Mouflon and Domestic Sheep Phylogeny: Ancestry, Domestication, and Evolutionary Dynamics
Abstract
1. Background: The History of Sheep and Mouflon
2. Taxonomic Status and Ancestral Lineages of Mouflon
3. Genetic Contribution from Other Wild Sheep
4. Genetic Architectures Unravelling Phylogeny
4.1. Insights from mtDNA Studies
- -
- HPGs A and B: These were the first haplogroups identified, broadly corresponding to Asian and European origins, respectively [18]. HPG-A is commonly found in Central Asian and some European domestic sheep. Within HPG-A, Anatolian mouflons are basal to domestic sheep, suggesting a potential role in sheep domestication [7,30]. HPG-B, widespread across Eurasia, is predominant in European domestic sheep and exhibits close resemblance to European mouflon haplotypes [3,7,18,48]. Corsican and Sardinian mouflons clustered within HPG-B, which is associated with the early Neolithic colonization of Europe, and their phylogenetic distinctiveness suggests they are remnants of early pre-domestic ancestors that returned to the wild after the introduction of more economically valuable woolly sheep [3,5,39]. Indeed, the Corsican and Sardinian mouflon lineages within HPG-B originated between 120,000 and 80,000 years ago, evolving separately from domestic sheep breeds [23].
- -
- HPG C: Recognized as the third major phylogenetic branch, HPG-C has been detected at low frequencies in Portuguese native sheep and in individuals from the Caucasus, Middle East, and Asia [56,57]. Maternal HPG-C, along with HPG-E, is believed to have originated from Asiatic mouflon populations in Iran [17,23].
- -
- -
- -
4.2. Contributions from Nuclear DNA and Whole-Genome Sequencing
4.3. Discordance in Reconstructing Phylogeny Between mtDNA and nuDNA
5. Domestication and Selection Signatures in Domestic Sheep
- Horn morphology: Wild sheep typically possess horns, which are crucial for intra-sexual competition [7,44,77]. In contrast, domestic sheep frequently exhibit polledness (the absence of horns), a trait preferred by farmers for safety and ease of management, as it avoids the need for dehorning [78]. The RXFP2 gene has been identified as playing a prominent role in the presence or absence of horns, and introgression of an RXFP2 haplotype from Iranian mouflon is associated with the spiral horn trait in domestic sheep [24]. Based on a recent molecular study, polledness is associated with a 1.8 kb insertion in the 3′ UTR region of the RXFP2 gene, but this variant does not fully explain the variability in horn status across breeds [78]. The Wnt signaling pathway is also implicated in horn formation, linking this trait to the neural crest cell hypothesis [79].
- Coat type and color: A key transformation was the shift from annual wool shedding in wild mouflon to continuous fleece growth in domestic sheep, a trait likely selected for its utility in wool production for clothing [7,43]. NCCs are hypothesized to be involved in follicle morphogenesis [80] and the structural changes of the coat [81]. The variation in coat color, often white in domestic sheep due to artificial selection, is a complex trait influenced by genes such as extension (E gene), ASIP (or agouti), and POMC, which regulate melanin production [82,83,84,85].
- Tail length and fat deposition: The short, thin tail of mouflon suggests that the diverse tail phenotypes observed in domestic sheep emerged later in the domestication process [41]. The development of a fat tail, for instance, is considered an adaptive response to climate change, with ancient breeders selecting fat-tailed sheep for their enhanced adaptability to desert conditions and as a valuable source of fat [34,86]. Genes like bone morphogenetic protein 2 (BMP-2) and platelet-derived growth factor D (PDGF-D) are potential causative genes for tail phenotype and fat deposition [35,87]. The T-box transcription factor T gene (TBXT) is also involved in regulating tail length in mammals, including sheep [41]. The CT/CT genotype of TBXT:c. [333G>C; 334G>T] was found exclusively in fat-rumped sheep and is significantly associated with the tailless phenotype. This genotype was absent from long-tailed and short-tailed breeds [88]. The emergence of these phenotypic changes is not random but represents direct responses to human utility and environmental adaptation, highlighting the strong selective pressures exerted during domestication. Analyzing these phenotypic shifts, coupled with the identification of underlying genes, offers powerful insights into the genetic architecture of domestication and how human needs and environmental factors shaped the evolution of an entire species. It also suggests that some traits, like long tails, might have been coselected without immediate selective advantages [7,41].
