outcomes
3.6.1. Dorsal Stream Biomarkers (Arcuate Fasciculus/SLF)
3.6.2. Ventral Stream Biomarkers (IFOF/ILF/UF)
3.6.3. Diffusion Correlates of Fluency and Naming
3.7. Higher Cognitive Function Outcomes
4. Discussion
4.1. Summary of Findings
4.2. Comparison with Stroke Literature
4.3. Methodological Factors Explaining Heterogeneity
4.4. Strengths and Limitations of the Current Evidence
4.5. Implications for Clinical Practice and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AD | Axial diffusivity |
| ADC | Apparent diffusion coefficient |
| AF | Arcuate fasciculus |
| AFTD | Altered fiber tractography density |
| ATL | Anterior temporal lobectomy |
| AUC | Area under the curve |
| CI | Confidence interval |
| CST | Corticospinal tract |
| dMRI | Diffusion magnetic resonance imaging |
| DSI | Diffusion spectrum imaging |
| DTI | Diffusion tensor imaging |
| FA | Fractional anisotropy |
| FAT | Frontal aslant tract |
| FLAIR | Fluid-attenuated inversion recovery |
| FSL | FMRIB Software Library |
| HCP | Human Connectome Project |
| IFOF | Inferior fronto-occipital fasciculus |
| ILF | Inferior longitudinal fasciculus |
| iNPH | Idiopathic normal-pressure hydrocephalus |
| LGG | Low-grade glioma |
| MD | Mean diffusivity |
| MEP | Motor evoked potential |
| MMD | Moyamoya disease |
| MRI | Magnetic resonance imaging |
| mRS | Modified Rankin Scale |
| NF | Number of fibers |
| NFidx | Fiber number index |
| OR | Odds ratio |
| RD | Radial diffusivity |
| ROC | Receiver operating characteristic |
| ROI | Region of interest |
| rFA | Relative fractional anisotropy |
| SLF | Superior longitudinal fasciculus |
| SMA | Supplementary motor area |
| TBSS | Tract-based spatial statistics |
| TLE | Temporal lobe epilepsy |
| UF | Uncinate fasciculus |
| WAB | Western Aphasia Battery |
| WHO | World Health Organization |
Appendix A
References
- Wende, T.; Hoffmann, K.-T.; Meixensberger, J. Tractography in Neurosurgery: A Systematic Review of Current Applications. J. Neurol. Surg. Part A Cent. Eur. Neurosurg. 2020, 81, 442–455. [Google Scholar] [CrossRef]
- Jeurissen, B.; Descoteaux, M.; Mori, S.; Leemans, A. Diffusion MRI Fiber Tractography of the Brain. NMR Biomed. 2019, 32, e3785. [Google Scholar] [CrossRef] [PubMed]
- Alstott, J.; Breakspear, M.; Hagmann, P.; Cammoun, L.; Sporns, O. Modeling the Impact of Lesions in the Human Brain. PLoS Comput. Biol. 2009, 5, e1000408. [Google Scholar] [CrossRef]
- Mukherjee, P.; Berman, J.I.; Chung, S.W.; Hess, C.P.; Henry, R.G. Diffusion Tensor MR Imaging and Fiber Tractography: Theoretic Underpinnings. AJNR Am. J. Neuroradiol. 2008, 29, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Alexander, A.L.; Lee, J.E.; Lazar, M.; Field, A.S. Diffusion Tensor Imaging of the Brain. Neurotherapeutics 2007, 4, 316–329. [Google Scholar] [CrossRef]
- O’Donnell, L.J.; Westin, C.-F. An Introduction to Diffusion Tensor Image Analysis. Neurosurg. Clin. North Am. 2011, 22, 185–196. [Google Scholar] [CrossRef]
- Colby, J.B.; Soderberg, L.; Lebel, C.; Dinov, I.D.; Thompson, P.M.; Sowell, E.R. Along-Tract Statistics Allow for Enhanced Tractography Analysis. NeuroImage 2012, 59, 3227–3242. [Google Scholar] [CrossRef] [PubMed]
