Dose Responses to Supplemental Polyacrylamide on Digestion, Metabolism, and Ruminal Digestive-Enzyme Activities in Cattle
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Animals
2.2. Diet, Feeding, and Management
2.3. Sample Collection, Pretreatment, and Storage
2.4. Chemical Analyses
2.5. Digestive Enzyme Activities of Rumen Fluid
2.6. Calculations
- (1)
- Digested nutrient (kg/day) = Nutrient intake (kg/d) − Spot feces (kg/d) × [ADL intake (kg/d) ÷ ADL in spot feces (kg/d)];
- (2)
- Apparent digestibility of nutrient (%) = Digested nutrient (kg/d) ÷ Nutrient intake (kg/d) × 100%;
- (3)
- N, Ca or P in urine (kg/d) = Feces and urine mixture weight (kg) + Spot feces weight (kg) − Spot feces weight (kg) × ADL intake (kg/d) ÷ ADL in spot feces (kg/d);
- (4)
- Retention of N, Ca or P (g/d) = Intake (g/d) − Excretion in urine (g/d) − Spot feces (g/d) × ADL intake (kg/d) ÷ ADL in spot feces (kg/d).
2.7. Statistical Analysis
3. Results
3.1. Dose–Response of Supplementary PAM on Voluntary Feed Intake and Digestion of Cattle
3.2. Dose–Response of Supplementary PAM on Nitrogen, Ca, and P Metabolism of Cattle
3.3. Dose–Response of Supplementary PAM on Activities of Digestive Enzymes in Rumen of Cattle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, Q.; Gao, C.; Gao, Z.; Rahman, M.A.u.; He, Y.; Cao, B.; Su, H. Temporal dynamics in rumen bacterial community composition of finishing steers during an adaptation period of three months. Microorganisms 2019, 7, 410. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Gao, C.; Rahman, M.A.u.; Cao, B.; Su, H. Digestive ability, physiological characteristics, and rumen bacterial community of holstein finishing steers in response to three nutrient density diets as fattening phases advanced. Microorganisms 2020, 8, 335. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Yan, J.; Shen, W.; Song, Y.; Lan, X.; Yi, K.; Muhammad, A.u.R. Effect of inclusion of HMBi in the ration of goats on feed intake, nutrient digestibility, rumen bacteria community and blood serum parameters. J. Anim. Physiol. Anim. Nutr. 2020, 104, 987–997. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Tang, Q.; Su, H.; Zheng, H.; Chen, K.; Zhong, G. Rumen microbial community and functions of rumen bacteria under different feeding regime. Pak. Vet. J. 2021, 41, 341–346. [Google Scholar] [CrossRef]
- Chen, D.; Zhong, G.; Su, H.; Rahman, M.A.u.; Chen, K.; Tang, J.; Li, F. Physiological variation in ruminal microbiota under altered energy levels in starter ration of suckling angus calves. Pak. Vet. J. 2021, 41, 409–413. [Google Scholar]
