Chloride Homeostasis in Neuronal Disorders: Bridging Measurement to Therapy
Abstract
1. Introduction
2. Mechanisms Maintaining Neuronal Cl− Homeostasis
2.1. Role of Cl− Channels: Passively Conducting the Flow
2.2. Role of Cl− Transporters: Actively Maintaining Ionic Balance
2.3. Context Influencing Cl− Homeostasis
2.4. Integration and Interplay Between Channels and Transporters
3. The Dual Role of Cl− in Neuronal Function and Signaling
3.1. Inhibitory Neurotransmission: Hyperpolarization
3.2. Excitatory Neurotransmission: Depolarization
3.3. Firing Threshold Control
3.4. Involvement in Synaptic Plasticity and Neural Circuit Development
3.5. Cl− as an Intracellular Signaling Ion
4. Methods to Measure Cl− Homeostasis in Neuronal Systems
4.1. Electrophysiological Techniques: Recording the Electrical Signals
4.2. Fluorescence Imaging Techniques: Visualizing Cl− Dynamics
4.3. Other Assays
4.4. Comparison Across Methodologies and Calibration
5. Neuronal Disorders Linked to Disruptions in Cl− Homeostasis
5.1. Epilepsy
5.2. Alzheimer’s Disease
5.3. Autism Spectrum Disorder
5.4. Huntington’s Disease
5.5. Other Neurological Disorders: A Common Thread of Dysregulation
6. Emerging Research on Cl− Dysregulation in Symptom Pathogenesis
7. Potential Therapeutic Strategies Targeting Chloride Homeostasis
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Transporter/Channel Name | Main Function in Neurons | Neuronal Disorders Associated with Dysregulation | Specific Impairment Observed | References |
---|---|---|---|---|
GABAA Receptor | Mediates fast inhibitory neurotransmission (mature); can be excitatory (immature/pathology) | Epilepsy, AD, ASD, HD | Altered function Decreased subunit expression or mutations (e.g., GABRA1) | [5,20,24] |
Glycine Receptor | Inhibitory neurotransmission (spinal cord/brainstem) | Hyperekplexia | GLRA1, GLRB mutations | [21,22,23,135] |
NKCC1 | Cl− Import (raises [Cl−]i) | Epilepsy, ASD, HD, Down Syndrome | Upregulation Increased activity | [49,50,129,133,134] |
KCC2 | Cl− Export (lowers [Cl−]i) | Epilepsy, AD, ASD, HD, Neuropathic Pain | Downregulation Impaired function | [53,54,55,72] |
ClC Channels | Neuronal Excitability, Cell Volume, Vesicular Function | Epilepsy, Ataxia, Neurodegenerative Disorders | CLCN2 (leukoenceph-alopathy epilepsy), CLCN4 (XLID/epilepsy), CLCN6 (NCL); gain- or loss-of-function | [25,30,33,34,35,36,38,39] |
Disorder | Primary Cl− Dysregulation | Impact on Neuronal Excitability | Effects on Synaptic Transmission (GABAergic/Glycinergic) | Contribution to Key Symptoms | References |
---|---|---|---|---|---|
Epilepsy | Increased [Cl−]i due to reduced or lost KCC2 function and/or NKCC1 upregulation | Hyperexcitability; lowered firing threshold | Reduced GABAergic inhibition and hyperexcitability; activity-dependent Cl− loading | Seizures | [7,8,78,124] |
AD | KCC2 downregulation; in some studies NKCC1 upregulation without KCC2 change | Hyperexcitability; impaired inhibition | Reduced GABAergic inhibition | Cognitive decline, memory deficits, social dysfunction | [9] plus conflicting reports noted in the text |
ASD | Increased NKCC1 and reduced KCC2 during development | Reduced inhibition leading to E/I imbalance | Altered GABAergic signaling and delayed GABA polarity shift | Social communication deficits, repetitive behaviors, restricted interests | [10,11] |
HD | Altered NKCC1/KCC2 in striatum and hippocampus | Altered Excitability | Reduced GABAergic signaling; D1/D2 MSN-specific differences | Motor and cognitive impairments | [12,13,143] |
Neuropathic Pain | KCC2 downregulation in dorsal horn neurons | Hyperexcitability | Depolarizing GABAergic signaling | Allodynia, hyperalgesia | [41,42,155] |
Therapeutic Strategy | Target | Disorder(s) of Interest | Current Status | Key Findings/Limitations | References |
---|---|---|---|---|---|
NKCC1 Inhibitors (Bumetanide) | NKCC1 | Epilepsy, ASD, Neuropathic Pain | Clinical Trials (e.g., NCT01078714, NCT03715153, NCT04644003, NCT06465823) | Some efficacy shown, but variability in treatment response and need for CNS-specific targeting. | [146,147,148,149,158,159,160] |
KCC2 Enhancers (CLP290, CLP257) | KCC2 | AD, Neuropathic Pain, Epilepsy | Preclinical Studies | Promising results in animal models for restoring inhibitory tone. | [79] |
Benzodiazepines | GABAA Receptor | Epilepsy | Established Treatment (e.g., RAMPART, LORACLOFT, ESETT, ARTEMIS-1) | Effective for acute seizure control but long-term use associated with side effects and tolerance. | [17,161] |
Gene Therapy | KCC2 | Down Syndrome | Preclinical | Potential for long-lasting restoration of Cl− homeostasis in specific neuronal populations. | [154] |
Oxytocin Administration | Oxytocin Receptor | ASD | Clinical Trials (e.g., NCT01944046, NCT03640156) | Shows some promise in improving social behaviors in some individuals, but long-term efficacy and optimal dosing need further investigation. | [130,131,162] |
References
- Casillas-Espinosa, P.M.; Powell, K.L.; O’Brien, T.J. Regulators of Synaptic Transmission: Roles in the Pathogenesis and Treatment of Epilepsy. Epilepsia 2012, 53, 41–58. [Google Scholar] [CrossRef]
- Kandel, E.R.; Koester, J.; Mack, S.; Siegelbaum, S. (Eds.) Principles of Neural Science, 6th ed.; McGraw Hill: New York, NY, USA, 2021; ISBN 978-1-259-64223-4. [Google Scholar]
- Bean, B.P. The Action Potential in Mammalian Central Neurons. Nat. Rev. Neurosci. 2007, 8, 451–465. [Google Scholar] [CrossRef]