- Harris, N.G.; Verley, D.R.; Gutman, B.A.; Sutton, R.L. Bi-Directional Changes in Fractional Anisotropy after Experiment TBI: Disorganization and Reorganization? NeuroImage 2016, 133, 129–143. [Google Scholar] [CrossRef]
- Jones, D.K.; Knösche, T.R.; Turner, R. White Matter Integrity, Fiber Count, and Other Fallacies: The Do’s and Don’ts of Diffusion MRI. Neuroimage 2013, 73, 239–254. [Google Scholar] [CrossRef]
- Manan, A.A.; Yahya, N.A.; Taib, N.H.M.; Idris, Z.; Manan, H.A. The Assessment of White Matter Integrity Alteration Pattern in Patients with Brain Tumor Utilizing Diffusion Tensor Imaging: A Systematic Review. Cancers 2023, 15, 3326. [Google Scholar] [CrossRef]
- Moura, L.M.; Luccas, R.; Paiva, J.P.Q.D.; Amaro, E.; Leemans, A.; Leite, C.D.C.; Otaduy, M.C.G.; Conforto, A.B. Diffusion Tensor Imaging Biomarkers to Predict Motor Outcomes in Stroke: A Narrative Review. Front. Neurol. 2019, 10, 445. [Google Scholar] [CrossRef]
- Ng, S.; Duffau, H. Brain Plasticity Profiling as a Key Support to Therapeutic Decision-Making in Low-Grade Glioma Oncological Strategies. Cancers 2023, 15, 3698. [Google Scholar] [CrossRef]
- Costabile, J.D.; Alaswad, E.; D’Souza, S.; Thompson, J.A.; Ormond, D.R. Current Applications of Diffusion Tensor Imaging and Tractography in Intracranial Tumor Resection. Front. Oncol. 2019, 9, 426. [Google Scholar] [CrossRef] [PubMed]
- Manan, A.A.; Yahya, N.; Idris, Z.; Manan, H.A. The Utilization of Diffusion Tensor Imaging as an Image-Guided Tool in Brain Tumor Resection Surgery: A Systematic Review. Cancers 2022, 14, 2466. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Kung, J.Y. Elicit. J. Can. Health Libr. Assoc. 2023, 44, 15–18. [Google Scholar] [CrossRef] [PubMed Central]
- Caverzasi, E.; Hervey-Jumper, S.L.; Jordan, K.M.; Lobach, I.V.; Li, J.; Panara, V.; Racine, C.A.; Sankaranarayanan, V.; Amirbekian, B.; Papinutto, N.; et al. Identifying Preoperative Language Tracts and Predicting Postoperative Functional Recovery Using HARDI Q-Ball Fiber Tractography in Patients with Gliomas. J. Neurosurg. 2016, 125, 33–45. [Google Scholar] [CrossRef]
- Chernoff, B.L.; Teghipco, A.; Garcea, F.E.; Sims, M.H.; Paul, D.A.; Tivarus, M.E.; Smith, S.O.; Pilcher, W.H.; Mahon, B.Z. A Role for the Frontal Aslant Tract in Speech Planning: A Neurosurgical Case Study. J. Cogn. Neurosci. 2018, 30, 752–769. [Google Scholar] [CrossRef] [PubMed]
- Chernoff, B.L.; Teghipco, A.; Garcea, F.E.; Belkhir, R.; Sims, M.H.; Paul, D.A.; Tivarus, M.E.; Smith, S.O.; Hintz, E.; Pilcher, W.H.; et al. Reorganized Language Network Connectivity after Left Arcuate Fasciculus Resection: A Case Study. Cortex 2020, 123, 173–184. [Google Scholar] [CrossRef]
- Cepeda, S.; García-García, S.; Arrese, I.; Velasco-Casares, M.; Sarabia, R. Acute Changes in Diffusion Tensor-Derived Metrics and Its Correlation with the Motor Outcome in Gliomas Adjacent to the Corticospinal Tract. Surg. Neurol. Int. 2021, 12, 51. [Google Scholar] [CrossRef]
- Figueredo, L.F.; Mejía-Cordovez, J.A.; Gomez-Amarillo, D.A.; Hakim, F.; Pimienta-Redondo, H.D.; Almeida, J.P.; Kehayov, I.; Angelova, P.; Apostolov, G.; Luzzi, S.; et al. Differential Tractography and Whole Brain Connectometry in Primary Motor Area Gliomas Resection: A Feasibility Study. Clin. Neurol. Neurosurg. 2024, 241, 108305. [Google Scholar] [CrossRef]