- -
- in the Charmoise sheep breed, genes linked to carcass traits like bone percentage, lean meat yield, and hot carcass weight (HOXD3, MAP3K20, RAPGEF4, SP3, LPGAT1, DNAH8, KIF6, and ABCD3);
- -
- in Charollais, genes associated with body weight, bone density, and muscle weight in carcass (DGKB, ADGRB3, and PITPNC1);
- -
- in Lacaune, genes related to growth traits like average daily gain, body weight, and bone density (ANO4, GRID2, and DBF4B);
- -
- in Suffolk, genes linked to carcass weight, muscle density, and reproductive seasonality (PTK2B, FNIP1, EYA4, UBASH3B, and SPPL2B);
- -
- in Texel, genes associated with traits like bone density, meat yield, and hot carcass weight.
6. Hybridization and Introgression: Genetic Exchange and Its Consequences
- RXFP2 haplotype, introgressed from Iranian mouflon. This region maps on chromosome 10 and it is associated with the spiral horn trait in domestic sheep. Local ancestry inference suggests that most haplotypes in polled breeds (e.g., Finnsheep, Gotland, Waggir, Afshari, East Friesian) are closely related to those of Iranian mouflon, indicating a possible origin of the polled phenotype from this wild species.
- MSRB3 haplotype, introgressed from Argali. Located on chromosome 3, the MSRB3 gene encodes methionine sulfoxide reductase B3, which is strongly associated with ear morphology. Haplotype analysis revealed that a cluster closely related to argali haplotypes is prevalent in domestic sheep and linked to variations in ear size (e.g., small ears in Swiss White Alpine, Mossi, Diqing sheep; large/floppy ears in Waggir, Karakul, Duolang).
- VPS13B haplotype, introgressed from urial/mouflon. Strong introgression signals were detected in the VPS13B gene, with evidence of introgression from urial and a separate signal from mouflon. While its functional role in sheep is still being verified, observations in other species suggest VPS13B may influence facial shape, particularly nose morphology.
7. Implications for Conservation and Management
8. Ongoing Debates and Future Research Directions
- (a)
- True Wild Status of Mouflons, Systematic Classification, and Nomenclature
- (b)
- Extent and Nature of Genetic Changes Attributable to Domestication
- (c)
- Discrepancies in Phylogenetic Reconstructions
- (d)
- Specific Location, Timing, and Post-Domestication History
- Expanded Genomic Sampling: WGS of a broader and more geographically representative range of wild mouflon populations, especially from isolated islands, coupled with ancient samples, would provide more comprehensive data to resolve phylogenetic ambiguities and delineate fine-scale population structure.
- Ancient DNA Studies: Further rigorous analysis of ancient DNA from Neolithic and Copper Age sheep can provide direct evidence of early haplogroup distribution and genetic diversity at the onset of domestication, offering a direct window into past genetic landscapes.
- Functional Genomics of Introgressed Regions: A deeper investigation into the functional roles of identified introgressed genes and their precise molecular mechanisms in shaping phenotypic traits would provide critical insights into the genetic architecture of domestication and adaptation.
- Longitudinal Studies of Hybrid Populations: Monitoring hybrid populations over multiple generations would allow for a comprehensive understanding of the long-term genetic and phenotypic consequences of introgression and backcrossing, informing more effective conservation strategies.
- Integrated Multi-Omics Approaches: Combining genomics with other “omics” technologies, such as transcriptomics, proteomics, and metabolomics, would enable a more holistic understanding of the physiological and developmental pathways affected by both domestication and introgression.
- Comparative Genomics across Ovis Species: Broader comparative studies across the entire Ovis genus are essential to clarify deeper evolutionary splits and resolve ancestral relationships, providing a more complete picture of sheep evolution.