- Raut, S.K.; Singh, K.; Sanghvi, S.; Loyo-Celis, V.; Varghese, L.; Singh, E.R.; Gururaja Rao, S.; Singh, H. Chloride Ions in Health and Disease. Biosci. Rep. 2024, 44, BSR20240029. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, N.; Hoebeek, F.E.; Peter, S.; De Zeeuw, C.I. Chloride Homeostasis in Neurons With Special Emphasis on the Olivocerebellar System: Differential Roles for Transporters and Channels. Front. Cell. Neurosci. 2018, 12, 101. [Google Scholar] [CrossRef]
- Payne, J.A.; Rivera, C.; Voipio, J.; Kaila, K. Cation–Chloride Co-Transporters in Neuronal Communication, Development and Trauma. Trends Neurosci. 2003, 26, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.-M.; Sun, J.-Y.; Li, Z.-Q.; Qiu, J.-C.; Wu, C.-F. Role of Voltage-Gated Chloride Channels in Epilepsy: Current Insights and Future Directions. Front. Pharmacol. 2025, 16, 1560392. [Google Scholar] [CrossRef]
- Liu, R.; Yang, X.; Liang, S.; Wang, J.; Zhang, G. Role of NKCC1 and KCC2 in Epilepsy: From Expression to Function. Front. Neurol. 2020, 10, 1407. [Google Scholar] [CrossRef]
- Keramidis, I.; McAllister, B.B.; Bourbonnais, J.; Wang, F.; Isabel, D.; Rezaei, E.; Sansonetti, R.; Degagne, P.; Hamel, J.P.; Nazari, M.; et al. Restoring Neuronal Chloride Extrusion Reverses Cognitive Decline Linked to Alzheimer’s Disease Mutations. Brain 2023, 146, 4903–4915. [Google Scholar] [CrossRef]
- Gogolla, N.; Leblanc, J.J.; Quast, K.B.; Südhof, T.C.; Fagiolini, M.; Hensch, T.K. Common Circuit Defect of Excitatory-Inhibitory Balance in Mouse Models of Autism. J. Neurodev. Disord. 2009, 1, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Giliberti, A.; Frisina, A.M.; Giustiniano, S.; Carbonaro, Y.; Roccella, M.; Nardello, R. Autism Spectrum Disorder and Epilepsy: Pathogenetic Mechanisms and Therapeutic Implications. J. Clin. Med. 2025, 14, 2431. [Google Scholar] [CrossRef]
- Serranilla, M.; Woodin, M.A. Striatal Chloride Dysregulation and Impaired GABAergic Signaling Due to Cation-Chloride Cotransporter Dysfunction in Huntington’s Disease. Front. Cell. Neurosci. 2022, 15, 817013. [Google Scholar] [CrossRef]
- Serranilla, M.; Pressey, J.C.; Woodin, M.A. Restoring Compromised Cl− in D2 Neurons of a Huntington’s Disease Mouse Model Rescues Motor Disability. J. Neurosci. 2024, 44, e0215242024. [Google Scholar] [CrossRef] [PubMed]
- Yelhekar, T. Chloride Homeostasis in Central Neurons; Umeå University: Umeå, Sweden, 2016; ISBN 978-91-7601-602-2. [Google Scholar]
- Delpire, E.; Staley, K.J. Novel Determinants of the Neuronal Cl− Concentration. J. Physiol. 2014, 592, 4099–4114. [Google Scholar] [CrossRef]
- Jentsch, T.J.; Stein, V.; Weinreich, F.; Zdebik, A.A. Molecular Structure and Physiological Function of Chloride Channels. Physiol. Rev. 2002, 82, 503. [Google Scholar] [CrossRef]
- Wang, Z.; Choi, K. Pharmacological Modulation of Chloride Channels as a Therapeutic Strategy for Neurological Disorders. Front. Physiol. 2023, 14, 1122444. [Google Scholar] [CrossRef]
- Jentsch, T.J. Chloride Channels: A Molecular Perspective. Curr. Opin. Neurobiol. 1996, 6, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Clar, D.; Maani, C. Physiology, Ligand Gated Chloride Channel; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Kaila, K. Ionic Basis of GABAA Receptor Channel Function in the Nervous System. Prog. Neurobiol. 1994, 42, 489–537. [Google Scholar] [CrossRef]
- Langosch, D.; Betz, H.; Becker, C. The Inhibitory Glycine Receptor: A Ligand-Gated Chloride Channel of the Central Nervous System. Eur. J. Biochem. 1990, 194, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Curtis, D.R.; Hösli, L.; Johnston, G.A.R.; Johnston, I.H. The Hyperpolarization of Spinal Motoneurones by Glycine and Related Amino Acids. Exp. Brain Res. 1968, 5, 235–258. [Google Scholar] [CrossRef]
- Werman, R.; Davidoff, R.A.; Aprison, M.H. Inhibitory of Glycine on Spinal Neurons in the Cat. J. Neurophysiol. 1968, 31, 81–95. [Google Scholar] [CrossRef]
- Doyon, N.; Vinay, L.; Prescott, S.A.; De Koninck, Y. Chloride Regulation: A Dynamic Equilibrium Crucial for Synaptic Inhibition. Neuron 2016, 89, 1157–1172. [Google Scholar] [CrossRef] [PubMed]
- Jentsch, T.J.; Pusch, M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol. Rev. 2018, 98, 1493–1590. [Google Scholar] [CrossRef]
- Fahlke, C. Ion Permeation and Selectivity in ClC-Type Chloride Channels. Am. J. Physiol. Ren. Physiol. 2001, 280, F748–F757. [Google Scholar] [CrossRef]
- Jentsch, T.J. CLC Chloride Channels and Transporters: From Genes to Protein Structure, Pathology and Physiology. Crit. Rev. Biochem. Mol. Biol. 2008, 43, 3–36. [Google Scholar] [CrossRef] [PubMed]
- Fahlke, C. Molecular Mechanisms of Ion Conduction in ClC-Type Chloride Channels: Lessons from Disease-Causing Mutations. Kidney Int. 2000, 57, 780–786. [Google Scholar] [CrossRef]
- Bi, M.M.; Hong, S.; Zhou, H.Y.; Wang, H.W.; Wang, L.N.; Zheng, Y.J. Chloride Channelopathies of ClC-2. Int. J. Mol. Sci. 2014, 15, 218–249. [Google Scholar] [CrossRef]
- Martinez-Rojas, V.A.; Juarez-Hernandez, L.J.; Musio, C. Ion Channels and Neuronal Excitability in Polyglutamine Neurodegenerative Diseases. Biomol. Concepts 2022, 13, 183–199. [Google Scholar] [CrossRef]
- Hauser, K.; Knapp, P.; Yarotskyy, V.; Lark, A.; Nass, S.; Marone, M.; Mcquiston, A.; Hahn, Y. Chloride Channels with CLC-1-like Properties Differentially Regulate the Excitability of Dopamine Receptor D1- and D2-Expressing Striatal Medium Spiny Neurons. Am. J. Physiol. Cell Physiol. 2022, 322, C395–C409. [Google Scholar] [CrossRef]
