Indications and Mechanisms of Action of the Main Treatment Modalities for Non-Melanoma Skin Cancer
Abstract
1. Introduction
2. Epidemiology
3. Mechanisms of Action of Imiquimod in the Treatment of Basal Cell Carcinoma and Actinic Keratosis
3.1. Introduction
3.2. Immune Activation via Toll-like Receptors (TLRs)
3.3. Stimulation of Adaptive Immunity
3.4. Direct Pro-Apoptotic Effects on Tumor Cells
3.5. Tumor-Selective Effects
3.6. Clinical Implications and Outcomes
3.7. Summary of Imiquimod Mechanisms of Action and Selection for Treatment
4. Conventional Surgery
5. Mohs Micrographic Surgery (MMS)
The Pathologist’s Role in Mohs Micrographic Surgery
6. Local Reconstruction
7. Mohs Micrographic Surgery for Basal Cell Cancer (BCC)
8. Mohs Micrographic Surgery (MMS) for Other Types of Skin Cancer
9. Main Indications for Mohs Micrographic Surgery (MMS)
- Location of the TumorIn situations where important structures from a functional or even aesthetic point of view are very close, making it difficult to use the safety margin concept:
- o
- Any tumor on the face (close to the eyelids, lacrimal caruncle, external auditory canal, nose, especially the free edge of the nasal wing, eyebrows, chin, lips, ears)
- o
- Forehead (scalp, temporal region)
- o
- Hands (including nail units)
- o
- Feet
- o
- Legs (region with higher chances of postoperative wound dehiscence)
- o
- Genitalia (perineal, perianal)
- o
- Nipples/areola, hands, feet, ankles, nail units
- Patient characteristics
- o
- Immunocompromised
- o
- Genetic syndromes related to skin cancer
- o
- Prior Radiation therapy
- Tumor Characteristics
- o
- Recurrent skin cancer
- o
- Tumor with poor clinical border delimitation.
- o
- BCCs with an infiltrative histological type, especially sclerodermiform carcinomas
- o
- Tumors with a diameter greater than 2 cm or that have been evolving for more than two years.
10. Management After Skin Cancer Removal Including Drugs to Prevent Flap and Skin Graft Failures
11. Immunotherapy for Non-Melanoma Skin Cancer
12. Mechanisms of Action of Radiotherapy in the Treatment of Basal Cell Carcinoma and Actinic Keratosis
12.1. Direct DNA Damage
12.2. Indirect Effects Through Reactive Oxygen Species (ROS)
12.3. Impact on Tumor Vasculature
12.4. Immunogenic Cell Death and Immune Activation
12.5. Antigen Presentation and T-Cell Activation
12.6. Macrophage-Mediated Clearance
12.7. Clinical Considerations
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TNF-α | Tumor necrosis factor-alpha |
Ak | Actinic keratosis |
BCC | Basal cell carcinomas |
ER | Endoplasmic reticulum (ER) |
FDA | Food and Drug Administration (FDA) |
IFN-α | Interferon-alpha |
IL-12 | Interleukin-12 |
IL-6 | Interleukin-6 |
IRFs | Interferon regulatory factors |
MMS | Mohs Micrographic Surgery (MMS) |
MYD88 | Myeloid differentiation primary response 88 |
MyD88 | Myeloid differentiation primary response gene 88 |
NF-κB | Nuclear factor kappa B |
NK | Natural killer |
p38 MAPK | p38 mitogen-activated protein kinases |
sBCC | Superficial basal cell carcinoma |
SCC | Squamous cell carcinoma |
TLR7/8 | Toll-like receptors 7 and 8 |
References
- Rogers, H.W.; Weinstock, M.A.; Feldman, S.R.; Coldiron, B.M. Incidence estimate of nonmelanoma skin cancer (Keratinocyte Carcinomas) in the U.S. population, 2012. JAMA Dermatol. 2015, 151, 1081–1086. [Google Scholar] [CrossRef]
