Drought Tolerance Evaluation and Classification of Foxtail Millet Core Germplasms Using Comprehensive Tolerance Indices
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Germplasm Selection
2.2. Experimental Design and Field Management
2.3. Treatment Structure and Plot Design
2.4. Field Management Practices
2.5. Data Collection and Morphophysiological Measurements
2.6. Drought-Tolerance Evaluation
2.7. Grey Correlation Analysis
2.8. Data Analysis
3. Results
3.1. Phenotypic Variation and Drought Response of Foxtail Millet Germplasm Collection
Germplasm Diversity and Index Sensitivity Analysis
3.2. Distribution of Drought Tolerance Coefficients Across Phenotypic Traits
3.3. Analysis of Drought Tolerance Coefficients and Trait Correlations
3.4. Eigenvectors and Contributions of Principal Components
3.5. Comprehensive Drought Tolerance Evaluation
3.6. Cluster Analysis
3.7. Screening of Drought Tolerance Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhanbhro, N.; Wang, H.-J.; Yang, H.; Xu, X.-J.; Jakhar, A.M.; Shalmani, A.; Zhang, R.-X.; Bakhsh, Q.; Akbar, G.; Jakhro, M.I.; et al. Revisiting the Molecular Mechanisms and Adaptive Strategies Associated with Drought Stress Tolerance in Common Wheat (Triticum aestivum L.). Plant Stress 2024, 11, 100298. [Google Scholar] [CrossRef]
- Vadez, V.; Grondin, A.; Chenu, K.; Henry, A.; Laplaze, L.; Millet, E.J.; Carminati, A. Crop Traits and Production under Drought. Nat. Rev. Earth Environ. 2024, 5, 211–225. [Google Scholar] [CrossRef]
- Bhanbhro, N.; Xiao, B.; Han, L.; Lu, H.; Wang, H.; Yang, C. Adaptive strategy of allohexaploid wheat to long term salinity stress. BMC Plant Biol. 2020, 1, 210. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future Global Urban Water Scarcity and Potential Solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef]
- Bhanbhro, N.; Wang, H.-J.; Bakhsh, Q.; Basit, M.F.; Song, W.; Ullah, U.; Shi, S.; Gao, S.; Shalmani, A.; Zhang, R.-X.; et al. TaSnRK2.1-2D Contributes to Drought Tolerance by Modulating ROS Production in Wheat. Plant Cell Environ. 2025, 48, 6440–6443. [Google Scholar] [CrossRef] [PubMed]
- Dzvene, A.R.; Zhou, L.; Slayi, M.; Dirwai, T.L. A Scoping Review on Challenges and Measures for Climate Change in Arid and Semi-Arid Agri-Food Systems. Discov. Sustain. 2025, 6, 151. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, A.L.; Liu, X.; Li, H.; Tao, H.; Guo, X.; Liu, J. Current Status, Challenges, and Opportunities for Sustainable Crop Production in Xinjiang. iScience 2025, 28, 112114. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Li, Y.; Biswas, A.; Chen, X.; Xie, L.; Liu, D.; Li, L.; Feng, H.; Wu, S.; Satoh, Y.; et al. Concurrent Drought Threatens Wheat and Maize Production and Will Widen Crop Yield Gaps in the Future. Agric. Syst. 2024, 220, 104056. [Google Scholar] [CrossRef]