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AIM | Ancestry Informative Marker |
BCE | Before the Common Era |
HPG | Haplogroup |
NCC | Neural Crest Cell |
SNP | Single-Nucleotide Polymorphism |
TBXT | T-box Transcription Factor T Gene |
WGS | Whole-Genome Sequencing |
References
- Zeder, M.A. Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact. Proc. Natl. Acad. Sci. USA 2008, 105, 11597–11604. [Google Scholar] [CrossRef]
- Chessa, B.; Pereira, F.; Arnaud, F.; Amorim, A.; Goyache, F.; Mainland, I.; Kao, R.R.; Pemberton, J.M.; Beraldi, D.; Stear, M.J.; et al. Revealing the History of Sheep Domestication Using Retrovirus Integrations. Science 2009, 324, 532–536. [Google Scholar] [CrossRef] [PubMed]
- Sanna, D.; Barbato, M.; Hadjisterkotis, E.; Cossu, P.; Decandia, L.; Trova, S.; Pirastru, M.; Leoni, G.G.; Naitana, S.; Francalacci, P.; et al. The First Mitogenome of the Cyprus Mouflon (Ovis gmelini ophion): New Insights into the Phylogeny of the Genus Ovis. PLoS ONE 2015, 10, e0144257. [Google Scholar] [CrossRef] [PubMed]
- MacHugh, D.E.; Larson, G.; Orlando, L. Taming the Past: Ancient DNA and the Study of Animal Domestication. Annu. Rev. Anim. Biosci. 2017, 5, 329–351. [Google Scholar] [CrossRef] [PubMed]
- Mereu, P.; Pirastru, M.; Barbato, M.; Satta, V.; Hadjisterkotis, E.; Manca, L.; Naitana, S.; Leoni, G.G. Identification of an ancestral haplotype in the mitochondrial phylogeny of the ovine haplogroup B. PeerJ 2019, 7, e7895. [Google Scholar] [CrossRef]
- Kaptan, D.; Atağ, G.; Vural, K.B.; Morell Miranda, P.; Akbaba, A.; Yüncü, E.; Buluktaev, A.; Abazari, M.F.; Yorulmaz, S.; Kazancı, D.D.; et al. The Population History of Domestic Sheep Revealed by Paleogenomes. Mol. Biol. Evol. 2024, 41, msae158. [Google Scholar] [CrossRef]
- Mereu, P.; Pirastru, M.; Sanna, D.; Bassu, G.; Naitana, S.; Leoni, G.G. Phenotype transition from wild mouflon to domestic sheep. Genet. Sel. Evol. 2024, 56, 1. [Google Scholar] [CrossRef]
- Chen, Z.-H.; Xu, Y.-X.; Xie, X.-L.; Wang, D.-F.; Aguilar-Gómez, D.; Liu, G.-J.; Li, X.; Esmailizadeh, A.; Rezaei, V.; Kantanen, J.; et al. Whole-genome sequence analysis unveils different origins of European and Asiatic mouflon and domestication-related genes in sheep. Commun. Biol. 2021, 4, 1307. [Google Scholar] [CrossRef]
- Barbato, M.; Masseti, M.; Pirastru, M.; Columbano, N.; Scali, M.; Vignani, R.; Mereu, P. Islands as Time Capsules for Genetic Diversity Conservation: The Case of the Giglio Island Mouflon. Diversity 2022, 14, 609. [Google Scholar] [CrossRef]
- Vigne, J.-D.; Carrère, I.; Briois, F.; Guilaine, J. The Early Process of Mammal Domestication in the Near East: New Evidence from the Pre-Neolithic and Pre-Pottery Neolithic in Cyprus. Curr. Anthropol. 2011, 52, S255–S271. [Google Scholar] [CrossRef]
- Lv, F.-H.; Peng, W.-F.; Yang, J.; Zhao, Y.-X.; Li, W.-R.; Liu, M.-J.; Ma, Y.-H.; Zhao, Q.-J.; Yang, G.-L.; Wang, F.; et al. Mitogenomic Meta-Analysis Identifies Two Phases of Migration in the History of Eastern Eurasian Sheep. Mol. Biol. Evol. 2015, 32, 2515–2533. [Google Scholar] [CrossRef]
- Barbato, M.; Hailer, F.; Orozco-terWengel, P.; Kijas, J.; Mereu, P.; Cabras, P.; Mazza, R.; Pirastru, M.; Bruford, M.W. Genomic signatures of adaptive introgression from European mouflon into domestic sheep. Sci. Rep. 2017, 7, 7623. [Google Scholar] [CrossRef]