- Madison, D.V.; Malenka, R.C.; Nicoll, R.A. Phorbol Esters Block a Voltage-Sensitive Chloride Current in Hippocampal Pyramidal Cells. Nature 1986, 321, 695–697. [Google Scholar] [CrossRef] [PubMed]
- Staley, K.; Smith, R.; Schaack, J.; Wilcox, C.; Jentsch, T.J. Alteration of GABAA Receptor Function Following Gene Transfer of the CLC-2 Chloride Channel. Neuron 1996, 17, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Cutting, G.; Ross, B.; Enz, R. Expression of the Voltage-Gated Chloride Channel ClC-2 in Rod Bipolar Cells of the Rat Retina. J. Neurosci. 1999, 19, 9841–9847. [Google Scholar] [CrossRef]
- Guo, Z.; Lu, T.; Peng, L.; Cheng, H.; Peng, F.; Li, J.; Lu, Z.; Chen, S.; Qiu, W. CLCN2-Related Leukoencephalopathy: A Case Report and Review of the Literature. BMC Neurol. 2019, 19, 156. [Google Scholar] [CrossRef] [PubMed]
- Jeworutzki, E.; López-Hernández, T.; Capdevila-Nortes, X.; Sirisi, S.; Bengtsson, L.; Montolio, M.; Zifarelli, G.; Arnedo, T.; Müller, C.S.; Schulte, U.; et al. GlialCAM, a Protein Defective in a Leukodystrophy, Serves as a ClC-2 Cl− Channel Auxiliary Subunit. Neuron 2012, 73, 951–961. [Google Scholar] [CrossRef]
- Martínez-Rojas, V.A.; Jiménez-Garduño, A.M.; Michelatti, D.; Tosatto, L.; Marchioretto, M.; Arosio, D.; Basso, M.; Pennuto, M.; Musio, C. ClC-2-like Chloride Current Alterations in a Cell Model of Spinal and Bulbar Muscular Atrophy, a Polyglutamine Disease. J. Mol. Neurosci. 2021, 71, 662–674. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Cao, X.; He, F.; Zhang, W.; Wang, X.; Peng, P.; Xie, C.; Yin, F.; Li, D.; Li, J.; et al. Mutations in CLCN6 as a Novel Genetic Cause of Neuronal Ceroid Lipofuscinosis in Patients and a Murine Model. Ann. Neurol. 2024, 96, 608–624. [Google Scholar] [CrossRef]
- Hartzell, C.; Putzier, I.; Arreola, J. Calcium-activated chloride channels. Annu. Rev. Physiol. 2005, 67, 719–758. [Google Scholar] [CrossRef]
- Dutzler, R.; Paulino, C.; Lam, A.; Kalienkova, V.; Neldner, Y. Activation Mechanism of the Calcium-Activated Chloride Channel TMEM16A Revealed by Cryo-EM. Nature 2017, 552, 421–425. [Google Scholar] [CrossRef]
- Jin, X.; Shah, S.; Liu, Y.; Zhang, H.; Lees, M.; Fu, Z.; Lippiat, J.D.; Beech, D.J.; Sivaprasadarao, A.; Baldwin, S.A.; et al. Activation of the Cl− Channel ANO1 by Localized Calcium Signals in Nociceptive Sensory Neurons Requires Coupling with the IP3 Receptor. Sci. Signal. 2013, 6, ra73. [Google Scholar] [CrossRef]
- Wilke, B.U.; Kummer, K.K.; Leitner, M.G.; Kress, M. Chloride—The Underrated Ion in Nociceptors. Front. Neurosci. 2020, 14, 287. [Google Scholar] [CrossRef]
- Auzanneau, C.; Thoreau, V.; Kitzis, A.; Becq, F. A Novel Voltage-Dependent Chloride Current Activated by Extracellular Acidic pH in Cultured Rat Sertoli Cells. J. Biol. Chem. 2003, 278, 19230–19236. [Google Scholar] [CrossRef]
- Capurro, V.; Gianotti, A.; Caci, E.; Ravazzolo, R.; Galietta, L.J.V.; Zegarra-Moran, O. Functional Analysis of Acid-Activated Cl− Channels: Properties and Mechanisms of Regulation. Biochim. Biophys. Acta BBA Biomembr. 2015, 1848, 105–114. [Google Scholar] [CrossRef]
- Fairman, W.A.; Vandenberg, R.J.; Arriza, J.L.; Kavanaught, M.P.; Amara, S.G. An Excitatory Amino-Acid Transporter with Properties of a Ligand-Gated Chloride Channel. Nature 1995, 375, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, J.P.; Kahle, K.T.; Gamba, G. The SLC12 Family of Electroneutral Cation-Coupled Chloride Cotransporters. Mol. Aspects Med. 2013, 34, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Blaesse, P.; Airaksinen, M.S.; Rivera, C.; Kaila, K. Cation-Chloride Cotransporters and Neuronal Function. Neuron 2009, 61, 820–838. [Google Scholar] [CrossRef]
- Medina, I.; Friedel, P.; Rivera, C.; Kahle, K.T.; Kourdougli, N.; Uvarov, P.; Pellegrino, C. Current View on the Functional Regulation of the Neuronal K+-Cl− Cotransporter KCC2. Front. Cell. Neurosci. 2014, 8, 27. [Google Scholar] [CrossRef]
- Cherubini, E.; Martina, M.; Sciancalepore, M.; Strata, F. GABA Excites Immature CA3 Pyramidal Cells through Bicuculline-Sensitive and -Insensitive Chloride-Dependent Receptors. Perspect. Dev. Neurobiol. 1998, 5, 289–304. [Google Scholar]
- Ben-Ari, Y.; Khalilov, I.; Kahle, K.T.; Cherubini, E. The GABA Excitatory/Inhibitory Shift in Brain Maturation and Neurological Disorders. Neuroscientist 2012, 18, 467–486. [Google Scholar] [CrossRef] [PubMed]
- Dzhala, V.I.; Talos, D.M.; Sdrulla, D.A.; Brumback, A.C.; Mathews, G.C.; Benke, T.A.; Delpire, E.; Jensen, F.E.; Staley, K.J. NKCC1 Transporter Facilitates Seizures in the Developing Brain. Nat. Med. 2005, 11, 1205–1213. [Google Scholar] [CrossRef]
- Sun, L.; Yu, Z.; Wang, W.; Liu, X. Both NKCC1 and Anion Exchangers Contribute to Cl− Accumulation in Postnatal Forebrain Neuronal Progenitors. Eur. J. Neurosci. 2012, 35, 661–672. [Google Scholar] [CrossRef]
- Fiumelli, H.; Cancedda, L.; Poo, M. Modulation of GABAergic Transmission by Activity via Postsynaptic Ca2+-Dependent Regulation of KCC2 Function. Neuron 2005, 48, 773–786. [Google Scholar] [CrossRef]