- Freedman, H.; Agha Kouchak, A.; Rigden, A.J.; Hoek, A.v.d.; Tomlinson, B. Disparities in the Impact of Drought on Agriculture across Countries. Sci. Rep. 2025, 15, 13465. [Google Scholar] [CrossRef]
- Han, L.; Xiao, C.; Xiao, B.; Wang, M.; Liu, J.; Bhanbhro, N.; Khan, A.; Wang, H.; Wang, H.; Yang, C. Proteomic profiling sheds light on alkali tolerance of common wheat (Triticum aestivum L.). Plant Physiol. Biochem. 2020, 138, 58–64. [Google Scholar] [CrossRef]
- AbdElgawad, H.; Avramova, V.; Baggerman, G.; Van Raemdonck, G.; Valkenborg, D.; Van Ostade, X.; Guisez, Y.; Prinsen, E.; Asard, H.; Van den Ende, W.; et al. Starch Biosynthesis Contributes to the Maintenance of Photosynthesis and Leaf Growth under Drought Stress in Maize. Plant Cell Environ. 2020, 43, 2254–2271. [Google Scholar] [CrossRef]
- Sami, A.; Xue, Z.; Tazein, S.; Arshad, A.; He Zhu, Z.; Ping Chen, Y.; Hong, Y.; Tian Zhu, X.; Jin Zhou, K. CRISPR-Cas9-Based Genetic Engineering for Crop Improvement under Drought Stress. Bioengineered 2021, 12, 5814–5829. [Google Scholar] [CrossRef] [PubMed]
- Bailey-Serres, J.; Parker, J.E.; Ainsworth, E.A.; Oldroyd, G.E.D.; Schroeder, J.I. Genetic Strategies for Improving Crop Yields. Nature 2019, 575, 109–118. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, X.; Quan, Z.; Cheng, S.; Xu, X.; Pan, S.; Xie, M.; Zeng, P.; Yue, Z.; Wang, W.; et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat. Biotechnol. 2012, 30, 549–554. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, C.; Ji, L.; Feng, J.; Li, F.; Zhou, X.; Fang, F. Effects of multi-cropping system on temporal and spatial distribution of carbon and nitrogen footprint of major crops in China. Glob. Ecol. Conserv. 2020, 22, e00895. [Google Scholar] [CrossRef]
- Ma, K.; Yuan, X.; Jia, Z.; Lu, H.; Chen, X.; Wen, X.; Chen, F. Changes in the Grain Quality of Foxtail Millet Released in China from the 1970s to the 2020s. Food Res. Int. 2025, 209, 116316. [Google Scholar] [CrossRef] [PubMed]
- Yi, B.; Zhou, Y.; Gao, M.; Zhang, Z.; Han, Y.; Yang, G.; Xu, W.; Huang, R. Effect of Drought Stress during Flowering Stage on Starch Accumulation and Starch Synthesis Enzymes in Sorghum Grains. J. Integr. Agric. 2014, 13, 2399–2406. [Google Scholar] [CrossRef]
- Li, P.; Li, B.; Seneweera, S.; Zong, Y.; Li, F.Y.; Han, Y.; Hao, X. Photosynthesis and Yield Response to Elevated CO2, C4 Plant Foxtail Millet Behaves Similarly to C3 Species. Plant Sci. 2019, 285, 239–247. [Google Scholar] [CrossRef]
- Xiao, J.; Sun, Z.; Chen, G.; Liu, Z.; Xin, Z.; Kong, F. Evaluation of Drought Tolerance in Different Genotypes of Foxtail Millet during the Entire Growth Perio. Agron. J. 2022, 114, 340–355. [Google Scholar] [CrossRef]
- Loni, F.; Ismaili, A.; Nakhoda, B.; Ramandi, H.D.; Shobbar, Z. The Genomic Regions and Candidate Genes Associated with Drought Tolerance and Yield-Related Traits in Foxtail Millet: An Integrative Meta-Analysis Approach. Plant Growth Regul. 2023, 101, 169–185. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.; Li, L.; Reynolds, M.; Mao, X.; Jing, R. Exploitation of Drought Tolerance-Related Genes for Crop Improvement. Int. J. Mol. Sci. 2021, 22, 10265. [Google Scholar] [CrossRef]