- Gong, Z.; Zhang, H.; Grziwotz, M.; Krieg, S.; Ille, S. Adaptive Motor Cortex Reorganization Following Surgical Intervention in Tumor-Related Upper Limb Regions. Brain Spine 2025, 5, 105145. [Google Scholar] [CrossRef]
- Horikawa, Y.; Yuri, T.; Umaba, C.; Yamawaki, R.; Nankaku, M.; Ikeguchi, R.; Arakawa, Y. Motor Recovery in Glioma Patients After Craniotomy: A Case Study of Continuous Rehabilitation Assessed With Diffusion Tensor Imaging. Cureus 2025, 17, e82747. [Google Scholar] [CrossRef]
- Hou, Z.; Cai, X.; Li, H.; Zeng, C.; Wang, J.; Gao, Z.; Zhang, M.; Dou, W.; Zhang, N.; Zhang, L.; et al. Quantitative Assessment of Invasion of High-Grade Gliomas Using Diffusion Tensor Magnetic Resonance Imaging. World Neurosurg. 2018, 113, e561–e567. [Google Scholar] [CrossRef]
- Ivren, M.; Grittner, U.; Khakhar, R.; Belotti, F.; Schneider, H.; Pöser, P.; D’Agata, F.; Spena, G.; Vajkoczy, P.; Picht, T.; et al. Comparison of Anatomical-Based vs. nTMS-Based Risk Stratification Model for Predicting Postoperative Motor Outcome and Extent of Resection in Brain Tumor Surgery. Neuroimage Clin. 2023, 38, 103436. [Google Scholar] [CrossRef]
- Laundre, B.J.; Jellison, B.J.; Badie, B.; Alexander, A.L.; Field, A.S. Diffusion Tensor Imaging of the Corticospinal Tract before and after Mass Resection as Correlated with Clinical Motor Findings: Preliminary Data. AJNR Am. J. Neuroradiol. 2005, 26, 791–796. [Google Scholar] [PubMed]
- Liu, X.; Zeng, S.; Tao, T.; Yang, Z.; Wu, X.; Zhao, J.; Zhang, N. A Comparative Study of Diffusion Kurtosis Imaging and Diffusion Tensor Imaging in Detecting Corticospinal Tract Impairment in Diffuse Glioma Patients. Neuroradiology 2024, 66, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Martino, J.; Caballero, H.; DE Lucas, E.M.; DA Silva-Freitas, R.; Velasquez, C.; Gomez, E.; Vazquez-Bourgon, J.; Vázquez-Barquero, A. Recovery of Long-Term Paresis Following Resection of WHO Grade II Gliomas Infiltrating the Pyramidal Pathway. J. Neurosurg. Sci. 2017, 61, 88–96. [Google Scholar] [CrossRef]
- Muir, M.; Prinsloo, S.; Michener, H.; Traylor, J.I.; Patel, R.; Gadot, R.; de Almeida Bastos, D.C.; Kumar, V.A.; Ferguson, S.; Prabhu, S.S. TMS Seeded Diffusion Tensor Imaging Tractography Predicts Permanent Neurological Deficits. Cancers 2022, 14, 340. [Google Scholar] [CrossRef]
- Shinoura, N.; Suzuki, Y.; Tsukada, M.; Yoshida, M.; Yamada, R.; Tabei, Y.; Saito, K.; Koizumi, T.; Yagi, K. Deficits in the Left Inferior Longitudinal Fasciculus Results in Impairments in Object Naming. Neurocase 2010, 16, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Sierpowska, J.; Gabarrós, A.; Fernandez-Coello, A.; Camins, À.; Castañer, S.; Juncadella, M.; de Diego-Balaguer, R.; Rodríguez-Fornells, A. Morphological Derivation Overflow as a Result of Disruption of the Left Frontal Aslant White Matter Tract. Brain Lang. 2015, 142, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Sollmann, N.; Negwer, C.; Ille, S.; Maurer, S.; Hauck, T.; Kirschke, J.S.; Ringel, F.; Meyer, B.; Krieg, S.M. Feasibility of nTMS-Based DTI Fiber Tracking of Language Pathways in Neurosurgical Patients Using a Fractional Anisotropy Threshold. J. Neurosci. Methods 2016, 267, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Sollmann, N.; Negwer, C.; Tussis, L.; Hauck, T.; Ille, S.; Maurer, S.; Giglhuber, K.; Bauer, J.S.; Ringel, F.; Meyer, B.; et al. Interhemispheric Connectivity Revealed by Diffusion Tensor Imaging Fiber Tracking Derived from Navigated Transcranial Magnetic Stimulation Maps as a Sign of Language Function at Risk in Patients with Brain Tumors. J. Neurosurg. 2017, 126, 222–233. [Google Scholar] [CrossRef]