- Fiumelli, H.; Briner, A.; Puskarjov, M.; Blaesse, P.; Belem, B.J.; Dayer, A.G.; Kaila, K.; Martin, J.-L.; Vutskits, L. An Ion Transport-Independent Role for the Cation-Chloride Cotransporter KCC2 in Dendritic Spinogenesis in Vivo. Cereb. Cortex 2013, 23, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Ben-Ari, Y. Excitatory Actions of Gaba during Development: The Nature of the Nurture. Nat. Rev. Neurosci. 2002, 3, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Schulte, J.T.; Wierenga, C.J.; Bruining, H. Chloride Transporters and GABA Polarity in Developmental, Neurological and Psychiatric Conditions. Neurosci. Biobehav. Rev. 2018, 90, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Engels, M.; Kalia, M.; Rahmati, S.; Petersilie, L.; Kovermann, P.; van Putten, M.J.A.M.; Rose, C.R.; Meijer, H.G.E.; Gensch, T.; Fahlke, C. Glial Chloride Homeostasis Under Transient Ischemic Stress. Front. Cell. Neurosci. 2021, 15, 735300. [Google Scholar] [CrossRef]
- Choi, I. SLC4A Transporters. Curr. Top. Membr. 2012, 70, 77–103. [Google Scholar] [CrossRef]
- Ruffin, V.A.; Salameh, A.I.; Boron, W.F.; Parker, M.D. Intracellular pH Regulation by Acid-Base Transporters in Mammalian Neurons. Front. Physiol. 2014, 5, 43. [Google Scholar] [CrossRef]
- Romero, M.F.; Chen, A.-P.; Parker, M.D.; Boron, W.F. The SLC4 Family of Bicarbonate Transporters. Mol. Aspects Med. 2013, 34, 159–182. [Google Scholar] [CrossRef]
- Maroofian, R.; Zamani, M.; Kaiyrzhanov, R.; Liebmann, L.; Karimiani, E.G.; Vona, B.; Huebner, A.K.; Calame, D.G.; Misra, V.K.; Sadeghian, S.; et al. Biallelic Variants in SLC4A10 Encoding a Sodium-Dependent Bicarbonate Transporter Lead to a Neurodevelopmental Disorder. Genet. Med. 2024, 26, 101034. [Google Scholar] [CrossRef]
- Fasham, J.; Huebner, A.K.; Liebmann, L.; Khalaf-Nazzal, R.; Maroofian, R.; Kryeziu, N.; Wortmann, S.B.; Leslie, J.S.; Ubeyratna, N.; Mancini, G.M.S.; et al. SLC4A10 Mutation Causes a Neurological Disorder Associated with Impaired GABAergic Transmission. Brain 2023, 146, 4547–4561. [Google Scholar] [CrossRef]
- Gurnett, C.A.; Veile, R.; Zempel, J.; Blackburn, L.; Lovett, M.; Bowcock, A. Disruption of Sodium Bicarbonate Transporter SLC4A10 in a Patient With Complex Partial Epilepsy and Mental Retardation. Arch. Neurol. 2008, 65, 550. [Google Scholar] [CrossRef]
- Gonzalez-Islas, C.; Chub, N.; Wenner, P. NKCC1 and AE3 Appear to Accumulate Chloride in Embryonic Motoneurons. J. Neurophysiol. 2009, 101, 507–518. [Google Scholar] [CrossRef]
- Hui, K.K.; Chater, T.E.; Goda, Y.; Tanaka, M. How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders. Front. Mol. Neurosci. 2022, 15, 893111. [Google Scholar] [CrossRef]
- Paredes, M.F.; James, D.; Gil-Perotin, S.; Kim, H.; Cotter, J.A.; Ng, C.; Sandoval, K.; Rowitch, D.H.; Xu, D.; McQuillen, P.S.; et al. Extensive Migration of Young Neurons into the Infant Human Frontal Lobe. Science 2016, 354, aaf7073. [Google Scholar] [CrossRef]
- Côme, E.; Blachier, S.; Gouhier, J.; Russeau, M.; Lévi, S. Lateral Diffusion of NKCC1 Contributes to Neuronal Chloride Homeostasis and Is Rapidly Regulated by the WNK Signaling Pathway. bioRxiv 2022. bioRxiv:2022.12.11.519958. [Google Scholar] [CrossRef]
- Awad, P.N.; Amegandjin, C.A.; Szczurkowska, J.; Carriço, J.N.; Fernandes do Nascimento, A.S.; Baho, E.; Chattopadhyaya, B.; Cancedda, L.; Carmant, L.; Di Cristo, G. KCC2 Regulates Dendritic Spine Formation in a Brain-Region Specific and BDNF Dependent Manner. Cereb. Cortex 2018, 28, 4049–4062. [Google Scholar] [CrossRef] [PubMed]
- Hamze, M.; Brier, C.; Buhler, E.; Zhang, J.; Medina, I.; Porcher, C. Regulation of Neuronal Chloride Homeostasis by Pro- and Mature Brain-Derived Neurotrophic Factor (BDNF) via KCC2 Cation–Chloride Cotransporters in Rat Cortical Neurons. Int. J. Mol. Sci. 2024, 25, 6253. [Google Scholar] [CrossRef] [PubMed]
- Boffi, J.C.; Knabbe, J.; Kaiser, M.; Kuner, T. KCC2-Dependent Steady-State Intracellular Chloride Concentration and pH in Cortical Layer 2/3 Neurons of Anesthetized and Awake Mice. Front. Cell. Neurosci. 2018, 12, 7. [Google Scholar] [CrossRef]
- Capilla-López, J.; Hernández, R.G.; Carrero-Rojas, G.; Calvo, P.M.; Alvarez, F.J.; De La Cruz, R.R.; Pastor, A.M. VEGF, but Not BDNF, Prevents the Downregulation of KCC2 Induced by Axotomy in Extraocular Motoneurons. Int. J. Mol. Sci. 2024, 25, 9942. [Google Scholar] [CrossRef]
- Abruzzo, P.M.; Panisi, C.; Marini, M. The Alteration of Chloride Homeostasis/GABAergic Signaling in Brain Disorders: Could Oxidative Stress Play a Role? Antioxidants 2021, 10, 1316. [Google Scholar] [CrossRef]
- Friedel, P.; Kahle, K.T.; Zhang, J.; Hertz, N.; Pisella, L.I.; Buhler, E.; Schaller, F.; Duan, J.; Khanna, A.R.; Bishop, P.N.; et al. WNK1-Regulated Inhibitory Phosphorylation of the KCC2 Cotransporter Maintains the Depolarizing Action of GABA in Immature Neurons. Sci. Signal. 2015, 8, ra65. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, M.I.H.; Huang, H.; Jiang, T.; Taheri, T.; Zhang, Z.; Sun, D. WNK-SPAK/OSR1-CCC Signaling in Ischemic Brain Damage. In Neuronal Chloride Transporters in Health and Disease; Elsevier: Amsterdam, The Netherlands, 2020; pp. 431–461. ISBN 978-0-12-815318-5. [Google Scholar]
- Pressey, J.C.; Mahadevan, V.; Woodin, M.A. KCC2 Is a Hub Protein That Balances Excitation and Inhibition. In Neuronal Chloride Transporters in Health and Disease; Elsevier: Amsterdam, The Netherlands, 2020; pp. 159–179. ISBN 978-0-12-815318-5. [Google Scholar]
- Perez-Sanchez, J.; Koninck, Y.D. Regulation of Chloride Gradients and Neural Plasticity. In Oxford Research Encyclopedia of Neuroscience; Oxford University Press: Oxford, UK, 2019; ISBN 978-0-19-026408-6. [Google Scholar]
- Glykys, J.; Dzhala, V.; Egawa, K.; Kahle, K.T.; Delpire, E.; Staley, K. Chloride Dysregulation, Seizures, and Cerebral Edema: A Relationship with Therapeutic Potential. Trends Neurosci. 2017, 40, 276–294. [Google Scholar] [CrossRef]