- Tian, T.; Wang, S.; Yang, S.; Yang, Z.; Liu, S.; Wang, Y.; Gao, H.; Zhang, S.; Yang, X.; Jiang, C.; et al. Genome Assembly and Genetic Dissection of a Prominent Drought-Resistant Maize Germplasm. Nat. Genet. 2023, 55, 496–506. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, C.; Dang, K.; Gong, X.; Feng, B. Cultivar Sensitivity of Broomcorn Millet (Panicum miliaceum L.) to Nitrogen Availability Is Associated with Differences in Photosynthetic Physiology and Nitrogen Uptake. Plant Physiol. Biochem. 2022, 182, 90–103. [Google Scholar] [CrossRef]
- Amoah, J.N.; Adu-Gyamfi, M.O.; Kwarteng, A.O. Effect of Drought Acclimation on Antioxidant System and Polyphenolic Content of Foxtail Millet (Setaria italica L.). Physiol. Mol. Biol. Plants Int. J. Funct. Plant Biol. 2023, 29, 1577–1589. [Google Scholar] [CrossRef]
- Singh, P.K.; Indoliya, Y.; Agrawal, L.; Awasthi, S.; Deeba, F.; Dwivedi, S.; Chakrabarty, D.; Shirke, P.A.; Pandey, V.; Singh, N.; et al. Genomic and Proteomic Responses to Drought Stress and Biotechnological Interventions for Enhanced Drought Tolerance in Plants. Curr. Plant Biol. 2022, 29, 100239. [Google Scholar] [CrossRef]
- Mude, L.N.; Mondam, M.; Gujjula, V.; Jinka, S.; Pinjari, O.B.; Yellodu Adi Reddy, N.; Patan, S.S.V.K. Morpho-Physiological and Biochemical Changes in Finger Millet [Eleusine coracana (L.) Gaertn.] under Drought Stress. Physiol. Mol. Biol. Plants Int. J. Funct. Plant Biol. 2020, 26, 2151–2171. [Google Scholar] [CrossRef]
- Serraj, R.; Kumar, A.; McNally, K.L.; Slamet-Loedin, I.; Bruskiewich, R.; Mauleon, R.; Cairns, J.; Hijmans, R.J. Chapter 2—Improvement of Drought Resistance in Rice. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: San Diego, CA, USA, 2009; Volume 103, pp. 41–99. [Google Scholar]
- Mukami, A.; Ngetich, A.; Mweu, C.; Oduor, R.O.; Muthangya, M.; Mbinda, W.M. Differential Characterization of Physiological and Biochemical Responses during Drought Stress in Finger Millet Varieties. Physiol. Mol. Biol. Plants Int. J. Funct. Plant Biol. 2019, 25, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Cairns, J.E.; Audebert, A.; Mullins, C.E.; Price, A.H. Mapping Quantitative Trait Loci Associated with Root Growth in Upland Rice (Oryza sativa L.) Exposed to Soil Water-Deficit in Fields with Contrasting Soil Properties. Field Crops Res. 2009, 114, 108–118. [Google Scholar] [CrossRef]
- Liu, S.; Wang, H.; Qin, F. Genetic Dissection of Drought Resistance for Trait Improvement in Crops. Crop J. 2023, 11, 975–985. [Google Scholar] [CrossRef]
- Pandey, J.; Devadasu, E.; Saini, D.; Dhokne, K.; Marriboina, S.; Raghavendra, A.S.; Subramanyam, R. Reversible Changes in Structure and Function of Photosynthetic Apparatus of Pea (Pisum sativum) Leaves under Drought Stress. Plant J. Cell Mol. Biol. 2023, 113, 60–74. [Google Scholar] [CrossRef]