- Bittner, G.C.; Cerci, F.B.; Kubo, E.M.; Tolkachjov, S.N. Mohs micrographic surgery: A review of indications, technique, outcomes, and considerations. An. Bras. Dermatol. 2021, 96, 263–277. [Google Scholar] [CrossRef]
- Kash, N.; Silapunt, S. A review of emerging and non-US FDA-approved topical agents for the treatment of basal cell carcinoma. Future Oncol. 2021, 17, 3111–3132. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Wang, L.; Srivastava, D.; Nijhawan, R.I. Mohs micrographic surgery for periocular skin cancer: A single-institution experience. Arch. Dermatol. Res. 2023, 315, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, S.; Hoashi, T.; Tone, Y.; Park, A.; Otani, S.; Kanda, N.; Saeki, H. Narrow Histopathological Margins are Acceptable in Surgical Resection of Basal Cell Carcinoma in Japanese: A Single-Center Retrospective Study. J. Nippon Med. Sch. 2024, 91, 296–306. [Google Scholar] [CrossRef]
- Schell, A.E.; Russell, M.A.; Park, S.S. Suggested excisional margins for cutaneous malignant lesions based on Mohs micrographic surgery. JAMA Facial Plast. Surg. 2013, 15, 337–343. [Google Scholar] [CrossRef]
- Karampinis, E.; Koumaki, D.; Sgouros, D.; Nechalioti, P.M.; Toli, O.; Pappa, G.; Papadakis, M.; Georgopoulou, K.E.; Schulze-Roussaki, A.V.; Kouretas, D. Non-Melanoma Skin Cancer: Assessing the Systemic Burden of the Disease. Cancers 2025, 17, 703. [Google Scholar] [CrossRef]
- Hanna, E.; Abadi, R.; Abbas, O. Imiquimod in dermatology: An overview. Int. J. Dermatol. 2016, 55, 831–844. [Google Scholar] [CrossRef]
- Schön, M.; Bong, A.B.; Drewniok, C.; Herz, J.; Geilen, C.C.; Reifenberger, J.; Benninghoff, B.; Slade, H.B.; Gollnick, H.; Schön, M.P. Tumor-selective induction of apoptosis and the small-molecule immune response modifier imiquimod. J. Natl. Cancer Inst. 2003, 95, 1138–1149. [Google Scholar] [CrossRef]
- Huang, S.W.; Chang, S.H.; Mu, S.W.; Jiang, H.Y.; Wang, S.T.; Kao, J.K.; Huang, J.L.; Wu, C.H.; Chen, I.J.; Shieh, J.J. Imiquimod activates p53-dependent apoptosis in a human basal cell carcinoma cell line. J. Dermatol. Sci. 2016, 81, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Bialy, T.L.; Whalen, J.; Veledar, E.; Lafreniere, D.; Spiro, J.; Chartier, T.; Chen, S.C. Mohs micrographic surgery vs traditional surgical excision: A cost comparison analysis. Arch. Dermatol. 2004, 140, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Mohs, F.E. Cancer of the eyelids. Bull. Am. Coll. Chemosurg. 1970, 3, 10–11. [Google Scholar]
- Swanson, N.A.; Taylor, W.B.; Tromovitch, T.A. The evolution of Mohs surgery. J. Dermatol. Serf. Oncol. 1982, 8, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Wong, E.; Axibal, E.; Brown, M. Mohs Micrographic Surgery. Facial Plast. Surg. Clin. N. Am. 2019, 27, 15–34. [Google Scholar] [CrossRef]
- Breuninger, H.; Dietz, K. Prediction of subclinical tumor infiltration in basal cell carcinoma. J. Dermatol. Surg. Oncol. 1991, 26, 545–549. [Google Scholar] [CrossRef]
- Steinman, H.K.; Gross, K.G.; Steinman, H.K.; Rapini, R.P. Mohs Surgical Techniques. In Mohs Surgery Fundamentals and Techniques; Mosby: St Louis, MO, USA, 1999; pp. 49–72. [Google Scholar]
- Jimenez, F.J.; Grichnik, J.M.; Buchanan, M.D.; Clark, R.E. Immunohistochemical techniques in Mohs micrographic surgery: Their potential use in the detection of neoplastic cells masked by inflammation. J. Am. Acad. Dermatol. 1995, 32, 89–94. [Google Scholar] [CrossRef]