- Sørensen, A.T.; Ledri, M.; Melis, M.; Ledri, L.N.; Andersson, M.; Kokaia, M. Altered Chloride Homeostasis Decreases the Action Potential Threshold and Increases Hyperexcitability in Hippocampal Neurons. eNeuro 2017, 4, e0172-17. [Google Scholar] [CrossRef]
- Pressey, J.C.; de Saint-Rome, M.; Raveendran, V.A.; Woodin, M.A. Chloride Transporters Controlling Neuronal Excitability. Physiol. Rev. 2023, 103, 1095–1135. [Google Scholar] [CrossRef]
- Kano, M.; Rexhausen, U.; Dreessen, J.; Konnerth, A. Synaptic Excitation Produces a Long-Lasting Rebound Potentiation of Inhibitory Synaptic Signals in Cerebellar Purkinje Cells. Nature 1992, 356, 601–604. [Google Scholar] [CrossRef]
- Hirano, T.; Kawaguchi, S. Regulation and Functional Roles of Rebound Potentiation at Cerebellar Stellate Cell—Purkinje Cell Synapses. Front. Cell. Neurosci. 2014, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.S.; Mongin, A.A. The Signaling Role for Chloride in the Bidirectional Communication between Neurons and Astrocytes. Neurosci. Lett. 2019, 689, 33–44. [Google Scholar] [CrossRef]
- Heubl, M.; Zhang, J.; Pressey, J.C.; Awabdh, S.A.; Renner, M.; Gomez-Castro, F.; Moutkine, I.; Eugène, E.; Russeau, M.; Kahle, K.T.; et al. Gabaa Receptor Dependent Synaptic Inhibition Rapidly Tunes Kcc2 Activity via the Cl– Sensitive Wnk1 Kinase. Nat. Commun. 2017, 8, 1776. [Google Scholar] [CrossRef]
- Huang, H.; Song, S.; Banerjee, S.; Jiang, T.; Zhang, J.; Kahle, K.T.; Sun, D.; Zhang, Z. The WNK-SPAK/OSR1 Kinases and the Cation-Chloride Cotransporters as Therapeutic Targets for Neurological Diseases. Aging Dis. 2019, 10, 626. [Google Scholar] [CrossRef] [PubMed]
- Sakmann, B.; Neher, E. Patch Clamp Techniques for Studying Ionic Channels in Excitable Membranes. Annu. Rev. Physiol. 1984, 46, 455–472. [Google Scholar] [CrossRef]
- Hamill, O.P.; Marty, A.; Neher, E.; Sakmann, B.; Sigworth, F.J. Improved Patch-Clamp Techniques for High-Resolution Current Recording from Cells and Cell-Free Membrane Patches. Pflüg. Arch. Eur. J. Physiol. 1981, 391, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Ebihara, S.; Shirato, K.; Harata, N.; Akaike, N. Gramicidin-perforated Patch Recording: GABA Response in Mammalian Neurones with Intact Intracellular Chloride. J. Physiol. 1995, 484, 77–86. [Google Scholar] [CrossRef]
- Yelhekar, T.D.; Druzin, M.; Johansson, S. Contribution of Resting Conductance, GABAA-Receptor Mediated Miniature Synaptic Currents and Neurosteroid to Chloride Homeostasis in Central Neurons. eNeuro 2017, 4, ENEURO.0019-17.2017. [Google Scholar] [CrossRef]
- Sakmann, B.; Hamill, O.; Bormann, J. Patch-Clamp Measurements of Elementary Chloride Currents Activated by the Putative Inhibitory Transmitter GABA and Glycine in Mammalian Spinal Neurons. J. Neural Transm. Suppl. 1983, 18, 83–95. [Google Scholar]
- Sorota, S. Swelling-Induced Chloride-Sensitive Current in Canine Atrial Cells Revealed by Whole-Cell Patch-Clamp Method. Circ. Res. 1992, 70, 679–687. [Google Scholar] [CrossRef]
- Chen, B.; Nicol, G.; Cho, W.K. Electrophysiological Characterization of Volume-Activated Chloride Currents in Mouse Cholangiocyte Cell Line. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 287, G1158–G1167. [Google Scholar] [CrossRef]
- Yelhekar, T.D.; Druzin, M.; Karlsson, U.; Blomqvist, E.; Johansson, S. How to Properly Measure a Current-Voltage Relation?—Interpolation vs. Ramp Methods Applied to Studies of GABAA Receptors. Front. Cell. Neurosci. 2016, 10, 10. [Google Scholar] [CrossRef]
- Gray, M.; Santin, J.M. Series Resistance Errors in Whole-Cell Voltage Clamp Measured Directly with Dual Patch Clamp Recordings: Not as Bad as You Think. J. Neurophysiol. 2023, 129, 1177–1190. [Google Scholar] [CrossRef] [PubMed]
- Arosio, D.; Ratto, G.M. Twenty Years of Fluorescence Imaging of Intracellular Chloride. Front. Cell. Neurosci. 2014, 8, 258. [Google Scholar] [CrossRef] [PubMed]
- Sah, R.; Schwartz-Bloom, R.D. Optical Imaging Reveals Elevated Intracellular Chloride in Hippocampal Pyramidal Neurons after Oxidative Stress. J. Neurosci. 1999, 19, 9209–9217. [Google Scholar] [CrossRef] [PubMed]
- Kovalchuk, Y.; Garaschuk, O. Two-Photon Chloride Imaging Using MQAE In Vitro and In Vivo. Cold Spring Harb. Protoc. 2012, 2012, pdb.prot070037. [Google Scholar] [CrossRef]
- Gensch, T.; Untiet, V.; Franzen, A.; Kovermann, P.; Fahlke, C. Determination of Intracellular Chloride Concentrations by Fluorescence Lifetime Imaging. In Advanced Time-Correlated Single Photon Counting Applications; Becker, W., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 189–211. ISBN 978-3-319-14929-5. [Google Scholar]
- Lodovichi, C.; Ratto, G.M.; Trevelyan, A.J.; Arosio, D. Genetically Encoded Sensors for Chloride Concentration. J. Neurosci. Methods 2022, 368, 109455. [Google Scholar] [CrossRef]
- Bregestovski, P.; Arosio, D. Green Fluorescent Protein-Based Chloride Ion Sensors for In Vivo Imaging. In Fluorescent Proteins II; Jung, G., Ed.; Springer Series on Fluorescence; Springer: Berlin/Heidelberg, Germany, 2011; Volume 12, pp. 99–124. ISBN 978-3-642-23376-0. [Google Scholar]
- Herstel, L.J.; Peerboom, C.; Uijtewaal, S.; Selemangel, D.; Karst, H.; Wierenga, C.J. Using SuperClomeleon to Measure Changes in Intracellular Chloride during Development and after Early Life Stress. eNeuro 2022, 9, ENEURO.0416-22.2022. [Google Scholar] [CrossRef]