- Ciani, E.; Mastrangelo, S.; Da Silva, A.; Marroni, F.; Ferenčaković, M.; Ajmone-Marsan, P.; Baird, H.; Barbato, M.; Colli, L.; Delvento, C.; et al. On the origin of European sheep as revealed by the diversity of the Balkan breeds and by optimizing population-genetic analysis tools. Genet. Sel. Evol. 2020, 52, 25. [Google Scholar] [CrossRef]
- Deng, J.; Xie, X.-L.; Wang, D.-F.; Zhao, C.; Lv, F.-H.; Li, X.; Yang, J.; Yu, J.-L.; Shen, M.; Gao, L.; et al. Paternal Origins and Migratory Episodes of Domestic Sheep. Curr. Biol. 2020, 30, 4085–4095.e6. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, J.; Shen, M.; Xie, X.-L.; Liu, G.-J.; Xu, Y.-X.; Lv, F.-H.; Yang, H.; Yang, Y.-L.; Liu, C.-B.; et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat. Commun. 2020, 11, 2815. [Google Scholar] [CrossRef] [PubMed]
- Her, C.; Rezaei, H.-R.; Hughes, S.; Naderi, S.; Duffraisse, M.; Mashkour, M.; Naghash, H.-R.; Bălășescu, A.; Luikart, G.; Jordan, S.; et al. Broad maternal geographic origin of domestic sheep in Anatolia and the Zagros. Anim. Genet. 2022, 53, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hua, G.; Cai, G.; Ma, Y.; Yang, X.; Zhang, L.; Li, R.; Liu, J.; Ma, Q.; Wu, K.; et al. Genome-wide DNA methylation and transcriptome analyses reveal the key gene for wool type variation in sheep. J. Anim. Sci. Biotechnol. 2023, 14, 88. [Google Scholar] [CrossRef]
- Hiendleder, S.; Lewalski, H.; Wassmuth, R.; Janke, A. The Complete Mitochondrial DNA Sequence of the Domestic Sheep (Ovis aries) and Comparison with the Other Major Ovine Haplotype. J. Mol. Evol. 1998, 47, 441–448. [Google Scholar] [CrossRef]
- Pedrosa, S.; Uzun, M.; Arranz, J.-J.; Gutiérrez-Gil, B.; San Primitivo, F.; Bayón, Y. Evidence of three maternal lineages in near eastern sheep supporting multiple domestication events. Proc. R. Soc. B Biol. Sci. 2005, 272, 2211–2217. [Google Scholar] [CrossRef]
- Hiendleder, S.; Kaupe, B.; Wassmuth, R.; Janke, A. Molecular analysis of wild and domestic sheep questions current nomenclature and provides evidence for domestication from two different subspecies. Proc. R. Soc. Lond. B Biol. Sci. 2002, 269, 893–904. [Google Scholar] [CrossRef]
- Luigi-Sierra, M.G.; Mármol-Sánchez, E.; Amills, M. Comparing the diversity of the casein genes in the Asian mouflon and domestic sheep. Anim. Genet. 2020, 51, 470–475. [Google Scholar] [CrossRef]
- Taheri, S.; Zerehdaran, S.; Javadmanesh, A. Genetic diversity in some domestic and wild sheep and goats in Iran. Small Rumin. Res. 2022, 209, 106641. [Google Scholar] [CrossRef]
- Mereu, P.; Pirastru, M.; Morell Miranda, P.; Atağ, G.; Başak Vural, K.; Wilkens, B.; Rodrigues Soares, A.E.; Kaptan, D.; Zedda, M.; Columbano, N.; et al. Revised phylogeny of mouflon based on expanded sampling of mitogenomes. PLoS ONE 2025, 20, e0323354. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, Z.; Wen, J.; Lenstra, J.A.; Heller, R.; Cai, Y.; Guo, Y.; Li, M.; Li, R.; Li, W.; et al. Long divergent haplotypes introgressed from wild sheep are associated with distinct morphological and adaptive characteristics in domestic sheep. PLoS Genet. 2023, 19, e1010615. [Google Scholar] [CrossRef]