- Li, X.; Gao, J.; Song, J.; Guo, K.; Hou, S.; Wang, X.; He, Q.; Zhang, Y.; Zhang, Y.; Yang, Y.; et al. Multi-omics analyses of 398 foxtail millet accessions reveal genomic regions associated with domestication, metabolite traits, and anti-inflammatory effects. Mol. Plant 2022, 15, 1367–1383. [Google Scholar] [CrossRef]
- Diao, X.; Jia, G. Foxtail Millet Germplasm and Inheritance of Morphological Characteristics. In Genetics and Genomics of Setaria; Doust, A., Diao, X., Eds.; Plant Genetics and Genomics: Crops and Models, vol. 19; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Balabandian, A.; Ashouri, M.; Doroudian, H.R.; Sadeghi, S.M.; Rezaei, M. Effect of irrigation interval and biological and nitrogen fertilizers on grain yield and water use efficiency of rice cultivars. Braz. J. Bot. 2021, 44, 653–661. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, H.; Liu, Q.; Wei, L.; Wang, X. Effects of Fertilizer Application Patterns on Foxtail Millet Root Morphological Construction and Yield Formation during the Reproductive Stage in the Loess Plateau of China. Agronomy 2023, 13, 2847. [Google Scholar] [CrossRef]
- Deng, J. Introduction to Grey system theory. J. Grey System. 1989, 1, 1–24. [Google Scholar]
- Wang, C.; Jia, G.; Zhi, H.; Niu, Z.; Chai, Y.; Li, W.; Wang, Y.; Li, H.; Lu, P.; Zhao, B.; et al. Genetic diversity and population structure of Chinese foxtail millet [Setaria italica (L.) Beauv.] landraces. G3 2012, 7, 769–777. [Google Scholar] [CrossRef]
- Terfa, G.N.; Pan, W.; Hu, L.; Hao, J.; Zhao, Q.; Jia, Y.; Nie, X. Mechanisms of Salt and Drought Stress Responses in Foxtail Millet. Plants 2025, 14, 1215. [Google Scholar] [CrossRef]
- Krishnamurthy, L.; Upadhyaya, H.D.; Kashiwagi, J.; Purushothaman, R.; Dwivedi, S.L.; Vadez, V. Variation in drought-tolerance components and their interrelationships in the core collection of foxtail millet (Setaria italica) germplasm. Crop Pasture Sci. 2016, 67, 834–846. [Google Scholar]
- Kumar, M.; Kumar Patel, M.; Kumar, N.; Bajpai, A.B.; Siddique, K.H.M. Metabolomics and Molecular Approaches Reveal Drought Stress Tolerance in Plants. Int. J. Mol. Sci. 2021, 22, 9108. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Ma, Y.; Jiang, L.; Dong, J.; Zhu, Y.; Ren, G. Chemical Composition, Antioxidant, and Antiproliferative Activities of Nine Chinese Proso Millet Varieties. Food Agric. Immunol. 2018, 29, 625–637. [Google Scholar] [CrossRef]