- Zeng, B.; Tan, Z.; Zeng, J.; Tang, S.; Tan, C.; Zhou, C.; Han, X.; Zhong, R. Effects of dietary non-ionic surfactant and forage to concentrate ratio on bacterial population and fatty acid composition of rumen bacteria and plasma of goats. Anim. Feed Sci. Technol. 2012, 173, 167–176. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, C.; Gao, Q.; Wu, D.; Tang, S.; Tan, Z.; Han, X. Effects of dietary alkyl polyglycoside supplementation on lactation performance, blood parameters and nutrient digestibility in dairy cows. Animals 2019, 9, 549. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Wang, H.; Yang, K. Effects of dietary addition of non-ionic surfactants on ruminal metabolism and nutrient digestion of chinese merino sheep. Asian J. Anim. Vet. Adv. 2011, 6, 688–696. [Google Scholar] [CrossRef]
- Li, H.; Luo, Q.; Zang, C.; Yang, K.; Pan, R. Docusate promotes digestion and absorption in sheep fed a roughage-based diet. Appl. Anim. Sci. 2019, 35, 284–290. [Google Scholar] [CrossRef]
- Li, H.; Luo, Q.; Pan, R.; Zhou, F.; Nijiati, K. Effects of supplement of aerosol OT on intake, digestion and metabolism of small tail Han sheep. J. Xinjiang Agric. Univ. 2014, 37, 259–263. [Google Scholar]
- Li, H.; Luo, Q.; Zhou, F.; Li, F.; Zhong, T. Effect of aerosol OT on the growth, digestion and metabolism in Small-tailed Han lambs. China Herbivore Sci. 2014, 34, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Luo, Q.; Xie, W.; Liu, S.; Chen, Y. Docusate supplementation affects feed intake and digestion of cattle. Appl. Anim. Sci. 2021, 37, 552–558. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, Q.; Pan, R.; Hu, X.; Zang, C. Effect of supplementation of docusate and polyacrylamide on digestion and milking performance of dairy cattle. China Feeds 2022, 22, 39–45. [Google Scholar]
- Abidin, A.Z.; Puspasaria, T.; Nugroho, W.A. Polymers for enhanced oil recovery technology. Procedia Chem. 2012, 4, 11–16. [Google Scholar] [CrossRef]
- Xiong, B.; Loss, R.D.; Shields, D.; Pawlik, T.; Hochreiter, R.; Zydney, A.L.; Kumar, M. Polyacrylamide degradation and its implications in environmental systems. npj Clean Water 2018, 1, 17. [Google Scholar] [CrossRef]
- Que, X.F.; Miao, J.Q.; Si, W.H.; Xu, L.; Huang, C.Q. Clarification of apple juice by polyacrylamide and its mechanism. Jiangsu Agric Sci. 2014, 42, 310–312. [Google Scholar]
- Zhai, Z.X.; Luo, Q.J.; Chen, Y.; Pan, R.; Zang, C.J. Impact of polyacrylamide supplementation On intake, nutrient digestion and growth of lambs. PLoS ONE 2023, 18, e0284509. [Google Scholar] [CrossRef]
- Okuhira, K.; Koike, S.; Ito, S.; Kobayashi, Y. The bio-surfactant mannosylerythritol lipid acts as a selective antibacterial agent to modulate rumen fermentation. Anim. Sci. J. 2020, 91, e13464. [Google Scholar] [CrossRef]
- Luo, Q.J.; Li, H.; Chen, Y.; Pan, R.; Zang, C.J. Effects of supplement of aerosol OT on the intake, rumen protozoon and bacteria of sheep. J. Xinjiang Agric. Univ. 2014, 37, 87–95. [Google Scholar]