- Yeomans, L.; Martin, L.; Richter, T. Expansion of the known distribution of Asiatic mouflon (Ovis orientalis) in the Late Pleistocene of the Southern Levant. R. Soc. Open Sci. 2017, 4, 170409. [Google Scholar] [CrossRef]
- Michel, S.; Ghoddousi, A. Ovis gmelini. The IUCN Red List of Threatened Species. 2020, e.T54940218A22147055. Available online: https://www.iucnredlist.org/species/54940218/22147055#assessment-information (accessed on 12 September 2025). [CrossRef]
- Demirci, S.; Koban Baştanlar, E.; Dağtaş, N.D.; Pişkin, E.; Engin, A.; Ozer, F.; Yüncü, E.; Doğan, S.A.; Togan, I. Mitochondrial DNA diversity of modern, ancient and wild sheep (Ovis gmelinii anatolica) from Turkey: New insights on the evolutionary history of sheep. PLoS ONE 2013, 8, e81952. [Google Scholar] [CrossRef] [PubMed]
- Daly, K.G.; Mullin, V.E.; Hare, A.J.; Halpin, Á.; Mattiangeli, V.; Teasdale, M.D.; Rossi, C.; Geiger, S.; Krebs, S.; Medugorac, I.; et al. Ancient genomics and the origin, dispersal, and development of domestic sheep. Science 2025, 387, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Meadows, J.R.S.; Hiendleder, S.; Kijas, J.W. Haplogroup relationships between domestic and wild sheep resolved using a mitogenome panel. Heredity 2011, 106, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Atağ, G.; Kaptan, D.; Yüncü, E.; Başak Vural, K.; Mereu, P.; Pirastru, M.; Barbato, M.; Leoni, G.G.; Güler, M.N.; Er, T.; et al. Population Genomic History of the Endangered Anatolian and Cyprian Mouflons in Relation to Worldwide Wild, Feral, and Domestic Sheep Lineages. Genome Biol. Evol. 2024, 16, evae090. [Google Scholar] [CrossRef]
- Wang, D.-F.; Orozco-terWengel, P.; Salehian-Dehkordi, H.; Esmailizadeh, A.; Lv, F.-H. Genomic analyses of Asiatic Mouflon in Iran provide insights into the domestication and evolution of sheep. Genet. Sel. Evol. 2025, 57, 31. [Google Scholar] [CrossRef]
- Cao, Y.-H.; Xu, S.-S.; Shen, M.; Chen, Z.-H.; Gao, L.; Lv, F.-H.; Xie, X.-L.; Wang, X.-H.; Yang, H.; Liu, C.-B.; et al. Historical Introgression from Wild Relatives Enhanced Climatic Adaptation and Resistance to Pneumonia in Sheep. Mol. Biol. Evol. 2021, 38, 838–855. [Google Scholar] [CrossRef]
- Lv, F.-H.; Cao, Y.-H.; Liu, G.-J.; Luo, L.-Y.; Lu, R.; Liu, M.-J.; Li, W.-R.; Zhou, P.; Wang, X.-H.; Shen, M.; et al. Whole-Genome Resequencing of Worldwide Wild and Domestic Sheep Elucidates Genetic Diversity, Introgression, and Agronomically Important Loci. Mol. Biol. Evol. 2022, 39, msab353. [Google Scholar] [CrossRef] [PubMed]
- Ahbara, A.M.; Musa, H.H.; Robert, C.; Abebe, A.; Al-Jumaili, A.S.; Kebede, A.; Latairish, S.; Agoub, M.O.; Clark, E.; Hanotte, O.; et al. Natural adaptation and human selection of northeast African sheep genomes. Genomics 2022, 114, 110448. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Liu, G.; Liu, E.; Wang, L.; Jiang, Y.; Zheng, Z.; Lu, J.; Lu, Z.; Ma, Y.; Liu, Y.; et al. Genomic insights into the population history of fat-tailed sheep and identification of two mutations that contribute to fat tail adipogenesis. J. Adv. Res. 2025, in press—Corrected proof. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.-J.; Yang, J.; Xie, X.-L.; Lv, F.-H.; Cao, Y.-H.; Li, W.-R.; Liu, M.-J.; Wang, Y.-T.; Li, J.-Q.; Liu, Y.-G.; et al. The Genome Landscape of Tibetan Sheep Reveals Adaptive Introgression from Argali and the History of Early Human Settlements on the Qinghai–Tibetan Plateau. Mol. Biol. Evol. 2019, 36, 283–303. [Google Scholar] [CrossRef]