- Long, T.; Dunn, A.; Hill, D.; Goldberg, L.H.; Akin, R. The Role of Toluidine Blue in Mohs Micrographic Surgery: A Systematic Review. Cutis 2023, 112, E6–E11. [Google Scholar] [CrossRef]
- Mirza, F.N.; Haq, Z.; Abdi, P.; Diaz, M.J.; Libby, T.J. Artificial Intelligence for Mohs and Dermatologic Surgery: A Systematic Review and Meta-Analysis. Dermatol. Surg. 2024, 50, 799–806. [Google Scholar] [CrossRef]
- Mosterd, K.; Krekels, G.A.; Nieman, F.H.; Ostertag, J.U.; Essers, B.A.S.; Dirksen, C.D.; Steijlen, P.M.; Vermeulen, A.; Neumann, H.; Kelleners-Smeets, N.W.J. Surgical excision versus Mohs’ micrographic surgery for primary and recurrent basal-cell carcinoma of the face: A prospective randomised controlled trial with 5-years’ follow-up. Lancet Oncol. 2008, 9, 1149–1156. [Google Scholar] [CrossRef]
- Leibovitch, I.; Huilgol, S.C.; Selva, D.; Richards, S.; Paver, R. Basal cell carcinoma treated with Mohs surgery in Australia II. Outcome at 5-year follow-up. J. Am. Acad. Dermatol. 2005, 53, 452–457. [Google Scholar] [CrossRef]
- Rowe, D.E.; Carroll, R.J.; Day, C.L., Jr. Long-term recurrence rates in previously untreated (primary) basal cell carcinoma: Implications for patient follow-up. J. Dermatol. Surg. Oncol. 1989, 15, 315–328. [Google Scholar] [CrossRef]
- Robins, P. Chemosurgery: My 15 years of experience. J. Dermatol. Surg. Oncol. 1981, 7, 779–789. [Google Scholar] [CrossRef]
- Rowe, D.E.; Carroll, R.J.; Day, C.L., Jr. Mohs surgery is the treatment of choice for recurrent (previously treated) basal cell carcinoma. J. Dermatol. Surg. Oncol. 1989, 15, 424–431. [Google Scholar] [CrossRef]
- Lacerda, P.N.; Lange, E.P.; Luna, N.M.; Miot, H.A.; Abbade, L.P.F. Efficacy of micrographic surgery versus conventional excision in reducing recurrence for basal cell carcinoma and squamous cell carcinoma: A systematic review and meta-analysis. J. Eur. Acad. Dermatol. Venereol. 2024, 38, 1058–1069. [Google Scholar] [CrossRef]
- Marrazzo, G.; Zitelli, J.A.; Brodland, D. Clinical outcomes in high-risk squamous cell carcinoma patients treated with Mohs micrographic surgery alone. J. Am. Acad. Dermatol. 2019, 80, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Patton, E.I.; Berman, A.J.; Krauland, K.J.; Wong, E.B. Squamous Cell Carcinoma in Situ of the Nipple Successfully Treated with Mohs Micrographic Surgery. Dermatol. Surg. 2023, 49, 1202–1204. [Google Scholar] [CrossRef] [PubMed]
- Connolly, S.M.; Baker, D.R.; Coldiron, B.M.; Fazio, M.J.; Storrs, P.A.; Vidimos, A.T.; Zalla, M.J.; Brewer, J.D.; Smith Begolka, W.; et al.; Ad Hoc Task Force AAD/ACMS/ASDSA/ASMS 2012 appropriate use criteria for Mohs micrographic surgery: A report of the American Academy of Dermatology, American College of Mohs Surgery, American Society for Dermatologic Surgery Association, and the American Society for Mohs Surgery. J. Am. Acad. Dermatol. 2012, 67, 531–550. [Google Scholar] [PubMed]
- Love, W.E.; Schmitt, A.R.; Bordeaux, J.S. Management of unusual cutaneous malignancies: Atypical fibroxanthoma, malignant fibrous histiocytoma, sebaceous carcinoma, extramammary Paget disease. Dermatol. Clin. 2011, 29, 201–216. [Google Scholar] [CrossRef]