- Yu, C.C.; Luo, Q.J.; Chen, Y.; Liu, S.M.; Zang, C.J. Impact of docusate and fauna-free on feed intake, ruminal flora and digestive enzyme activities of sheep. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1043–1051. [Google Scholar] [CrossRef]
- Chen, M.; Luo, Q.; Chen, Y.; Liu, S.; Zang, C. Dose response of ruminal microbial flora and metabolism of sheep to supplemental polyacrylamide. Anim Husb Feed Sci. 2022, 14, 7–15. [Google Scholar]
- Shangguan, J.; Luo, Q.J.; Chen, Y.; Pan, R.; Li, H. Effects of Oral Administration of Metronidazole on the Ruminal Microflora and Metabolism of Sheep. J. Xinjiang Agric. Univ. 2011, 34, 275–284. [Google Scholar]
- AOAC International. Official Methods of Analysis of the Association of Analytical Chemists International, 18th ed.; AOAC International: Gathersburg, MD, USA, 2025. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods of dietary fibre, neutral detergent fibre and non-starch monosaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, N.; Agarwal, I.; Kamra, D.N.; Chaudhary, L.C. Diurnal variations in the activities of hydrolytic enzymes in different fractions of rumen contents of Murrah Buffalo. J. Appl. Anim. Res. 2000, 18, 73–80. [Google Scholar] [CrossRef]
- Lee, S.S.; Ahn, B.H.; Kim, H.S.; Kim, C.H.; Cheng, K.J.; Ha, J.K. Effects of non-ionic surfactants on enzyme distributions of rumen contents, anaerobic growth of rumen microbes, rumen fermentation characteristics and performances of lactating cows. Asian Austral. J. Anim. Sci. 2003, 16, 104–115. [Google Scholar] [CrossRef]
- Peiji, G. A simple method for estimating cellobiase activity by determination of reducing sugar. Biotechnol. Bioeng. 1987, 29, 903–905. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid as reagent for the determination of reducing sugars. Anal. Biochem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Engvall, A. α-Amylase activity in rumen fluid of cows producing milk of low and normal fat content. J. Dairy Sci. 1980, 63, 2012–2019. [Google Scholar] [CrossRef]
- Brock, F.M.; Forsberg, C.W.; Buchanan-Smith, J.G. Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors. Appl. Environ. Microbiol. 1982, 44, 561–569. [Google Scholar] [CrossRef]
- Eriksson, T.; Bo¨rjesson, J.; Tjerneld, F. Mechanism of surfactant effect in enzymatic hydrolysisof lignocellulose. Enzym. Microb. Techno. 2002, 31, 353–364. [Google Scholar]
- Muharja, M.; Darmayanti, R.F.; Fachri, B.A.; Palupi, B.; Rahmawati, I.; Rizkiana, M.F.; Amini, H.W.; Putri, D.K.Y.; Setiawan, F.A.; Asrofi, M.; et al. Biobutanol production from cocoa pod husk through a sequential green method: Depectination, delignification, enzymatic hydrolysis, and extractive fermentation. Bioresoure Technol. Rep. 2023, 21, 101298. [Google Scholar] [CrossRef]