- Yang, J.; Li, W.-R.; Lv, F.-H.; He, S.-G.; Tian, S.-L.; Peng, W.-F.; Sun, Y.-W.; Zhao, Y.-X.; Tu, X.-L.; Zhang, M.; et al. Whole-Genome Sequencing of Native Sheep Provides Insights into Rapid Adaptations to Extreme Environments. Mol. Biol. Evol. 2016, 33, 2576–2592. [Google Scholar] [CrossRef]
- Alipanah, M.; Gharari, F.; Mazloom, S.M. Comparison of selection signatures among five meat sheep breeds. Small Rumin. Res. 2025, 249, 107524. [Google Scholar] [CrossRef]
- Portanier, E.; Chevret, P.; Gélin, P.; Benedetti, P.; Sanchis, F.; Barbanera, F.; Kaerle, C.; Queney, G.; Bourgoin, G.; Devillard, S.; et al. New insights into the past and recent evolutionary history of the Corsican mouflon (Ovis gmelini musimon) to inform its conservation. Conserv. Genet. 2022, 23, 91–107. [Google Scholar] [CrossRef]
- Mastrangelo, S.; Bahbahani, H.; Moioli, B.; Ahbara, A.; Al Abri, M.; Almathen, F.; Da Silva, A.; Belabdi, I.; Portolano, B.; Mwacharo, J.M.; et al. Novel and known signals of selection for fat deposition in domestic sheep breeds from Africa and Eurasia. PLoS ONE 2019, 14, e0209632. [Google Scholar] [CrossRef]
- Kalds, P.; Zhou, S.; Gao, Y.; Cai, B.; Huang, S.; Chen, Y.; Wang, X. Genetics of the phenotypic evolution in sheep: A molecular look at diversity-driving genes. Genet. Sel. Evol. 2022, 54, 61. [Google Scholar] [CrossRef]
- Lukic, B.; Curik, I.; Drzaic, I.; Galić, V.; Shihabi, M.; Vostry, L.; Cubric-Curik, V. Genomic signatures of selection, local adaptation and production type characterisation of East Adriatic sheep breeds. J. Anim. Sci. Biotechnol. 2023, 14, 142. [Google Scholar] [CrossRef]
- Jackson, N.; Maddocks, I.G.; Watts, J.E.; Scobie, D.; Mason, R.S.; Gordon-Thomson, C.; Stockwell, S.; Moore, G.P.M. Evolution of the sheep coat: The impact of domestication on its structure and development. Genet. Res. 2020, 102, e4. [Google Scholar] [CrossRef]
- Garel, M.; Marchand, P.; Bourgoin, G.; Santiago-Moreno, J.; Portanier, E.; Piegert, H.; Hadjisterkotis, E.; Cugnasse, J.-M. Mouflon Ovis gmelini Blyth, 1841. In Handbook of the Mammals of Europe; Hackländer, K., Zachos, F.E., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–35. [Google Scholar]
- Tapio, M.; Marzanov, N.; Ozerov, M.; Ćinkulov, M.; Gonzarenko, G.; Kiselyova, T.; Murawski, M.; Viinalass, H.; Kantanen, J. Sheep Mitochondrial DNA Variation in European, Caucasian, and Central Asian Areas. Mol. Biol. Evol. 2006, 23, 1776–1783. [Google Scholar] [CrossRef] [PubMed]
- Kárpáti, T.; Náhlik, A. Is the Impact of the European Mouflon on Vegetation Influenced by the Allochthonous Nature of the Species? Diversity 2023, 15, 778. [Google Scholar] [CrossRef]
- Buzan, E.; Pokorny, B.; Urzi, F.; Duniš, L.; Bončina, A.; Iacolina, L.; Šprem, N.; Stipoljev, S.; Mereu, P.; Leoni, G.; et al. Genetic variation of European mouflon depends on admixture of introduced individuals. Mammal Res. 2024, 69, 145–158. [Google Scholar] [CrossRef]
- Satta, V.; Mereu, P.; Barbato, M.; Pirastru, M.; Bassu, G.; Manca, L.; Naitana, S.; Leoni, G.G. Genetic characterization and implications for conservation of the last autochthonous Mouflon population in Europe. Sci. Rep. 2021, 11, 14729. [Google Scholar] [CrossRef]