- Tuncer, M.S.; Fekonja, L.S.; Ott, S.; Pfnür, A.; Karbe, A.-G.; Engelhardt, M.; Faust, K.; Picht, T.; Coburger, J.; Dührsen, L.; et al. Role of Interhemispheric Connectivity in Recovery from Postoperative Supplementary Motor Area Syndrome in Glioma Patients. J. Neurosurg. 2023, 139, 324–333. [Google Scholar] [CrossRef]
- Shinoura, N.; Midorikawa, A.; Onodera, T.; Yamada, R.; Tabei, Y.; Onda, Y.; Itoi, C.; Saito, S.; Yagi, K. The Left Superior Longitudinal Fasciculus within the Primary Sensory Area of Inferior Parietal Lobe Plays a Role in Dysgraphia of Kana Omission within Sentences. Behav. Neurol. 2012, 25, 363–368. [Google Scholar] [CrossRef][Green Version]
- Shinoura, N.; Suzuki, Y.; Yamada, R.; Kodama, T.; Takahashi, M.; Yagi, K. Restored Activation of Primary Motor Area from Motor Reorganization and Improved Motor Function after Brain Tumor Resection. AJNR Am. J. Neuroradiol. 2006, 27, 1275–1282. [Google Scholar]
- Andreoli, M.; Mackie, M.-A.; Aaby, D.; Tate, M.C. White Matter Tracts Contribute Selectively to Cognitive Functioning in Patients with Glioma. Front. Oncol. 2023, 13, 1221753. [Google Scholar] [CrossRef]
- Bubeníková, A.; Sedlák, V.; Skalický, P.; Rýdlo, O.; Haratek, K.; Vlasák, A.; Leško, R.; Netuka, D.; Beneš, V.; Beneš, V.; et al. Clinical Improvement after Shunt Surgery in Patients with Idiopathic Normal Pressure Hydrocephalus Can Be Quantified by Diffusion Tensor Imaging. AJNR Am. J. Neuroradiol. 2025, 46, 766–773. [Google Scholar] [CrossRef]
- Drane, D.; Glasser, M.; Voets, N.; Ojemann, J.; Saindane, A.; Loring, D.; Price, M.; Ivanisevic, M.; Phatak, V.; Willie, J.; et al. Key Pathways for Visual Naming and Object Recognition Revealed by Diffusion Tensor Imaging Probabilistic Tractography in Epilepsy Surgery Patients (S43.008). Neurology 2014, 82, S43-008. [Google Scholar] [CrossRef]
- Kazumata, K.; Tha, K.K.; Tokairin, K.; Ito, M.; Uchino, H.; Kawabori, M.; Sugiyama, T. Brain Structure, Connectivity, and Cognitive Changes Following Revascularization Surgery in Adult Moyamoya Disease. Neurosurgery 2019, 85, E943–E952. [Google Scholar] [CrossRef]
- Khan, K.A.; Jain, S.K.; Sinha, V.D.; Sinha, J. Preoperative Diffusion Tensor Imaging: A Landmark Modality for Predicting the Outcome and Characterization of Supratentorial Intra-Axial Brain Tumors. World Neurosurg. 2019, 124, e540–e551. [Google Scholar] [CrossRef]
- Liao, C.; Lu, Z.; Pan, G.; Ye, J.; Nong, S.; Nordin, R.B.; Liang, J.; Fazel, M.F.; Baharin, N.H.Z. Diffusion Tensor Imaging Assessments to Investigate Motor Impairment Recovery after Minor Basal Ganglia Hemorrhage Post-Stereotactic Surgery. Front. Neurosci. 2025, 19, 1526910. [Google Scholar] [CrossRef] [PubMed]
- Pustina, D.; Doucet, G.; Evans, J.; Sharan, A.; Sperling, M.; Skidmore, C.; Tracy, J. Distinct Types of White Matter Changes Are Observed after Anterior Temporal Lobectomy in Epilepsy. PLoS ONE 2014, 9, e104211. [Google Scholar] [CrossRef]