- Yuan, Y.H.; Li, J.; Ma, H.C.; Yang, Q.H.; Liu, C.J.; Feng, B.L. Salt-Tolerant Broomcorn Millet (Panicum miliaceum L.) Resists Salt Stress via Modulation of Cell Wall Biosynthesis and Na+ Balance. Land Degrad. Dev. 2021, 32, 518–532. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, P.; Qu, Y.; Gao, X.; Liang, J.; Yang, P.; Feng, B. Comparison of Physicochemical Properties and Cooking Edibility of Waxy and Non-Waxy Proso Millet (Panicum miliaceum L.). Food Chem. 2018, 257, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.-J.; He, G.-H.; Zheng, W.-J.; Lu, P.-P.; Chen, M.; Gong, Y.-M.; Ma, Y.-Z.; Xu, Z.-S. Foxtail millet NF-Y families: Genome-wide survey and evolution analyses identified two functional genes important in abiotic stresses. Front. Plant Sci. 2015, 6, 1142. [Google Scholar] [CrossRef]
- Govindaraj, M.; Rai, K.N.; Kanatti, A.; Upadhyaya, H.D.; Shivade, H.; Rao, A.S. Exploring the genetic variability and diversity of pearl millet core collection germplasm for grain nutritional traits improvement. Sci. Rep. 2020, 10, 21177. [Google Scholar] [CrossRef]
- Ben El Mahdi, N.; Lemée, L.; Remaury, Q.B.; Eloy, L.; Nhiri, N.; Lakhssassi, N.; Cacciola, F.; Nhiri, M. Potential of Sorghum Seeds in Alleviating Hyperglycemia, Oxidative Stress, and Glycation Damage. Molecules 2024, 29, 3445. [Google Scholar] [CrossRef]
- Hu, M.; Tian, H.; Yang, K.; Ding, S.; Hao, Y.; Xu, R.; Zhang, F.; Liu, H.; Zhang, D. Comprehensive Evaluation and Selection of 192 Maize Accessions from Different Sources. Plants 2024, 13, 1397. [Google Scholar] [CrossRef]
- Sun, M.; Kang, X.; Wang, T.; Fan, L.; Wang, H.; Pan, H.; Yang, Q.; Liu, H.; Lou, Y.; Zhuge, Y. Genotypic diversity of quality traits in Chinese foxtail millet (Setaria italica L.) and the establishment of a quality evaluation system. Food Chem. 2021, 353, 129421. [Google Scholar] [CrossRef]
- Jiao, A.; Chen, L.; Ma, X.; Ma, J.; Cui, D.; Han, B.; Sun, J.; Han, L. Linkage Mapping and Discovery of Candidate Genes for Drought Tolerance in Rice During the Vegetative Growth Period. Rice 2024, 17, 53. [Google Scholar] [CrossRef]
- Santos, K.D.S.; Ribeiro, M.C.; Queiroga, D.E.U.; Silva, I.A.P.D.; Ferreira, S.M.S. The use of multiple triangulations as a validation strategy in a qualitative study. Cienc. Saude Coletiva 2020, 2, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Campbell, Q.; Bedford, J.A.; Yu, Y.; Halpin-McCormick, A.; Castaneda-Alvarez, N.; Runck, B.; Neyhart, J.; Ewing, P.; Ortiz-Barrientos, D.; Gao, L.; et al. Agricultural landscape genomics to increase crop resilience. Plant Commun. 2025, 6, 101260. [Google Scholar] [CrossRef] [PubMed]
Item | Parameter | PH (cm) | PL (cm) | SW (mm) | ST (mm) | PN | LA (cm) | LW (cm) | WPP (g) | TGW (g) | GWP (g) | GWP (g) | Y (kg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | Max | 211.73 | 41.3 | 42.07 | 10.03 | 15.4 | 54.73 | 4.81 | 36.68 | 3.33 | 31.33 | 25.17 | 0.7 |
Min | 82.47 | 14.53 | 17.31 | 5.79 | 9.8 | 28.47 | 1.97 | 17.36 | 2.11 | 6.33 | 3.67 | 0.1 | |
Average | 172.79 | 25.97 | 29.42 | 8.4 | 14.26 | 46.46 | 2.93 | 25.31 | 2.82 | 20.86 | 15.99 | 0.44 | |
SD | 18.91 | 3.39 | 3.32 | 0.72 | 0.75 | 3.61 | 0.32 | 2.25 | 0.24 | 5.05 | 4.34 | 0.12 | |