- Kuner, T.; Augustine, G.J. A Genetically Encoded Ratiometric Indicator for Chloride: Capturing Chloride Transients in Cultured Hippocampal Neurons. Neuron 2000, 27, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Jose, M.; Nair, D.K.; Reissner, C.; Hartig, R.; Zuschratter, W. Photophysics of Clomeleon by FLIM: Discriminating Excited State Reactions along Neuronal Development. Biophys. J. 2007, 92, 2237–2254. [Google Scholar] [CrossRef]
- Arosio, D.; Ricci, F.; Marchetti, L.; Gualdani, R.; Albertazzi, L.; Beltram, F. Simultaneous Intracellular Chloride and pH Measurements Using a GFP-Based Sensor. Nat. Methods 2010, 7, 516–518. [Google Scholar] [CrossRef]
- Raimondo, J.V.; Joyce, B.; Kay, L.; Schlagheck, T.; Newey, S.E.; Srinivas, S.; Akerman, C.J. A Genetically-Encoded Chloride and pH Sensor for Dissociating Ion Dynamics in the Nervous System. Front. Cell. Neurosci. 2013, 7, 202. [Google Scholar] [CrossRef] [PubMed]
- Mukhtarov, M.; Liguori, L.; Waseem, T.; Rocca, F.; Buldakova, S.; Arosio, D.; Bregestovski, P. Calibration and Functional Analysis of Three Genetically Encoded Cl−/pH Sensors. Front. Mol. Neurosci. 2013, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Paredes, J.M.; Idilli, A.I.; Mariotti, L.; Losi, G.; Arslanbaeva, L.R.; Sato, S.S.; Artoni, P.; Szczurkowska, J.; Cancedda, L.; Ratto, G.M.; et al. Synchronous Bioimaging of Intracellular pH and Chloride Based on LSS Fluorescent Protein. ACS Chem. Biol. 2016, 11, 1652–1660. [Google Scholar] [CrossRef]
- Sulis Sato, S.; Artoni, P.; Landi, S.; Cozzolino, O.; Parra, R.; Pracucci, E.; Trovato, F.; Szczurkowska, J.; Luin, S.; Arosio, D.; et al. Simultaneous Two-Photon Imaging of Intracellular Chloride Concentration and pH in Mouse Pyramidal Neurons in Vivo. Proc. Natl. Acad. Sci. USA 2017, 114, E8770–E8779. [Google Scholar] [CrossRef]
- Diuba, A.V.; Samigullin, D.V.; Kaszas, A.; Zonfrillo, F.; Malkov, A.; Petukhova, E.; Casini, A.; Arosio, D.; Esclapez, M.; Gross, C.T.; et al. CLARITY Analysis of the Cl/pH Sensor Expression in the Brain of Transgenic Mice. Neuroscience 2020, 439, 181–194. [Google Scholar] [CrossRef]
- Maset, A.; Galla, L.; Francia, S.; Cozzolino, O.; Capasso, P.; Goisis, R.C.; Losi, G.; Lombardo, A.; Ratto, G.M.; Lodovichi, C. Altered Cl− Homeostasis Hinders Forebrain GABAergic Interneuron Migration in a Mouse Model of Intellectual Disability. Proc. Natl. Acad. Sci. USA 2021, 118, e2016034118. [Google Scholar] [CrossRef] [PubMed]
- Ponomareva, D.; Petukhova, E.; Bregestovski, P. Simultaneous Monitoring of pH and Chloride (Cl−) in Brain Slices of Transgenic Mice. Int. J. Mol. Sci. 2021, 22, 13601. [Google Scholar] [CrossRef]
- Salto, R.; Giron, M.D.; Puente-Muñoz, V.; Vilchez, J.D.; Espinar-Barranco, L.; Valverde-Pozo, J.; Arosio, D.; Paredes, J.M. New Red-Emitting Chloride-Sensitive Fluorescent Protein with Biological Uses. ACS Sens. 2021, 6, 2563–2573. [Google Scholar] [CrossRef] [PubMed]
- Tutol, J.N.; Ong, W.S.Y.; Phelps, S.M.; Peng, W.; Goenawan, H.; Dodani, S.C. Engineering the ChlorON Series: Turn-On Fluorescent Protein Sensors for Imaging Labile Chloride in Living Cells. ACS Cent. Sci. 2024, 10, 77–86. [Google Scholar] [CrossRef]
- Shariati, K.; Zhang, Y.; Giubbolini, S.; Parra, R.; Liang, S.; Edwards, A.; Hejtmancik, J.F.; Ratto, G.M.; Arosio, D.; Ku, G. A Superfolder Green Fluorescent Protein-Based Biosensor Allows Monitoring of Chloride in the Endoplasmic Reticulum. ACS Sens. 2022, 7, 2218–2224. [Google Scholar] [CrossRef]
- Cao, C.; Zhu, R.; Zhou, S.; Zhao, Z.; Lin, C.; Liu, S.; Peng, L.; Subach, F.V.; Piatkevich, K.D.; Zou, P. A Photostable Genetically Encoded Voltage Indicator for Imaging Neural Activities in Tissue and Live Animals. bioRxiv 2025. [Google Scholar] [CrossRef]
- Weaver, C.D.; Harden, D.; Dworetzky, S.I.; Robertson, B.; Knox, R.J. A Thallium-Sensitive, Fluorescence-Based Assay for Detecting and Characterizing Potassium Channel Modulators in Mammalian Cells. SLAS Discov. 2004, 9, 671–677. [Google Scholar] [CrossRef]
- Zhang, S.; Meor Azlan, N.F.; Josiah, S.S.; Zhou, J.; Zhou, X.; Jie, L.; Zhang, Y.; Dai, C.; Liang, D.; Li, P.; et al. The Role of SLC12A Family of Cation-Chloride Cotransporters and Drug Discovery Methodologies. J. Pharm. Anal. 2023, 13, 1471–1495. [Google Scholar] [CrossRef]
- Dvorak, V.; Wiedmer, T.; Ingles-Prieto, A.; Altermatt, P.; Batoulis, H.; Bärenz, F.; Bender, E.; Digles, D.; Dürrenberger, F.; Heitman, L.H.; et al. An Overview of Cell-Based Assay Platforms for the Solute Carrier Family of Transporters. Front. Pharmacol. 2021, 12, 722889. [Google Scholar] [CrossRef]
- Weiss, S.A. Chloride Ion Dysregulation in Epileptogenic Neuronal Networks. Neurobiol. Dis. 2023, 177, 106000. [Google Scholar] [CrossRef] [PubMed]
- Coulter, D.A.; Hsu, F.-C.; Takano, H. Prolonged Hyperactivity Elicits Massive and Persistent Chloride Ion Redistribution in Subsets of Cultured Hippocampal Dentate Granule Cells. bioRxiv 2024. [Google Scholar] [CrossRef]
- Kurki, S.N.; Kaila, K.; Voipio, J.; Ala-Kurikka, T.; Virtanen, M.A.; Srinivasan, R.; Laine, J. Acute Neuroinflammation Leads to Disruption of Neuronal Chloride Regulation and Consequent Hyperexcitability in the Dentate Gyrus. Cell Rep. 2023, 42, 113379. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Bose, S.; Stauber, T. Neurodegeneration Upon Dysfunction of Endosomal/Lysosomal CLC Chloride Transporters. Front. Cell Dev. Biol. 2021, 9, 639231. [Google Scholar] [CrossRef]
- Saint-Martin, C.; Gauvain, G.; Teodorescu, G.; Gourfinkel-An, I.; Fedirko, E.; Weber, Y.G.; Maljevic, S.; Ernst, J.-P.; Garcia-Olivares, J.; Fahlke, C.; et al. Two Novel CLCN2 Mutations Accelerating Chloride Channel Deactivation Are Associated with Idiopathic Generalized Epilepsy. Hum. Mutat. 2009, 30, 397–405. [Google Scholar] [CrossRef]