- Kunishige, J.H.; Brodland, D.G.; Zitelli, J.A. Surgical margins for melanoma in situ. J. Am. Acad. Dermatol. 2012, 66, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Etzkorn, J.R.; Sobanko, J.F.; Elenitsas, R.; Newman, J.G.; Goldbach, H.; Shin, T.M.; Miller, C.J. Low recurrence rates for in situ and invasive melanomas using Mohs micrographic surgery with melanoma antigen recognized by T cells 1 (MART-1) immunostaining: Tissue processing methodology to optimize pathologic staging and margin assessment. J. Am. Acad. Dermatol. 2015, 72, 840–850. [Google Scholar] [CrossRef]
- Hui, A.M.; Jacobson, M.; Markowitz, O.; Brooks, N.A.; Siegel, D.M. Mohs micrographic surgery for the treatment of melanoma. Dermatol. Clin. 2012, 30, 503–515. [Google Scholar] [CrossRef]
- Valentin-Nogueras, S.M.; Brodland, D.G.; Zitelli, J.A.; González-Sepúlveda, L.; Nazario, C.M. Mohs micrographic surgery using, M.ART-1 immunostain in the treatment of invasive melanoma and melanoma in situ. Dermatol. Surg. 2016, 42, 733–744. [Google Scholar] [CrossRef]
- Higgins, H.W., 2nd; Lee, K.C.; Galan, A.; Leffell, D.J. Melanoma in situ: Part II. Histopathology, treatment, and clinical management. J. Am. Acad. Dermatol. 2015, 73, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Coit, D.G.; Thompson, J.A.; Albertini, M.R.; Barker, C.; Carson, W.E.; Contreras, C.; Daniels, G.A.; DiMaio, D.; Fields, R.C.; Fleming, M.D.; et al. Cutaneous melanoma, version 22019, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 2019, 17, 367–402. [Google Scholar] [CrossRef] [PubMed]
- Swetter, S.M.; Tsao, H.; Bichakjian, C.K.; Curiel-Lewandrowski, C.; Elder, D.E.; Gershenwald, J.E.; Guild, V.; Grant-Kels, J.M.; Halpern, A.C.; Johnson, T.M. Guidelines of care for the management of primary cutaneous melanoma. J. Am. Acad. Dermatol. 2019, 80, 208–250. [Google Scholar] [CrossRef]
- Sladden, M.; Omgo, N.; Howle, J.; Coventry, B.; Cancer Council Australia Melanoma Guidelines. What Are the Recommended Safety Margins for Radical Excision of Primary Melanoma? (In Situ). 2020. Available online: https://wiki.cancer.org.au/australia/Guidelines:Melanoma (accessed on 4 March 2020).
- Wright, F.C.; Souter, L.H.; Kellett, S.; Easson, A.; Murray, C.; Toye, J.; McCready, D.; Nessim, C.; Ghazarian, D.; Hong, N.J.L.; et al. Primary excision margins, sentinel lymph node biopsy, and completion lymph node dissection in cutaneous melanoma: A clinical practice guideline. Curr. Oncol. 2019, 26, e541–e550. [Google Scholar] [CrossRef]
- Friedman, E.B.; Scolyer, R.A.; Williams, G.J.; Thompson, J.F. Melanoma In Situ: A Critical Review and Re-Evaluation of Current Excision Margin Recommendations. Adv. Ther. 2021, 38, 3506–3530. [Google Scholar] [CrossRef] [PubMed]
- Agarwal-Antal, N.; Bowen, G.M.; Gerwels, J.W. Histologic evaluation of lentigo maligna with permanent sections: Implications regarding current guidelines. J. Am. Acad. Dermatol. 2002, 47, 743–748. [Google Scholar] [CrossRef]
- Zalla, M.J.; Lim, K.K.; Dicaudo, D.J.; Gagnot, M.M. Mohs micrographic excision of melanoma using immunostains. Dermatol. Surg. 2000, 26, 771–784. [Google Scholar] [CrossRef]
- Albertini, J.G.; Elston, D.M.; Libow, L.F.; Smith, S.B.; Farley, M.F. Mohs micrographic surgery for melanoma: A case series, a comparative study of immunostains, an informative case report, and a unique mapping technique. Dermatol. Surg. 2002, 28, 656–665. [Google Scholar] [CrossRef]
- Clayton, B.D.; Leshin, B.; Hitchcock, M.G.; Marks, M.; White, W.L. Utility of rush paraffin-embedded tangential sections in the management of cutaneous neoplasms. Dermatol. Surg. 2000, 26, 671–678. [Google Scholar] [CrossRef]