- Zheng, T.; Jiang, J.; Yao, J. Surfactant-promoted hydrolysis of lignocellulose for ethanol production. Fuel Process. Technol. 2021, 213, 106660. [Google Scholar] [CrossRef]
- Xin, F.; Geng, A.; Chen, M.L.; Gum, M.J.M. Enzymatic hydrolysis of lignocellulose for ethanol production. Enzymatic hydrolysis of sodium dodecyl sulphate (SDS)-pretreated newspaper for cellulosic ethanol production by Saccharomyces cerevisiae and Pichia stipitis. Appl. Biochem. Biotechnol. 2010, 162, 1052–1064. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.L.; Han, Y.J.; Wang, X.Q.; Chen, X.M.; Leu, S.Y.; Liu, J.Y.; Peng, Y.P.; Liao, Y.L.; Potprommanee, L. The effect of surfactant-assisted ultrasound-ionicliquid pretreatment on the structure and fermentable sugar production of a water hyacinth. Bioresoure Technol. 2017, 237, 27–30. [Google Scholar] [CrossRef]
- Selinger, L.B.; Forsberg, C.W.; Cheng, K.J. The Rumen: A unique source of enzymes for enhancing livestock production. Anaerobe 1996, 2, 263–284. [Google Scholar] [CrossRef] [PubMed]
- Hang, J.; Wang, S. Effect of sodium dodecylbenzene sulfonate on rumen fermentation in vitro of yellow cattle. J. Doomist Anim. Ecol. 2014, 35, 45–48. [Google Scholar]
- Takizawa, S.; Baba, Y.; Tada, C.; Fukuda, Y.; Nakai, Y. Sodium dodecyl sulfate improves the treatment of waste paper with rumen fluid at lower concentration but decreases at higher condition. J. Mater. Cycles Waste Manag. 2020, 22, 656–663. [Google Scholar] [CrossRef]
- Baah, J.; Addah, W.; Okine, E.K.; McAllister, T.A. Effects of homolactic bacterial inoculant alone or combined with an anionic surfactant on fermentation, aerobic stability and in situ ruminal degradability of barley silage. Asian-Aust. J. Anim. Sci. 2011, 24, 369–378. [Google Scholar] [CrossRef]
- Cong, Z.H.; Tang, S.X.; Tan, Z.L.; Sun, Z.H.; Zhou, C.S.; Han, X.F.; Wang, M.; Ren, G.P. Effects of different nonionic surfactants on in vitro fermentation characteristics of cereal straws. J. Anim. Sci. 2009, 87, 1085–1096. [Google Scholar] [CrossRef]
- Garnsworthy, P.C.; Alford, R.J. Responses by grazing dairy cows given a polymer gel(pH20). Anim. Prod. 1988, 46, 517. [Google Scholar] [CrossRef]
- Manafi, M.; Manafi, P.; Agarwal, S.; Bharti, A.K.; Asif, M.; Gupta, V.K. Synthesis of nanocomposites from polyacrylamide and graphene oxide: Application as flocculants for water purification. J. Colloid. Interface Sci. 2017, 490, 505–510. [Google Scholar] [CrossRef]
- Zheng, Z.; Aiqin, S.; Yuxia, Z. Synthesis of a novel magnetic polyacrylamide coagulant and its application in wastewater purification. Water Sci. Technol. 2017, 75, 581–586. [Google Scholar]
- Ngema, S.S.; Basson, A.K.; Maliehe, T.S. Synthesis, characterization and application of polyacrylamide grafted bioflocculant. Phys. Chem. Earth Parts A/B/C 2020, 115, 102821. [Google Scholar] [CrossRef]