- Roth, A.; Buttrick, S.S.; Cajigas, I.; Jagid, J.R.; Ivan, M.E. Accuracy of Frame-Based and Frameless Systems for Deep Brain Stimulati on: A Meta-Analysis. J. Clin. Neurosci. 2018, 57, 1–5. [Google Scholar] [CrossRef]
- Tomasino, B.; Baiano, C.; Ricciardi, G.K.; Maieron, M.; Romano, A.; Guarracino, I.; Isola, M.; De Martino, M.; D’Agostini, S.; Bagatto, D.; et al. A Longitudinal Multimodal Imaging Study in Patients with Temporo-Insular Diffuse Low-Grade Tumors: How the Inferior Fronto-Occipital Fasciculus Provides Information on Cognitive Outcomes. Curr. Oncol. 2024, 31, 8075–8093. [Google Scholar] [CrossRef]
- Yogarajah, M.; Focke, N.K.; Bonelli, S.B.; Thompson, P.; Vollmar, C.; McEvoy, A.W.; Alexander, D.C.; Symms, M.R.; Koepp, M.J.; Duncan, J.S. The Structural Plasticity of White Matter Networks Following Anterior Temporal Lobe Resection. Brain 2010, 133, 2348–2364. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Shen, X.; Shiroishi, M.S.; Pang, M.; Li, Z.; Yu, B.; Shen, G. A Pilot Study of Pre-Operative Motor Dysfunction from Gliomas in the Region of Corticospinal Tract: Evaluation with Diffusion Tensor Imaging. PLoS ONE 2017, 12, e0182795. [Google Scholar] [CrossRef] [PubMed]
- Ius, T.; Turella, L.; Pauletto, G.; Isola, M.; Maieron, M.; Sciacca, G.; Budai, R.; D’Agostini, S.; Eleopra, R.; Skrap, M. Quantitative Diffusion Tensor Imaging Analysis of Low-Grade Gliomas: From Preclinical Application to Patient Care. World Neurosurg. 2017, 97, 333–343. [Google Scholar] [CrossRef]
- Kinoshita, M.; Nakada, M.; Okita, H.; Hamada, J.-I.; Hayashi, Y. Predictive Value of Fractional Anisotropy of the Arcuate Fasciculus for the Functional Recovery of Language after Brain Tumor Resection: A Preliminary Study. Clin. Neurol. Neurosurg. 2014, 117, 45–50. [Google Scholar] [CrossRef]
- Oda, K.; Yamaguchi, F.; Enomoto, H.; Higuchi, T.; Morita, A. Prediction of Recovery from Supplementary Motor Area Syndrome after Brain Tumor Surgery: Preoperative Diffusion Tensor Tractography Analysis and Postoperative Neurological Clinical Course. Neurosurg. Focus 2018, 44, E3. [Google Scholar] [CrossRef]
- Stadlbauer, A.; Nimsky, C.; Gruber, S.; Moser, E.; Hammen, T.; Engelhorn, T.; Buchfelder, M.; Ganslandt, O. Changes in Fiber Integrity, Diffusivity, and Metabolism of the Pyramidal Tract Adjacent to Gliomas: A Quantitative Diffusion Tensor Fiber Tracking and MR Spectroscopic Imaging Study. AJNR Am. J. Neuroradiol. 2007, 28, 462–469. [Google Scholar]
- Yao, Y.; Ulrich, N.H.; Guggenberger, R.; Alzarhani, Y.A.; Bertalanffy, H.; Kollias, S.S. Quantification of Corticospinal Tracts with Diffusion Tensor Imaging in Brainstem Surgery: Prognostic Value in 14 Consecutive Cases at 3T Magnetic Resonance Imaging. World Neurosurg. 2015, 83, 1006–1014. [Google Scholar] [CrossRef] [PubMed]
- Sollmann, N.; Wildschuetz, N.; Kelm, A.; Conway, N.; Moser, T.; Bulubas, L.; Kirschke, J.S.; Meyer, B.; Krieg, S.M. Associations between Clinical Outcome and Navigated Transcranial Magnetic Stimulation Characteristics in Patients with Motor-Eloquent Brain Lesions: A Combined Navigated Transcranial Magnetic Stimulation-Diffusion Tensor Imaging Fiber Tracking Approach. J. Neurosurg. 2018, 128, 800–810. [Google Scholar] [CrossRef]