- Zhu, L.; Polley, N.; Mathews, G.C.; Delpire, E. NKCC1 and KCC2 Prevent Hyperexcitability in the Mouse Hippocampus. Epilepsy Res. 2008, 79, 201–212. [Google Scholar] [CrossRef][Green Version]
- Akita, T.; Fukuda, A. Intracellular Cl− Dysregulation Causing and Caused by Pathogenic Neuronal Activity. Pflüg. Arch. Eur. J. Physiol. 2020, 472, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Lam, P.; Vinnakota, C.; Guzmán, B.C.-F.; Newland, J.; Peppercorn, K.; Tate, W.P.; Waldvogel, H.J.; Faull, R.L.M.; Kwakowsky, A. Beta-Amyloid (Aβ1-42) Increases the Expression of NKCC1 in the Mouse Hippocampus. Molecules 2022, 27, 2440. [Google Scholar] [CrossRef]
- Chen, M.; Wang, J.; Jiang, J.; Zheng, X.; Justice, N.J.; Wang, K.; Ran, X.; Li, Y.; Huo, Q.; Zhang, J.; et al. APP Modulates KCC2 Expression and Function in Hippocampal GABAergic Inhibition. eLife 2017, 6, e20142. [Google Scholar] [CrossRef] [PubMed]
- Doshina, A.; Gourgue, F.; Onizuka, M.; Opsomer, R.; Wang, P.; Ando, K.; Tasiaux, B.; Dewachter, I.; Kienlen-Campard, P.; Brion, J.-P.; et al. Cortical Cells Reveal APP as a New Player in the Regulation of GABAergic Neurotransmission. Sci. Rep. 2017, 7, 370. [Google Scholar] [CrossRef]
- Lam, P.; Newland, J.; Faull, R.L.M.; Kwakowsky, A. Cation-Chloride Cotransporters KCC2 and NKCC1 as Therapeutic Targets in Neurological and Neuropsychiatric Disorders. Molecules 2023, 28, 1344. [Google Scholar] [CrossRef]
- Cellot, G.; Cherubini, E. GABAergic Signaling as Therapeutic Target for Autism Spectrum Disorders. Front. Pediatr. 2014, 2, 70. [Google Scholar] [CrossRef] [PubMed]
- Rivière, P. Autism: Birth Hormone May Control the Expression of the Syndrome in Animals. The Inserm Newsroom, 6 February 2014. [Google Scholar]
- Tyzio, R.; Nardou, R.; Ferrari, D.C.; Tsintsadze, T.; Shahrokhi, A.; Eftekhari, S.; Khalilov, I.; Tsintsadze, V.; Brouchoud, C.; Chazal, G.; et al. Oxytocin-Mediated GABA Inhibition During Delivery Attenuates Autism Pathogenesis in Rodent Offspring. Science 2014, 343, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Dargaei, Z.; Bang, J.Y.; Mahadevan, V.; Khademullah, C.S.; Bedard, S.; Parfitt, G.M.; Kim, J.C.; Woodin, M.A. Restoring GABAergic Inhibition Rescues Memory Deficits in a Huntington’s Disease Mouse Model. Proc. Natl. Acad. Sci. USA 2018, 115, E1618–E1626. [Google Scholar] [CrossRef]
- Deidda, G.; Parrini, M.; Naskar, S.; Bozarth, I.F.; Contestabile, A.; Cancedda, L. Reversing Excitatory GABA A R Signaling Restores Synaptic Plasticity and Memory in a Mouse Model of Down Syndrome. Nat. Med. 2015, 21, 318–326. [Google Scholar] [CrossRef]
- Deidda, G.; Parrini, M.; Naskar, S.; Bozarth, I.F.; Contestabile, A.; Cancedda, L. Excitatory GABAergic Transmission Impairs Synaptic Plasticity and Memory in Down Syndrome. Int. J. Dev. Neurosci. 2015, 47, 36. [Google Scholar] [CrossRef]
- Shiang, R.; Ryan, S.G.; Zhu, Y.-Z.; Hahn, A.F.; O’Connell, P.; Wasmuth, J.J. Mutations in the A1 Subunit of the Inhibitory Glycine Receptor Cause the Dominant Neurologic Disorder, Hyperekplexia. Nat. Genet. 1993, 5, 351–358. [Google Scholar] [CrossRef]
- Vermeer, S.; Hoischen, A.; Meijer, R.P.P.; Gilissen, C.; Neveling, K.; Wieskamp, N.; De Brouwer, A.; Koenig, M.; Anheim, M.; Assoum, M.; et al. Targeted Next-Generation Sequencing of a 12.5 Mb Homozygous Region Reveals ANO10 Mutations in Patients with Autosomal-Recessive Cerebellar Ataxia. Am. J. Hum. Genet. 2010, 87, 813–819. [Google Scholar] [CrossRef]
- Cohen, I.; Navarro, V.; Clemenceau, S.; Baulac, M.; Miles, R. On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro. Science 2002, 298, 1418–1421. [Google Scholar] [CrossRef]
- Deidda, G.; Bozarth, I.F.; Cancedda, L. Modulation of GABAergic Transmission in Development and Neurodevelopmental Disorders: Investigating Physiology and Pathology to Gain Therapeutic Perspectives. Front. Cell. Neurosci. 2014, 8, 119. [Google Scholar] [CrossRef]
- Papp, E.; Rivera, C.; Kaila, K.; Freund, T.F. Relationship between Neuronal Vulnerability and Potassium-Chloride Cotransporter 2 Immunoreactivity in Hippocampus Following Transient Forebrain Ischemia. Neuroscience 2008, 154, 677–689. [Google Scholar] [CrossRef]
- Pond, B.B.; Berglund, K.; Kuner, T.; Feng, G.; Augustine, G.J.; Schwartz-Bloom, R.D. The Chloride Transporter Na(+)-K(+)-Cl− Cotransporter Isoform-1 Contributes to Intracellular Chloride Increases after in Vitro Ischemia. J. Neurosci. 2006, 26, 1396–1406. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Rikhye, R.V.; Breton-Provencher, V.; Tang, X.; Li, C.; Li, K.; Runyan, C.A.; Fu, Z.; Jaenisch, R.; Sur, M. Jointly Reduced Inhibition and Excitation Underlies Circuit-Wide Changes in Cortical Processing in Rett Syndrome. Proc. Natl. Acad. Sci. USA 2016, 113, E7287–E7296. [Google Scholar] [CrossRef]
- Currin, C.B.; Trevelyan, A.J.; Akerman, C.J.; Raimondo, J.V. Chloride Dynamics Alter the Input-Output Properties of Neurons. PLoS Comput. Biol. 2020, 16, e1007932. [Google Scholar] [CrossRef]
- Bachiller, S.; Hidalgo, I.; Garcia, M.G.; Boza-Serrano, A.; Paulus, A.; Denis, Q.; Haikal, C.; Manouchehrian, O.; Klementieva, O.; Li, J.Y.; et al. Early-Life Stress Elicits Peripheral and Brain Immune Activation Differently in Wild Type and 5xFAD Mice in a Sex-Specific Manner. J. Neuroinflamm. 2022, 19, 151. [Google Scholar] [CrossRef]