- Bienert, T.N.; Trotter, M.J.; Arlette, J.P. Treatment of cutaneous melanoma of the face by Mohs micrographic surgery. J. Cutan. Med. Surg. 2003, 7, 25–30. [Google Scholar] [CrossRef]
- Minton, T.J. Contemporary Mohs surgery applications. Curr. Opin. Otolaryngol. Head Neck Surg. 2008, 16, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Horner, K.L.; Gasbarre, C.C. Special considerations for Mohs micrographic surgery on the eyelids, lips, genitalia, and nail unit. Dermatol. Clin. 2011, 29, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Boettler, M.A.; Kaffenberger, B.H.; Chung, C.G. Cellulitis: A review of current practice guidelines and differentiation from Pseudocellulitis. Am. J. Clin. Dermatol. 2022, 23, 153–165. [Google Scholar] [CrossRef]
- Cross, E.L.A.; Jordan, H.; Godfrey, R.; Onakpoya, I.J.; Shears, A.; Fidler, K.; Peto, T.E.A.; Walker, A.S.; Llewelyn, M.J. Route and duration of antibiotic therapy in acute cellulitis: A systematic review and meta-analysis of the effectiveness and harms of antibiotic treatment. J. Infect. 2020, 81, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Gunderson, C.G. Overtreatment of nonpurulent cellulitis. J. Hosp. Med. 2016, 11, 587–590. [Google Scholar] [CrossRef][Green Version]
- Shu, Z.; Cao, J.; Li, H.; Chen, P.; Cai, P. Efficacy and safety of first- and second-line antibiotics for cellulitis and erysipelas: A network meta-analysis of randomized controlled trials. Arch. Dermatol. Res. 2024, 316, 603. [Google Scholar] [CrossRef]
- Broderick, C.; Forster, R.; Abdel-Hadi, M.; Salhiyyah, K. Pentoxifylline for intermittent claudication. Cochrane Database Syst. Rev. 2020, 10, CD005262. [Google Scholar] [CrossRef]
- Essayan, D.M. Cyclic nucleotide phosphodiesterases. J. Allergy Clin. Immunol. 2001, 108, 671–680. [Google Scholar] [CrossRef]
- Deree, J.; Martins, J.O.; Melbostad, H.; Loomis, W.H.; Coimbra, R. Insights into the regulation of TNF-alpha production in human mononuclear cells: The effects of non-specific phosphodiesterase inhibition. Clinics 2008, 63, 321–328. [Google Scholar] [CrossRef]
- Marques, L.J.; Zheng, L.; Poulakis, N.; Guzman, J.; Costabel, U. Pentoxifylline inhibits TNF-alpha production from human alveolar macrophages. Am. J. Respir. Crit. Care Med. 1999, 159, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Peters-Golden, M.; Canetti, C.; Mancuso, P.; Coffey, M.J. Leukotrienes: Underappreciated mediators of innate immune responses. J. Immunol. 2005, 174, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.; Clissold, S.P. Pentoxifylline. A review of its pharmacodynamic and pharmacokinetic properties, and its therapeutic efficacy. Drugs 1987, 34, 50–97. [Google Scholar] [CrossRef]
- Rodríguez-Morán, M.; Guerrero-Romero, F. Efficacy of pentoxifylline in the management of microalbuminuria in patients with diabetes. Curr. Diabetes Rev. 2008, 4, 55–62. [Google Scholar] [CrossRef]
- Migden, M.R.; Rischin, D.; Schmults, C.D.; Guminski, A.; Hauschild, A.; Lewis, K.D.; Chung, C.H.; Hernandez-Aya, L.; Lim, A.M.; Chang, A.L.S.; et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N. Engl. J. Med. 2018, 379, 341–351. [Google Scholar] [CrossRef]
- Grob, J.J.; Gonzalez, R.; Basset-Seguin, N.; Vornicova, O.; Schachter, J.; Joshi, A.; Meyer, N.; Grange, F.; Piulats, J.M.; Bauman, J.R.; et al. Pembrolizumab Monotherapy for Recurrent or Metastatic Cutaneous Squamous Cell Carcinoma: A Single-Arm Phase II Trial (KEYNOTE-629). J. Clin. Oncol. 2020, 38, 2916–2925. [Google Scholar] [CrossRef]