CV (%) | 10.98 | 13.04 | 11.28 | 8.52 | 5.24 | 7.77 | 10.78 | 8.89 | 8.37 | 24.2 | 27.18 | 27.27 | |
Drought | Max | 174.47 | 25.8 | 26.77 | 7.31 | 13.93 | 47.43 | 3.34 | 28.53 | 3.09 | 26.33 | 17.97 | 0.52 |
Min | 54.47 | 8.3 | 13.43 | 3.42 | 6.87 | 21.84 | 1.28 | 10.03 | 1.38 | 1.67 | 0.83 | 0.02 | |
Average | 127.17 | 16.57 | 20.67 | 5.48 | 11.9 | 34.89 | 2.24 | 16.93 | 2.35 | 12.6 | 9.47 | 0.27 | |
SD | 19.38 | 3.19 | 2.18 | 0.73 | 1.06 | 5.28 | 0.37 | 2.55 | 0.37 | 4.64 | 3.89 | 0.11 | |
CV (%) | 15.25 | 19.27 | 10.52 | 13.25 | 8.9 | 15.13 | 16.67 | 15.09 | 15.51 | 36.85 | 40.02 | 41.11 | |
Change from control | Average | 26.4 | 36.2 | 29.74 | 34.76 | 16.55 | 24.9 | 23.55 | 33.11 | 16.67 | 39.6 | 40.78 | 43.18 |
t-value | 60.06 | 50.895 | 37.963 | 53.378 | 37.364 | 31.674 | 28.846 | 82.632 | 23.996 | 26.909 | 25.817 | 26.902 | |
p-value | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | |
R | 0.871 | 0.652 | 0.274 | 0.361 | 0.498 | 0.295 | 0.466 | 0.81 | 0.602 | 0.556 | 0.588 | 0.568 |
Irrigation Period | Fertility | Different Treatment Irrigation Volume (m3/mu) | |
---|---|---|---|
CK | DS | ||
15 May | Seedlings | 600 | 600 |
10 June | Extract | 600 | 300 |
10 July | Tam pass | 600 | 300 |
1 August | Grouting | 600 | 300 |
15 August | Grout mid-term | 600 | 300 |
Total irrigation | 3000 | 1800 |
Index | 0 ≤ DC < 0.2 | 0.2 ≤ DC < 0.4 | 0.4 ≤ DC < 0.6 | 0.6 ≤ DC < 0.8 | 0.8 ≤ DC < 1 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Times | Freq (%) | Times | Freq (%) | Times | Freq (%) | Times | Freq (%) | Times | Freq (%) | |
Plant height (cm) | 1 | 0.05 | 4 | 1.8 | 29 | 13.06 | 161 | 73 | 27 | 12.16 |
Panicle length (cm) | 1 | 0.45 | 1 | 0.45 | 79 | 35.59 | 131 | 59 | 11 | 4.95 |
Spike width (mm) | 1 | 0.45 | 1 | 0.45 | 28 | 12.61 | 155 | 70 | 38 | 17.12 |
Stem diameter (mm) | 0 | 0 | 1 | 0.45 | 63 | 28.38 | 144 | 65 | 14 | 6.31 |
Panicle number | 0 | 0 | 0 | 0 | 1 | 0.45 | 54 | 24 | 167 | 75.23 |
Leaf width (cm) | 1 | 0.45 | 0 | 0 | 19 | 8.56 | 122 | 55 | 80 | 36.04 |
Leaf area (cm) | 1 | 0.45 | 2 | 0.9 | 13 | 5.86 | 113 | 51 | 93 | 41.89 |
Biomass per plant (g) | 1 | 0.45 | 0 | 0 | 29 | 13.06 | 187 | 84 | 5 | 2.25 |
Thousand-grain weight (g) | 1 | 0.45 | 0 | 0 | 0 | 0 | 79 | 36 | 142 | 63.96 |
Weight per panicle (g) | 6 | 2.7 | 22 | 9.91 | 85 | 38.29 | 82 | 37 | 33 | 14.86 |
Grain weight per panicle (g) | 15 | 6.76 | 28 | 12.61 | 72 | 32.43 | 84 | 38 | 23 | 10.36 |
Plot yield (kg) | 14 | 6.31 | 30 | 13.51 | 85 | 38.29 | 75 | 34 | 18 | 8.11 |
Statistic | PH (cm) | PL (cm) | SW (mm) | ST (mm) | PN (mm) | LA (cm) | LW (cm) | WPP (cm) | BPP (g) | TGW (g) | GWP (g) | Y (kg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | 0.74 | 0.91 | 0.92 | 0.89 | 1.02 | 1.18 | 1.02 | 0.99 | 0.84 | 1 | 1.13 | 1.14 |
Min | 0.52 | 0.39 | 0.44 | 0.37 | 0.62 | 0.62 | 0.48 | 0.37 | 0.47 | 0.6 | 0.07 | 0.07 |
Average | 0.74 | 0.64 | 0.71 | 0.65 | 0.83 | 0.85 | 0.75 | 0.76 | 0.67 | 0.83 | 0.6 | 0.58 |