- Reed, E.G.; Keller-Norrell, P.R. Minding the Gap: Exploring Neuroinflammatory and Microglial Sex Differences in Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 17377. [Google Scholar] [CrossRef]
- Löscher, W.; Puskarjov, M.; Kaila, K. Cation-Chloride Cotransporters NKCC1 and KCC2 as Potential Targets for Novel Antiepileptic and Antiepileptogenic Treatments. Neuropharmacology 2013, 69, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Huang, C.-C.; Dai, Y.; Luo, Q.; Ji, Y.; Wang, K.; Deng, S.; Yu, J.; Xu, M.; Du, X.; et al. Symptom Improvement in Children with Autism Spectrum Disorder Following Bumetanide Administration Is Associated with Decreased GABA/Glutamate Ratios. Transl. Psychiatry 2020, 10, 9. [Google Scholar] [CrossRef]
- Savardi, A.; Borgogno, M.; Vivo, M.D.; Cancedda, L. Pharmacological Tools to Target NKCC1 in Brain Disorders. Trends Pharmacol. Sci. 2021, 42, 1009–1034. [Google Scholar] [CrossRef]
- Ben-Ari, Y. NKCC1 Chloride Importer Antagonists Attenuate Many Neurological and Psychiatric Disorders. Trends Neurosci. 2017, 40, 536–554. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W.; Kaila, K. CNS Pharmacology of NKCC1 Inhibitors. Neuropharmacology 2022, 205, 108910. [Google Scholar] [CrossRef]
- Brandt, C.; Seja, P.; Töllner, K.; Römermann, K.; Hampel, P.; Kalesse, M.; Kipper, A.; Feit, P.W.; Lykke, K.; Toft-Bertelsen, T.L.; et al. Bumepamine, a Brain-Permeant Benzylamine Derivative of Bumetanide, Does Not Inhibit NKCC1 but Is More Potent to Enhance Phenobarbital’s Anti-Seizure Efficacy. Neuropharmacology 2018, 143, 186–204. [Google Scholar] [CrossRef]
- Gagnon, M.; Bergeron, M.J.; Lavertu, G.; Castonguay, A.; Tripathy, S.; Bonin, R.P.; Perez-Sanchez, J.; Boudreau, D.; Wang, B.; Dumas, L.; et al. Chloride Extrusion Enhancers as Novel Therapeutics for Neurological Diseases. Nat. Med. 2013, 19, 1524–1528. [Google Scholar] [CrossRef]
- Tang, B.L. The Expanding Therapeutic Potential of Neuronal KCC2. Cells 2020, 9, 240. [Google Scholar] [CrossRef]
- Cai, J.; Wu, Z.; Wang, G.; Zhao, X.; Wang, X.; Wang, B.H.; Yu, J.; Liu, X.; Wang, Y. The Suppressive Effect of the Specific KCC2 Modulator CLP290 on Seizure in Mice. Epilepsy Res. 2024, 203, 107365. [Google Scholar] [CrossRef]
- Parrini, M.; Naskar, S.; Alberti, M.; Colombi, I.; Morelli, G.; Rocchi, A.; Nanni, M.; Piccardi, F.; Charles, S.; Ronzitti, G.; et al. Restoring Neuronal Chloride Homeostasis with Anti-NKCC1 Gene Therapy Rescues Cognitive Deficits in a Mouse Model of Down Syndrome. Mol. Ther. 2021, 29, 3072–3092. [Google Scholar] [CrossRef]
- Li, L.; Chen, S.-R.; Chen, H.; Wen, L.; Hittelman, W.N.; Xie, J.-D.; Pan, H.-L. Chloride Homeostasis Critically Regulates Synaptic NMDA Receptor Activity in Neuropathic Pain. Cell Rep. 2016, 15, 1376–1383. [Google Scholar] [CrossRef]
- Watanabe, M.; Fukuda, A. Development and Regulation of Chloride Homeostasis in the Central Nervous System. Front. Cell. Neurosci. 2015, 9, 371. [Google Scholar] [CrossRef]
- Ciofani, G.; Campisi, M.; Mattu, C.; Kamm, R.D.; Chiono, V.; Raynold, A.A.M.; Freitas, J.S.; Redolfi Riva, E.; Micera, S.; Pucci, C.; et al. Roadmap on Nanomedicine for the Central Nervous System. J. Phys. Mater. 2023, 6, 022501. [Google Scholar] [CrossRef]
- Lemonnier, E.; Degrez, C.; Phelep, M.; Tyzio, R.; Josse, F.; Grandgeorge, M.; Hadjikhani, N.; Ben-Ari, Y. A Randomised Controlled Trial of Bumetanide in the Treatment of Autism in Children. Transl. Psychiatry 2012, 2, e202. [Google Scholar] [CrossRef]
- Fuentes, J.; Parellada, M.; Georgoula, C.; Oliveira, G.; Marret, S.; Crutel, V.; Albarran, C.; Lambert, E.; Pénélaud, P.-F.; Ravel, D.; et al. Bumetanide Oral Solution for the Treatment of Children and Adolescents with Autism Spectrum Disorder: Results from Two Randomized Phase III Studies. Autism Res. Off. J. Int. Soc. Autism Res. 2023, 16, 2021–2034. [Google Scholar] [CrossRef]
- Erickson, C.A.; Perez-Cano, L.; Pedapati, E.V.; Painbeni, E.; Bonfils, G.; Schmitt, L.M.; Sachs, H.; Nelson, M.; De Stefano, L.; Westerkamp, G.; et al. Safety, Tolerability, and EEG-Based Target Engagement of STP1 (PDE3,4 Inhibitor and NKCC1 Antagonist) in a Randomized Clinical Trial in a Subgroup of Patients with ASD. Biomedicines 2024, 12, 1430. [Google Scholar] [CrossRef] [PubMed]
- Silbergleit, R.; Durkalski, V.; Lowenstein, D.; Conwit, R.; Pancioli, A.; Palesch, Y.; Barsan, W. Intramuscular versus Intravenous Therapy for Prehospital Status Epilepticus. N. Engl. J. Med. 2012, 366, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Sikich, L.; Kolevzon, A.; King, B.H.; McDougle, C.J.; Sanders, K.B.; Kim, S.-J.; Spanos, M.; Chandrasekhar, T.; Trelles, M.D.P.; Rockhill, C.M.; et al. Intranasal Oxytocin in Children and Adolescents with Autism Spectrum Disorder. N. Engl. J. Med. 2021, 385, 1462–1473. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arosio, D.; Musio, C. Chloride Homeostasis in Neuronal Disorders: Bridging Measurement to Therapy. Life 2025, 15, 1461. https://doi.org/10.3390/life15091461
Arosio D, Musio C. Chloride Homeostasis in Neuronal Disorders: Bridging Measurement to Therapy. Life. 2025; 15(9):1461. https://doi.org/10.3390/life15091461
Chicago/Turabian StyleArosio, Daniele, and Carlo Musio. 2025. "Chloride Homeostasis in Neuronal Disorders: Bridging Measurement to Therapy" Life 15, no. 9: 1461. https://doi.org/10.3390/life15091461
APA StyleArosio, D., & Musio, C. (2025). Chloride Homeostasis in Neuronal Disorders: Bridging Measurement to Therapy. Life, 15(9), 1461. https://doi.org/10.3390/life15091461