- Gross, N.; Miller, D.; Khushalani, N.I.; Divi, V.; Ruiz, E.S.; Lipson, E.J.; Meier, F.; Su, Y.B.; Swiecicki, P.L.; Atlas, J. Neoadjuvant Cemiplimab for Stage II to IV Cutaneous Squamous-Cell Carcinoma. N. Engl. J. Med. 2022, 387, 1829–1839. [Google Scholar] [CrossRef] [PubMed]
- Rischin, D.; Porceddu, S.; Day, F.; Brungs, D.P.; Christie, H.; Jackson, J.E.; Stein, B.N.; Su, Y.B.; Ladwa, R.; Adams, G.; et al. Adjuvant cemiplimab or placebo in high-risk cutaneous squamous-cell carcinoma. N. Engl. J. Med. 2025, 392, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Lenouvel, D.; Gonzalez-Moles, M.; Ruiz-Ávila, I.; Gonzalez-Ruiz, L.; Gonzalez-Ruiz, I.; Ramos-Garcia, P. Prognostic and clinicopatho-logical significance of PD-L1 overexpression in oral squamous cell carcino-ma: A systematic review and comprehensive meta-analysis. Oral Oncol. 2020, 106, 104722. [Google Scholar] [CrossRef]
- Lenouvel, D.; Gonzalez-Moles, M.A.; Ruiz-Ávila, I.; Chamorro-Santos, C.; Gonzalez-Ruiz, L.; Gonzalez-Ruiz, I.; Ramos-Garcia, P. Clinico-pathological and prognostic significance of PD-L1 in oral cancer: A prelimi-nary retrospective immunohistochemistry study. Oral Dis. 2021, 27, 173–182. [Google Scholar] [CrossRef]
- Shen, H.; Liu, J.; Sun, G.; Yan, L.; Li, Q.; Wang, Z.; Xie, L. The clinicopathological significance and prognostic value of programmed death-ligand 1 in prostate cancer: A meta-analysis of 3133 pa-tients. Aging 2020, 13, 2279–2293. [Google Scholar] [CrossRef]
- Nocini, R.; Vianini, M.; Girolami, I.; Calabrese, L.; Scarpa, A.; Martini, M.; Morbini, P.; Marletta, S.; Brunelli, M.; Molteni, G.; et al. PD-L1 in oral squamous cell carcinoma: A key biomarker from the labora-tory to the bedside. Clin. Exp. Dent. Res. 2022, 8, 690–698. [Google Scholar] [CrossRef]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakaga-wa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, J.W.H.; et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef]
- Fumet, J.D.; Truntzer, C.; Yarchoan, M.; Ghiringhelli, F. Tumour Mutational Burden as a Biomarker for Immunotherapy: Current Data and Emerging Concepts. Eur. J. Cancer 2020, 131, 40–50. [Google Scholar] [CrossRef]
- Sha, D.; Jin, Z.; Budczies, J.; Kluck, K.; Stenzinger, A.; Sinicrope, F.A.; Mayo Clinic Comprehensive Cancer Center. Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov. 2020, 10, 1808–1825. [Google Scholar] [CrossRef]
- Jardim, D.L.; Goodman, A.; Gagliato, D.M.; Kurzrock, R. The Challenges of Tumor Mutational Burden as an Immunotherapy Biomarker. Cancer Cell 2021, 39, 154–173. [Google Scholar] [CrossRef]
- Schrock, A.B.; Ouyang, C.; Sandhu, J.; Sokol, E.; Jin, D.; Ross, J.S.; Miller, V.A.; Lim, D.; Amanam, I.; Chao, J.; et al. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer. Ann. Oncol. 2019, 30, 1096–1103. [Google Scholar] [CrossRef]
- Fabrizio, D.A.; George, T.J., Jr.; Dunne, R.F.; Frampton, G.; Sun, J.; Gowen, K.; Kennedy, M.; Greenbowe, J.; Schrock, A.B.; Hezel, A.F.; et al. Beyond microsatellite testing: Assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition. J. Gastrointest. Oncol. 2018, 9, 610–617. [Google Scholar] [CrossRef]