- Gassara-Chatti, F.; Brar, S.K.; Ajila, C.M.; Verma, M.; Tyagi, R.D.; Valero, J.R. Encapsulation of ligninolytic enzymes and its application in clarification of juice. Food Chem. 2013, 137, 18–24. [Google Scholar] [CrossRef]
- Balasubramanian, R.; Srinivasan, R.; Jaewoong, L. Quaternary ammonium silane-reinforced agar/polyacrylamide composites for packaging applications. Int. J. Biol. Macromol. 2021, 182, 1301–1309. [Google Scholar]
- Sadiq, Y.; Khan, M.M.A.; Shabbir, A.; Ahmad, B.; Jaleel, H.; Jahan, A. Response of Mentha spicata L. to the reclamation of soil by the application of polyacrylamide (PAM): A soil-conditioner. J. Food Process. Preserv. 2021, 46, e16198. [Google Scholar] [CrossRef]
- Caulfield, M.J.; Qiao, G.G.; Solomon, D.H. Some aspects of the properties and degradation of polyacrylamides. Chem. Rev. 2002, 102, 3067–3084. [Google Scholar] [CrossRef]
- Sojka, R.E.; Bjorneberg, D.L.; Entry, J.A.; Lentz, R.D.; Orts, W.J. Polyacrylamide in Agriculture and Environmental Land Management. Adv. Agron. 2007, 92, 75–162. [Google Scholar]
- Buczek, S.B.; Cope, W.G.; McLaughlin, R.A.; Kwak, T.J. Acute toxicity of polyacrylamide flocculants to early life stages of freshwater mussels. Environ. Toxicol Chem. 2017, 36, 2715–2721. [Google Scholar] [CrossRef]
- Caulfield, M.J.; Qiao, G.G.; Solomon, D.H. Dual crosslinked carboxymethyl cellulose/polyacrylamide interpenetrating hydrogels with highly enhanced mechanical strength and superabsorbent properties. Eur. Polym. J. 2020, 208, 109773. [Google Scholar]
- Commission European. Commission Regulation 2017/2158 of 20 November 2017 Establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. Off. J. Eur. Union 2017, 304, 24–44. [Google Scholar]
- EFSA CONTAM Panel (European Food Safety Authority Panel on Contaminantsin the Food Chain). Scientific opinion on acrylamide in food. EFSA J. 2015, 13, 4104. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Benford, D.; Bignami, M.; Chipman, J.K.; Ramos, B. Assessment of the genotoxicity of acrylamide. EFSA J. 2022, 20, 45. [Google Scholar] [CrossRef]
Ingredients | % | Nutrient Levels b | % |
---|---|---|---|
Corn stalk | 59.26 | Organic matter (OM) | 91.84 |
Corn | 24.73 | Crude protein (CP) | 14.03 |
Cottonseed meal | 8.30 | NDF | 53.78 |
Rapeseed meal | 2.79 | ADF | 30.98 |
Urea | 0.72 | ADL | 3.39 |
Nutritive additive a | 4.20 | Calcium (Ca) | 0.77 |
Phosphorus (P) | 0.27 | ||
Gross Energy (MJ/kg) | 16.94 |
Item | Polyacrylamide g/kg of Diet | SEM | p-Value 1 | |||||
---|---|---|---|---|---|---|---|---|
0 | 1.0 | 2.0 | 6.0 | Trt | Linear | Quadratic | ||
DM | 8.64 d | 9.08 b | 9.82 a | 8.83 c | 0.12 | <0.001 | 0.277 | <0.001 |