- Poplin, F. Origine du Mouflon de Corse dans une nouvelle perspective paléontologique: Par marronnage. Genet. Sel. Evol. 1979, 11, 133. [Google Scholar] [CrossRef]
- Vigne, J. Zooarchaeology and the biogeographical history of the mammals of Corsica and Sardinia since the last ice age. Mammal Rev. 1992, 22, 87–96. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Yeganeh Keya, Z.; Faryadi, S.; Yavari, A.; Kamali, Y.; Shabani, A.A. Habitat Suitability & Connectivity of Alborz Wild Sheep in the East of Tehran, Iran. Open J. Ecol. 2016, 6, 325–342. [Google Scholar] [CrossRef]
- Merheb, M.; Matar, R.; Hodeify, R.; Siddiqui, S.S.; Vazhappilly, C.G.; Marton, J.; Azharuddin, S.; AL Zouabi, H. Mitochondrial DNA, a Powerful Tool to Decipher Ancient Human Civilization from Domestication to Music, and to Uncover Historical Murder Cases. Cells 2019, 8, 433. [Google Scholar] [CrossRef] [PubMed]
- Figuet, E.; Romiguier, J.; Dutheil, J.Y.; Galtier, N. Mitochondrial DNA as a tool for reconstructing past life-history traits in mammals. J. Evol. Biol. 2014, 27, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Galtier, N.; Nabholz, B.; Glémin, S.; Hurst, G.D.D. Mitochondrial DNA as a marker of molecular diversity: A reappraisal. Mol. Ecol. 2009, 18, 4541–4550. [Google Scholar] [CrossRef] [PubMed]
- Machová, K.; Málková, A.; Vostrý, L. Sheep Post-Domestication Expansion in the Context of Mitochondrial and Y Chromosome Haplogroups and Haplotypes. Genes 2022, 13, 613. [Google Scholar] [CrossRef]
- Koshkina, O.; Deniskova, T.; Dotsev, A.; Kunz, E.; Selionova, M.; Medugorac, I.; Zinovieva, N. Phylogenetic Analysis of Russian Native Sheep Breeds Based on mtDNA Sequences. Genes 2023, 14, 1701. [Google Scholar] [CrossRef]
- Kim, Y.S.; Tseveen, K.; Batsukh, B.; Seong, J.; Kong, H.S. Origin-related study of genetic diversity and heteroplasmy of Mongolian sheep (Ovis arie) using mitochondrial DNA. J. Anim. Reprod. Biotechnol. 2020, 35, 198–206. [Google Scholar] [CrossRef]
- Radoslavov, G.; Kalaydzhiev, G.; Yordanov, G.; Palova, N.; Salkova, D.; Hristov, P. Genetic diversity of native Bulgarian sheep breeds based on the mitochondrial D-loop sequence analysis. Small Rumin. Res. 2025, 249, 107527. [Google Scholar] [CrossRef]
- Guerrini, M.; Panayides, P.; Mofrad, N.; Kassinis, N.; Ioannou, I.; Forcina, G.; Hadjigerou, P.; Barbanera, F. Spatial genetic structure and Ovis haplogroup as a tool for an adaptive conservation management of the endangered Cyprus mouflon. Zoology 2021, 148, 125959. [Google Scholar] [CrossRef]
- Bagger, F.O.; Borgwardt, L.; Jespersen, A.S.; Hansen, A.R.; Bertelsen, B.; Kodama, M.; Nielsen, F.C. Whole genome sequencing in clinical practice. BMC Med. Genom. 2024, 17, 39. [Google Scholar] [CrossRef]
- Cao, M.; Yuan, T.; Li, D.; Wang, Y.; Zhang, L.; Sun, J.; Lv, G.; Ding, R.; Yu, T. Whole-genome resequencing reveals positive selection and introgression signatures and genetic loci associated with early puberty traits in Chinese indigenous pigs. Genet. Sel. Evol. 2025, 57, 29. [Google Scholar] [CrossRef]
- Pitt, D.; Sevane, N.; Nicolazzi, E.L.; MacHugh, D.E.; Park, S.D.E.; Colli, L.; Martinez, R.; Bruford, M.W.; Orozco-terWengel, P. Domestication of cattle: Two or three events? Evol. Appl. 2019, 12, 123–136. [Google Scholar] [CrossRef]