SD | 0.06 | 0.1 | 0.09 | 0.08 | 0.07 | 0.1 | 0.11 | 0.11 | 0.06 | 0.1 | 0.22 | 0.21 |
CV (%) | 8.02 | 14.9 | 13 | 12.81 | 7.85 | 11.2 | 14.81 | 14.44 | 9.67 | 12.53 | 36.21 | 36.4 |
Index | Combined Drought Tolerance Factor | Drought Tolerance Index | Drought Tolerance Measure |
---|---|---|---|
Max | 0.834 | 3.444 | 0.433 |
Min | 0.522 | 0.013 | 0.184 |
Average | 0.698 | 1.145 | 0.316 |
SD | 0.059 | 0.695 | 0.044 |
CV (%) | 8.415 | 60.672 | 14.072 |
Ranking | Code | CDC Value | Code | D Value | Code | WDC Value |
---|---|---|---|---|---|---|
1 | 209 | 0.834 | 167 | 3.444 | 142 | 0.433 |
2 | 156 | 0.834 | 127 | 3.286 | 165 | 0.416 |
3 | 58 | 0.832 | 135 | 3.235 | 148 | 0.411 |
4 | 142 | 0.829 | 63 | 3.102 | 156 | 0.410 |
5 | 72 | 0.826 | 73 | 2.927 | 58 | 0.405 |
6 | 105 | 0.821 | 72 | 2.726 | 92 | 0.393 |
7 | 92 | 0.815 | 89 | 2.666 | 182 | 0.391 |
8 | 182 | 0.810 | 117 | 2.653 | 135 | 0.390 |
9 | 135 | 0.804 | 32 | 2.508 | 15 | 0.389 |
10 | 185 | 0.803 | 92 | 2.457 | 144 | 0.388 |
Value | Correlation | ||
---|---|---|---|
CDTC Value | RDI Value | D Value | |
CDTC value | 1 | ||
RDI value | 0.759 ** | 1 | |
D value | 0.771 ** | 0.405 ** | 1 |
Index | Correlation Coefficient | p Value |
---|---|---|
Plant height (PH) | 0.300 ** | 0.000 |
Panicle length (PL) | 0.397 ** | 0.000 |
Spike width (SW) | 0.142 ** | 0.000 |
stem thickness (ST) | 0.693 ** | 0.000 |
panicle number (PN) | 0.423 ** | 0.000 |
Leaf length (LL) | 0.420 ** | 0.000 |
Leaf width (LW) | 0.181 ** | 0.000 |
Biomass per plant (BPP) | 0.693 ** | 0.000 |
Thousand grain weight (TGW) | 0.180 ** | 0.000 |
Weight per spike (WPP) | 0.492 ** | 0.000 |
Grain weight per spike (GWP) | 0.513 ** | 0.000 |
Yield (Y) | 0.485 ** | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Liu, J.; Kuerban, Z.; Wang, H.; Yang, B.; Wang, H.-J.; Hu, X.; Bhanbhro, N.; Feng, G. Drought Tolerance Evaluation and Classification of Foxtail Millet Core Germplasms Using Comprehensive Tolerance Indices. Life 2025, 15, 1485. https://doi.org/10.3390/life15091485
Zhao Y, Liu J, Kuerban Z, Wang H, Yang B, Wang H-J, Hu X, Bhanbhro N, Feng G. Drought Tolerance Evaluation and Classification of Foxtail Millet Core Germplasms Using Comprehensive Tolerance Indices. Life. 2025; 15(9):1485. https://doi.org/10.3390/life15091485
Chicago/Turabian StyleZhao, Yun, Jun Liu, Zaituniguli Kuerban, Hui Wang, Baiyi Yang, Hong-Jin Wang, Xiangwei Hu, Nadeem Bhanbhro, and Guojun Feng. 2025. "Drought Tolerance Evaluation and Classification of Foxtail Millet Core Germplasms Using Comprehensive Tolerance Indices" Life 15, no. 9: 1485. https://doi.org/10.3390/life15091485
APA StyleZhao, Y., Liu, J., Kuerban, Z., Wang, H., Yang, B., Wang, H.-J., Hu, X., Bhanbhro, N., & Feng, G. (2025). Drought Tolerance Evaluation and Classification of Foxtail Millet Core Germplasms Using Comprehensive Tolerance Indices. Life, 15(9), 1485. https://doi.org/10.3390/life15091485