OM | 7.73 d | 8.15 b | 8.87 a | 7.97 c | 0.11 | <0.001 | 0.408 | <0.001 |
Concentrates | 3.57 | 3.76 b | 4.04 a | 3.64 | 0.49 | <0.001 | 0.575 | <0.001 |
Roughage | 5.07 d | 5.33 a | 5.79 b | 5.19 c | 0.07 | <0.001 | 0.757 | <0.001 |
Item | Polyacrylamide g/kg of Diet | SEM | p-Value 1 | |||||
---|---|---|---|---|---|---|---|---|
0 | 1.0 | 2.0 | 6.0 | Trt | Linear | Quadratic | ||
Apparent digestibility (%): | ||||||||
DM | 56.7 d | 61.5 b | 63.9 a | 62.1 c | 0.74 | <0.001 | 0.001 | <0.001 |
OM | 61.4 d | 65.7 b | 68.0 a | 66.6 c | 0.69 | <0.001 | <0.001 | <0.001 |
CP | 53.1 d | 57.1 c | 59.9 a | 55.3 b | 0.66 | <0.001 | 0.342 | <0.001 |
Cellulose | 50.2 d | 52.1 c | 59.0 a | 55.4 b | 0.87 | <0.001 | <0.001 | <0.001 |
Hemicellulose | 57.2 d | 60.4 c | 65.4 a | 60.5 b | 0.76 | <0.001 | <0.001 | <0.001 |
Energy | 51.8 d | 56.3 c | 57.8 a | 56.9 b | 0.51 | <0.001 | 0.002 | <0.001 |
Ca | 27.8 d | 34.9 b | 37.9 a | 33.2 c | 0.97 | <0.001 | <0.001 | <0.001 |
P | 28.8 d | 32.9 b | 35.8 a | 32.0 c | 0.65 | <0.001 | 0.004 | <0.001 |
Digested amounts (kg/day): | ||||||||
DM | 4.90 d | 5.58 b | 6.27 a | 5.48 c | 0.13 | <0.001 | 0.002 | <0.001 |
OM | 4.75 d | 5.36 b | 6.04 a | 5.31 c | 0.12 | <0.001 | <0.001 | <0.001 |
CP | 0.59 d | 0.67 b | 0.77 a | 0.62 c | 0.02 | <0.001 | 0.246 | <0.001 |
Cellulose | 1.15 d | 1.24 c | 1.54 a | 1.29 b | 0.04 | <0.001 | <0.001 | <0.001 |
Hemicellulose | 1.21 d | 1.34 b | 1.57 a | 1.31 c | 0.04 | <0.001 | 0.015 | <0.001 |
Energy (MJ/d) | 83.9 d | 94.1 b | 101.2 a | 89.3 c | 1.79 | <0.001 | 0.686 | <0.001 |
Ca(g/d) | 19.8 d | 26.1 b | 30.6 a | 23.4 c | 1.02 | <0.001 | 0.051 | <0.001 |
P(g/d) | 7.42 c | 8.80 b | 10.2 a | 8.28 b | 0.26 | <0.001 | 0.026 | <0.001 |
Item | Polyacrylamide g/kg of Diet | SEM | p-Value 1 | |||||
---|---|---|---|---|---|---|---|---|
0 | 1.0 | 2.0 | 6.0 | Trt | Linear | Quadratic | ||
Nitrogen (g/d): | ||||||||
Intake | 177.9 | 189.2 b | 204.4 a | 179.6 | 2.76 | <0.001 | 0.015 | <0.001 |
In feces | 83.4 b | 81.3 | 82.0 | 80.2 a | 0.47 | 0.091 | 0.033 | 0.490 |
In urine | 52.5 b | 56.1 | 65.1 a | 55.7 | 1.33 | <0.001 | 0.483 | <0.001 |
Retention | 41.9 d | 51.9 b | 57.4 a | 43.7 c | 1.65 | <0.001 | 0.020 | <0.001 |
Retention (%) | 23.6 d | 27.4 b | 28.1 a | 24.3 c | 0.54 | <0.001 | 0.173 | <0.001 |
Calcium (g/d): | ||||||||
Intake | 71.2 d | 74.9 b | 80.7 a | 72.7 c | 0.95 | <0.001 | 0.489 | <0.001 |
In feces | 51.5 a | 48.7 b | 50.1 b | 49.3 c | 0.30 | <0.001 | 0.010 | 0.016 |
In urine | 0.870 c | 0.970 b | 1.09 a | 0.91 | 0.02 | <0.001 | 0.797 | <0.001 |
Retention | 18.9 d | 25.1 b | 29.5 a | 22.5 c | 1.00 | <0.001 | 0.040 | <0.001 |
Retention (%) | 26.6 d | 33.6 c | 36.5 a | 30.9 b | 0.95 | <0.001 | 0.002 | <0.001 |
Phosphorus (g/d): | ||||||||
Intake | 25.8 | 26.7 b | 28.4 a | 25.9 | 0.27 | <0.001 | 0.009 | <0.001 |