- Stasenko, A.; Kaestner, E.; Arienzo, D.; Schadler, A.J.; Helm, J.L.; Shih, J.J.; Ben-Haim, S.; McDonald, C.R. Preoperative White Matter Network Organization and Memory Decline after Epilepsy Surgery. J. Neurosurg. 2023, 139, 1576–1587. [Google Scholar] [CrossRef]
- Radwan, A.M.; Sunaert, S.; Schilling, K.; Descoteaux, M.; Landman, B.A.; Vandenbulcke, M.; Theys, T.; Dupont, P.; Emsell, L. An Atlas of White Matter Anatomy, Its Variability, and Reproducibility Based on Constrained Spherical Deconvolution of Diffusion MRI. NeuroImage 2022, 254, 119029. [Google Scholar] [CrossRef]
- Sandgaard, A.D.; Shemesh, N.; Østergaard, L.; Kiselev, V.G.; Jespersen, S.N. The Larmor Frequency Shift of a White Matter Magnetic Microstructure Model with Multiple Sources. NMR Biomed. 2024, 37, e5150. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, S.; Lasič, S.; Nilsson, M.; Westin, C.-F.; Topgaard, D. NMR Diffusion-Encoding with Axial Symmetry and Variable Anisotropy: Distinguishing between Prolate and Oblate Microscopic Diffusion Tensors with Unknown Orientation Distribution. J. Chem. Phys. 2015, 142, 104201. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Asano, E.; Juhász, C.; Behen, M.E.; Chugani, H.T. Postoperative Axonal Changes in the Contralateral Hemisphere in Children with Medically Refractory Epilepsy: A Longitudinal Diffusion Tensor Imaging Connectome Analysis. Hum. Brain Mapp. 2016, 37, 3946–3956. [Google Scholar] [CrossRef]
- Sarwar, T.; Tian, Y.; Yeo, B.T.T.; Ramamohanarao, K.; Zalesky, A. Structure-Function Coupling in the Human Connectome: A Machine Learning Approach. NeuroImage 2020, 226, 117609. [Google Scholar] [CrossRef]
- Corriveau, A.; Chun, M.M.; Rosenberg, M.D.; Yoo, K.; Kwon, Y.H. Functional Connectome Stability and Optimality Are Markers of Cognitive Performance. Cereb. Cortex 2022, 33, 5025–5041. [Google Scholar] [CrossRef]
- Amico, E.; Arenas, A.; Goñi, J. Centralized and Distributed Cognitive Task Processing in the Human Connectome. Netw. Neurosci. 2019, 3, 455–474. [Google Scholar] [CrossRef] [PubMed]
- Curran, K.M.; Emsell, L.; Leemans, A. Quantitative DTI Measures. In Diffusion Tensor Imaging; Van Hecke, W., Emsell, L., Sunaert, S., Eds.; Springer: New York, NY, USA, 2016; pp. 65–87. ISBN 978-1-4939-3117-0. [Google Scholar]
- Van Westen, D.; Lätt, J.; Englund, E.; Brockstedt, S.; Larsson, E.-M. Tumor Extension in High-Grade Gliomas Assessed with Diffusion Magnetic Resonance Imaging: Values and Lesion-to-Brain Ratios of Apparent Diffusion Coefficient and Fractional Anisotropy. Acta Radiol. 2006, 47, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Jordan, K.M.; Amirbekian, B.; Keshavan, A.; Henry, R.G. Cluster Confidence Index: A Streamline-Wise Pathway Reproducibility Metric for Diffusion-Weighted MRI Tractography. J. Neuroimaging 2018, 28, 64–69. [Google Scholar] [CrossRef] [PubMed]



| Study (Year) | Condition/Surgery Type | Primary Functional Domain |
|---|---|---|
| Gong et al. (2025) [22] | Motor-eloquent gliomas | Motor |
| Horikawa et al. (2025) [23] | Recurrent glioma patient | Motor |
| Roth et al. (2025) [44] | Gliomas near CST | Motor |
| Figueredo et al. (2024) [21] | Primary motor-area gliomas | Motor |
| Liu et al. (2024) [27] | WHO II/IV gliomas near CST | Motor |
| Ivren et al. (2023) [25] | Motor-area gliomas | Motor |
| Tuncer et al. (2023) [34] | SMA gliomas | Motor |