- Innocenti, F.; Ou, F.S.; Qu, X.; Zemla, T.J.; Niedzwiecki, D.; Tam, R.; Mahajan, S.; Goldberg, R.M.; Bertagnolli, M.M.; Blanke, C.D.; et al. Mutational Analysis of Patients with Colorectal Cancer in CALGB/SWOG 80405 Identifies New Roles of Microsatellite Instability and Tumor Mutational Burden for Patient Outcome. J. Clin. Oncol. 2019, 37, 1217–1227. [Google Scholar] [CrossRef]
- Reck, M.; Rodriguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csoszi, T.; Fulop, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Doi, T.; Jang, R.W.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Mergas, J.-P.; et al. Safety and Efficacy of Pembrolizumab Monotherapy in Patients With Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer: Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol. 2018, 4, e180013. [Google Scholar] [CrossRef]
- Taube, J.M.; Klein, A.; Brahmer, J.R.; Xu, H.; Pan, X.; Kim, J.H.; Chen, L.; Pardoll, D.M.; Topalian, S.L.; Anders, R.A. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 2014, 20, 5064–5074. [Google Scholar] [CrossRef]
- Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.-A.; Wright, G.S.; et al. Atezolizumab and Nab Paclitaxel in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2018, 379, 2108–2121. [Google Scholar] [CrossRef] [PubMed]
- Hodi, F.S.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Rutkowski, P.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018, 19, 1480–1492. [Google Scholar] [CrossRef]
- Robert, C.; Long, G.V.; Brady, B.; Dutriaux, C.; Maio, M.; Mortier, L.; Hassel, J.C.; Rutkowski, P.; McNeil, C.; Kalinka-Warzocha, E.; et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 2015, 372, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Jou, T.H.-T.; Hsin, J.; Wang, Z.; Huang, K.; Ye, J.; Yin, H.; Xing, Y. Talimogene Laherparepvec (T-VEC): A Review of the Recent Advances in Cancer Therapy. J. Clin. Med. 2023, 12, 1098. [Google Scholar] [CrossRef] [PubMed]
- Amakye, D.; Jagani, Z.; Dorsch, M. Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat. Med. 2013, 19, 1410–1422. [Google Scholar] [CrossRef]
- Casey, D.; Demko, S.; Shord, S.; Zhao, H.; Keegan, P.; Pazdur, R. FDA Approval Summary: Sonidegib for Locally Advanced Basal-Cell Carcinoma. Clin. Cancer Res. 2017, 23, 2377–2381. [Google Scholar] [CrossRef]
- Frampton, J.E.; Basset-Séguin, N. Vismodegib: A Review in Advanced Basal Cell Carcinoma. Drugs 2018, 78, 1145–1156. [Google Scholar] [CrossRef] [PubMed]
- Kahana, A.; Unsworth, S.P.; Andrews, C.A.; Chan, M.P.; Bresler, S.C.; Bichakjian, C.K.; Durham, A.B.; Demirci, H.; Elner, V.M.; Nelson, C.C.; et al. Vismodegib for Preservation of Visual Function in Patients with Advanced Periocular Basal Cell Carcinoma: The VISORB Trial. Oncologist 2021, 26, e1240–e1249. [Google Scholar] [CrossRef] [PubMed]
- Unsworth, S.P.; Tingle, C.F.; Heisel, C.J.; Eton, E.A.; Andrews, C.A.; Chan, M.P.; Bresler, S.C.; Kahana, A. Analysis of residual disease in periocular basal cell carcinoma following hedgehog pathway inhibition: Follow up to the VISORB trial. PLoS ONE 2022, 17, e0265212. [Google Scholar] [CrossRef]
- Bertrand, N.; Guerreschi, P.; Basset-Seguin, N.; Saiag, P.; Dupuy, A.; Dalac-Rat, S.; Dziwniel, V.; Depoortère, C.; Duhamel, A.; Mortier, L. Vismodegib in neoadjuvant treatment of locally advanced basal cell carcinoma: First results of a multicenter, open-label, phase 2 trial (VISMONEO study): Neoadjuvant Vismodegib in Locally Advanced Basal Cell Carcinoma. eClinicalMedicine 2021, 35, 100844. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cho, M.; Gordon, L.; Rembielak, A.; Woo, T.C.S. Utility of radiotherapy for treatment of basal cell carcinoma: A review. Br. J. Dermatol. 2014, 171, 968–973. [Google Scholar] [CrossRef]