In feces | 18.3 | 17.9 a | 18.2 | 17.6 b | 0.09 | <0.001 | <0.001 | 0.720 |
In urine | 0.730 d | 0.880 b | 0.980 a | 0.81 c | 0.03 | <0.001 | 0.719 | <0.001 |
Retention | 6.69 d | 7.92 b | 9.17 a | 7.47 c | 0.23 | <0.001 | 0.022 | <0.001 |
Retention (%) | 26.0 d | 29.6 c | 32.4 a | 28.9 b | 0.59 | <0.001 | 0.001 | <0.001 |
Item | Polyacrylamide g/kg of Diet | SEM | p-Value 1 | |||||
---|---|---|---|---|---|---|---|---|
0 | 1.0 | 2.0 | 6.0 | Trt | Linear | Quadratic | ||
Hours after feeding: | ||||||||
Endocellulase: | ||||||||
0 | 1.07 Cc | 1.38 Bb | 1.47 Aa | 1.39 Bb | 0.04 | <0.001 | <0.001 | <0.001 |
1.5 | 1.19 Cc | 1.44 Bb | 1.55 Aa | 1.45 Bb | 0.04 | <0.001 | <0.001 | <0.001 |
3 | 1.28 Dd | 1.51 Cc | 1.71 Aa | 1.58 Bb | 0.04 | <0.001 | <0.001 | <0.001 |
5 | 1.36 Dd | 1.58 Cc | 1.79 Aa | 1.67 Bb | 0.04 | <0.001 | <0.001 | <0.001 |
7 | 1.26 Dd | 1.47 Cc | 1.67 Aa | 1.60 Bb | 0.04 | <0.001 | <0.001 | <0.001 |
10 | 1.20 Dd | 1.45 Cc | 1.59 Aa | 1.52 Bb | 0.04 | <0.001 | <0.001 | <0.001 |
Average | 1.23 Dd | 1.47 Cc | 1.63 Aa | 1.54 Bb | 0.04 | <0.001 | <0.001 | <0.001 |
Exocellulase: | ||||||||
0 | 0.57 Cd | 0.67 c | 0.76 Bb | 0.78 Aa | 0.03 | 0.002 | 0.001 | 0.007 |
1.5 | 0.63 Cc | 0.73 | 0.87 Aa | 0.82 Bb | 0.03 | 0.004 | 0.009 | 0.003 |
3 | 0.69 Cc | 0.78 | 1.01 Aa | 0.99 Bb | 0.04 | 0.001 | 0.002 | 0.007 |
5 | 0.78 Bb | 0.87 | 0.97 Aa | 0.96 Aa | 0.02 | 0.006 | 0.005 | 0.012 |
7 | 0.70 Cc | 0.84 Bb | 0.87 Aa | 0.83 b | 0.02 | 0.009 | 0.087 | 0.003 |
10 | 0.65 Bc | 0.77 b | 0.84 Aa | 0.77 b | 0.02 | 0.012 | 0.116 | 0.003 |
Average | 0.67 Cd | 0.78 c | 0.89 Aa | 0.86 Bb | 0.03 | 0.002 | 0.003 | 0.002 |
Cellobiase: | ||||||||
0 | 1.54 Dd | 1.78 Cc | 2.18 Aa | 2.07 Bb | 0.07 | <0.001 | <0.001 | <0.001 |
1.5 | 1.60 Dd | 1.88 Cc | 2.30 Aa | 2.19 Bb | 0.07 | <0.001 | <0.001 | <0.001 |
3 | 1.72 Dd | 2.00 Cc | 2.39 Aa | 2.31 Bb | 0.06 | <0.001 | <0.001 | <0.001 |
5 | 1.82 Dd | 2.12 Cc | 2.32 Aa | 2.31 Aa | 0.06 | <0.001 | <0.001 | <0.001 |
7 | 1.67 Dd | 2.10 Cc | 2.33 Aa | 2.17 Bb | 0.07 | <0.001 | <0.001 | <0.001 |
10 | 1.61 Dd | 2.02 Cc | 2.16 Aa | 2.10 Bb | 0.06 | <0.001 | <0.001 | <0.001 |
On average | 1.66 Dd | 1.98 Cc | 2.28 Aa | 2.19 Bb | 0.06 | <0.001 | <0.001 | <0.001 |
Xylanase: | ||||||||
0 | 0.62 Cc | 0.83 Bb | 0.90 Aa | 0.83 Bb | 0.03 | <0.001 | 0.011 | <0.001 |
1.5 | 0.75 Dd | 0.94 Bb | 0.98 Aa | 0.90 Cc | 0.03 | 0.001 | 0.076 | <0.001 |
3 | 0.85 Cc | 1.05 Bb | 1.15 Aa | 0.97 | 0.03 | <0.001 | 0.305 | <0.001 |
5 | 0.96 Bb | 1.04 | 1.15 Aa | 0.96 | 0.02 | 0.003 | 0.343 | <0.001 |
7 | 0.81 Cc | 0.97 Bb | 1.02 Aa | 0.91 | 0.03 | 0.004 | 0.519 | 0.001 |
10 | 0.67 Dd | 0.90 Bb | 0.94 Aa | 0.87 Cc | 0.03 | <0.001 | 0.003 | <0.001 |
On average | 0.78 Dd | 0.96 Bb | 1.03 Aa | 0.91 Cc | 0.03 | <0.001 | 0.145 | <0.001 |