| Muir et al. (2022) [29] | Motor-eloquent gliomas | Motor |
| Cepeda et al. (2021) [20] | Gliomas ≤ 2 cm from CST | Motor |
| Laundre et al. (2005) [26] | Mass lesions incl. glioma | Motor |
| Khan et al. (2019) [41] | Mixed supratentorial intra-axial tumors | Motor |
| Oda et al. (2018) [50] | SMA tumors | Motor |
| Sollmann et al. (2018) [53] | Motor-eloquent gliomas | Motor |
| Gao et al. (2017) [47] | Gliomas near CST | Motor |
| Martino et al. (2017) [28] | LGG with long-term paresis | Motor |
| Sollmann et al. (2017) [33] | Eloquent brain tumors (mixed) | Motor |
| Ius et al. (2016) [48] | LGGs involving the CST | Motor |
| Hou et al. (2015) [24] | Gliomas adjacent to PT | Motor |
| Liao et al. (2025) [42] | Basal ganglia hemorrhage surgery | Motor |
| Shinoura et al. (2006) [36] | Metastatic brain tumor resection | Motor |
| Stadlbauer et al. (2007) [51] | Gliomas near CST | Motor |
| Yao et al. (2015) [52] | Brainstem surgery | Motor |
| Shinoura et al. (motor) (2006) [36] | Gliomas near M1 | Motor |
| Drane et al. (2014) [39] | Temporal lobe epilepsy surgery | Language |
| Chernoff et al. (2020) [19] | Left parietal glioma | Language |
| Tomasino (2024) [45] | Glioma near AF | Language |
| Chernoff et al. (2018) [18] | Frontal glioma resection | Language |
| Caverzasi et al. (2016) [17] | Language-eloquent gliomas | Language |
| Sollmann et al. (language) (2016) [32] | Perisylvian gliomas | Language |
| Sierpowska et al. (2015) [31] | Left frontal glioma | Language |
| Pustina et al. (2014) [43] | Adult ATL for TLE | Language |
| Kinoshitaa et al. (2014) [49] | Language recovery after tumor resection | Language |
| Shinoura et al. (language) (2009) [30] | Temporal glioma | Language |
| Yogarajah et al. (2010) [46] | Adult ATL for temporal lobe epilepsy | Language |
| Andreoli et al. (2023) [37] | Glioma patients | Cognitive |
| Kazumata et al. (2019) [40] | Adult Moyamoya revascularization | Cognitive |
| Bubeníková et al. (2025) [38] | Idiopathic NPH shunt surgery | Cognition/gait |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ben Dor, N.; Sighinolfi, G.; Rosetti, V.; Friso, F.; Garufi, G.; Cardali, S.M.; Tonon, C.; Lodi, R.; Conti, A. Diffusion Tensor Imaging Biomarkers to Predict Neurological Outcomes in Brain Surgery: A Systematic Review. Life 2026, 16, 115. https://doi.org/10.3390/life16010115
Ben Dor N, Sighinolfi G, Rosetti V, Friso F, Garufi G, Cardali SM, Tonon C, Lodi R, Conti A. Diffusion Tensor Imaging Biomarkers to Predict Neurological Outcomes in Brain Surgery: A Systematic Review. Life. 2026; 16(1):115. https://doi.org/10.3390/life16010115
Chicago/Turabian StyleBen Dor, Noa, Giovanni Sighinolfi, Vittoria Rosetti, Filippo Friso, Giada Garufi, Salvatore Massimiliano Cardali, Caterina Tonon, Raffaele Lodi, and Alfredo Conti. 2026. "Diffusion Tensor Imaging Biomarkers to Predict Neurological Outcomes in Brain Surgery: A Systematic Review" Life 16, no. 1: 115. https://doi.org/10.3390/life16010115
APA StyleBen Dor, N., Sighinolfi, G., Rosetti, V., Friso, F., Garufi, G., Cardali, S. M., Tonon, C., Lodi, R., & Conti, A. (2026). Diffusion Tensor Imaging Biomarkers to Predict Neurological Outcomes in Brain Surgery: A Systematic Review. Life, 16(1), 115. https://doi.org/10.3390/life16010115