- Schaue, D.; Micewicz, E.D.; Ratikan, J.A.; Xie, M.W.; Cheng, G.; McBride, W.H. Radiation & Inflammation. Semin. Radiat. Oncol. 2015, 25, 4–10. [Google Scholar]
- Likhacheva, A.; Awan, M.; Barker, C.A.; Bhatnagar, A.; Bradfield, L.; Brady, M.S.; Buzurovic, I.; Geiger, J.L.; Parvathaneni, U.; Zaky, S.; et al. Definitive and Postoperative Radiation Therapy for Basal and Squamous Cell Cancers of the Skin: Executive Summary of an American Society for Radiation Oncology Clinical Practice Guideline. Pract. Radiat. Oncol. 2020, 10, 8–20. [Google Scholar] [CrossRef]
- Natelauri, E.; Jghamadze, A. Radiation Therapy for Basal Cell Skin Cancer; IntechOpen: London, UK, 2025. [Google Scholar] [CrossRef]
- Kurian, R.R.; Di Palma, S.; Barrett, A.W. Basal cell carcinoma metastatic to parotid gland. Head Neck Pathol. 2014, 8, 349–353. [Google Scholar] [CrossRef][Green Version]
- Mohan, S.V.; Chang, A.L. Advanced basal cell carcinoma: Epidemiology and therapeutic innovations. Curr. Dermatol. Rep. 2014, 3, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Choi, H.; Choi, Y.; Zieminski, S.; Adams, J.A.; Hughes, M.A.; Chan, A.W. Proton beam therapy for advanced periocular skin cancer: An eye-sparing approach. Cancers 2025, 17, 327. [Google Scholar] [CrossRef]
Study | N pts | Squamous Cell Carcinoma | Design | Regimen | Objective Response Rate (95% CI) | Response to Treatment |
---|---|---|---|---|---|---|
Migden MR et al., 2018 [58] | 28/59 pts | Advanced disease | Phase I/II Single Arm Study | Cemiplimab | Phase I: 50% (30–70) Phase II: 47% (34–61) | (47–50% response) |
Grob JJ et al., 2020 [59] | 105 pts | Advanced disease | Phase II Single Arm Study | Pembrolizumab | 34.3% (25.3–44.2) | Median Progression Free Survival 6.9 m (3.1–8.5 m) |
Gross ND et al., 2022 [60] | 79 pts. | Neoadjuvant | Phase II Single Arm Study | Cemiplimab | 68% (57–78) 51% pathological complete response | |
Rischin D et al., 2025 [61] | 415 pts. | Adjuvant | Phase III Randomized trial | Cemiplimab vs. Placebo | --- | Relapse Free Survival 87.1% (80.3–91.6) vs. 64.1% (55.9–71.1) HR 0.32 p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chedid, M.F.; Tregnago, A.C.; Riva, F.; Prediger, L.; Agarwal, A.; Mattei, J. Indications and Mechanisms of Action of the Main Treatment Modalities for Non-Melanoma Skin Cancer. Life 2025, 15, 1447. https://doi.org/10.3390/life15091447
Chedid MF, Tregnago AC, Riva F, Prediger L, Agarwal A, Mattei J. Indications and Mechanisms of Action of the Main Treatment Modalities for Non-Melanoma Skin Cancer. Life. 2025; 15(9):1447. https://doi.org/10.3390/life15091447
Chicago/Turabian StyleChedid, Marcio F., Aline C. Tregnago, Floriano Riva, Lucas Prediger, Anisha Agarwal, and Jane Mattei. 2025. "Indications and Mechanisms of Action of the Main Treatment Modalities for Non-Melanoma Skin Cancer" Life 15, no. 9: 1447. https://doi.org/10.3390/life15091447
APA StyleChedid, M. F., Tregnago, A. C., Riva, F., Prediger, L., Agarwal, A., & Mattei, J. (2025). Indications and Mechanisms of Action of the Main Treatment Modalities for Non-Melanoma Skin Cancer. Life, 15(9), 1447. https://doi.org/10.3390/life15091447