Pectase: | ||||||||
0 | 1.13 | 1.15 | 1.21 | 1.17 | 0.02 | 0.265 | 0.375 | 0.121 |
1.5 | 1.20 | 1.23 | 1.27 | 1.21 | 0.02 | 0.593 | 0.951 | 0.198 |
3 | 1.26 | 1.40 Aa | 1.38 b | 1.33 | 0.02 | 0.029 | 0.778 | 0.008 |
5 | 1.33 | 1.37 | 1.40 | 1.35 | 0.02 | 0.446 | 0.976 | 0.117 |
7 | 1.23 | 1.26 | 1.29 | 1.29 | 0.02 | 0.607 | 0.349 | 0.350 |
10 | 1.19 | 1.21 | 1.21 | 1.23 | 0.02 | 0.921 | 0.539 | 0.793 |
On average | 1.22 | 1.27 | 1.30 | 1.26 | 0.02 | 0.480 | 0.657 | 0.145 |
Amylase: | ||||||||
0 | 0.57 | 0.60 | 0.62 | 0.62 | 0.02 | 0.743 | 0.370 | 0.545 |
1.5 | 0.63 | 0.68 | 0.74 a | 0.68 | 0.02 | 0.114 | 0.458 | 0.026 |
3 | 0.72 | 0.77 | 0.81 | 0.73 | 0.02 | 0.246 | 0.755 | 0.053 |
5 | 0.78 | 0.78 | 0.79 | 0.78 | 0.02 | 0.999 | 0.916 | 0.938 |
7 | 0.69 | 0.71 | 0.70 | 0.71 | 0.02 | 0.941 | 0.707 | 0.883 |
10 | 0.61 | 0.67 | 0.65 | 0.65 | 0.02 | 0.731 | 0.703 | 0.458 |
On average | 0.67 | 0.70 | 0.72 | 0.70 | 0.01 | 0.369 | 0.608 | 0.102 |
Protease: | ||||||||
0 | 0.35 | 0.35 | 0.37 | 0.38 | 0.01 | 0.876 | 0.468 | 0.850 |
1.5 | 0.43 | 0.41 | 0.43 | 0.43 | 0.01 | 0.971 | 0.930 | 0.932 |
3 | 0.46 | 0.43 | 0.49 | 0.49 | 0.01 | 0.379 | 0.287 | 0.831 |
5 | 0.56 | 0.54 | 0.55 | 0.54 | 0.01 | 0.867 | 0.542 | 0.877 |
7 | 0.47 | 0.54 | 0.53 | 0.48 | 0.02 | 0.337 | 0.649 | 0.129 |
10 | 0.41 | 0.50 | 0.49 | 0.39 | 0.02 | 0.072 | 0.178 | 0.032 |
On average | 0.45 | 0.47 | 0.48 | 0.45 | 0.01 | 0.190 | 0.676 | 0.039 |
Cellulase | n | Y(N g/Day) = a + bX (IU/mL) | R2 | p-Value |
---|---|---|---|---|
Endocellulase | 16 | Y = 0.6401 + 0.017X | 0.5135 | <0.01 |
Exocellulase | 16 | Y = 0.3972 + 0.0083X | 0.3696 | <0.01 |
Cellobiase | 16 | Y = 0.8739 + 0.0237X | 0.3864 | <0.01 |
Xylanase | 16 | Y = 0.2732 + 0.0133X | 0.8273 | =0.145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Luo, Q.; Huang, Z.; Zang, C.; Pan, R. Dose Responses to Supplemental Polyacrylamide on Digestion, Metabolism, and Ruminal Digestive-Enzyme Activities in Cattle. Life 2025, 15, 1487. https://doi.org/10.3390/life15091487
Chen Y, Luo Q, Huang Z, Zang C, Pan R. Dose Responses to Supplemental Polyacrylamide on Digestion, Metabolism, and Ruminal Digestive-Enzyme Activities in Cattle. Life. 2025; 15(9):1487. https://doi.org/10.3390/life15091487
Chicago/Turabian StyleChen, Yanqin, Qiujiang Luo, Zhen Huang, Changjiang Zang, and Rong Pan. 2025. "Dose Responses to Supplemental Polyacrylamide on Digestion, Metabolism, and Ruminal Digestive-Enzyme Activities in Cattle" Life 15, no. 9: 1487. https://doi.org/10.3390/life15091487
APA StyleChen, Y., Luo, Q., Huang, Z., Zang, C., & Pan, R. (2025). Dose Responses to Supplemental Polyacrylamide on Digestion, Metabolism, and Ruminal Digestive-Enzyme Activities in Cattle. Life, 15(9), 1487. https://doi.org/10.3390/life15091487