- Cai, Y.; Quan, J.; Gao, C.; Ge, Q.; Jiao, T.; Guo, Y.; Zheng, W.; Zhao, S. Multiple Domestication Centers Revealed by the Geographical Distribution of Chinese Native Pigs. Animals 2019, 9, 709. [Google Scholar] [CrossRef]
- Outram, A.K. Horse domestication as a multi-centered, multi-stage process: Botai and the role of specialized Eneolithic horse pastoralism in the development of human-equine relationships. Front. Environ. Archaeol. 2023, 2, e1134068. [Google Scholar] [CrossRef]
- Yurtman, E.; Özer, O.; Yüncü, E.; Dağtaş, N.D.; Koptekin, D.; Çakan, Y.G.; Özkan, M.; Akbaba, A.; Kaptan, D.; Atağ, G.; et al. Archaeogenetic analysis of Neolithic sheep from Anatolia suggests a complex demographic history since domestication. Commun. Biol. 2021, 4, 1279. [Google Scholar] [CrossRef]
- Després, L. One, two or more species? Mitonuclear discordance and species delimitation. Mol. Ecol. 2019, 28, 3845–3847. [Google Scholar] [CrossRef]
- Meleshko, O.; Martin, M.D.; Korneliussen, T.S.; Schröck, C.; Lamkowski, P.; Schmutz, J.; Healey, A.; Piatkowski, B.T.; Shaw, A.J.; Weston, D.J.; et al. Extensive Genome-Wide Phylogenetic Discordance Is Due to Incomplete Lineage Sorting and Not Ongoing Introgression in a Rapidly Radiated Bryophyte Genus. Mol. Biol. Evol. 2021, 38, 2750–2766. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.I.; Ahmad, M.J.; Jabbir, F.; Ahmar, S.; Ahmad, N.; Elokil, A.A.; Chen, J. The Domestication Makeup: Evolution, Survival, and Challenges. Front. Ecol. Evol. 2020, 8, e103. [Google Scholar] [CrossRef]
- Wilkins, A.S.; Wrangham, R.W.; Fitch, W.T. The “Domestication Syndrome” in Mammals: A Unified Explanation Based on Neural Crest Cell Behavior and Genetics. Genetics 2014, 197, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Dugatkin, L.A. The silver fox domestication experiment. Evol. Educ. Outreach 2018, 11, 16. [Google Scholar] [CrossRef][Green Version]
- Wilkins, A.S. A striking example of developmental bias in an evolutionary process: The “domestication syndrome”. Evol. Dev. 2020, 22, 143–153. [Google Scholar] [CrossRef]
- Crockford, S.J. Animal domestication and heterochronic speciation: The role of thyroid hormone. Hum. Evol. Dev. Change 2002, 122–153. [Google Scholar]
- Crockford, S.J. Evolutionary roots of iodine and thyroid hormones in cell-cell signaling. Integr. Comp. Biol. 2009, 49, 155–166. [Google Scholar] [CrossRef]
- Karlsson, A.-C.; Fallahshahroudi, A.; Johnsen, H.; Hagenblad, J.; Wright, D.; Andersson, L.; Jensen, P. A domestication related mutation in the thyroid stimulating hormone receptor gene (TSHR) modulates photoperiodic response and reproduction in chickens. Gen. Comp. Endocrinol. 2016, 228, 69–78. [Google Scholar] [CrossRef]
- Zeder, M.A. Central questions in the domestication of plants and animals. Evol. Anthropol. Issues News Rev. 2006, 15, 105–117. [Google Scholar] [CrossRef]
- Ren, X.; Yang, G.-L.; Peng, W.-F.; Zhao, Y.-X.; Zhang, M.; Chen, Z.-H.; Wu, F.-A.; Kantanen, J.; Shen, M.; Li, M.-H. A genome-wide association study identifies a genomic region for the polycerate phenotype in sheep (Ovis aries). Sci. Rep. 2016, 6, 21111. [Google Scholar] [CrossRef] [PubMed]
- Simon, R.; Drögemüller, C.; Lühken, G. The Complex and Diverse Genetic Architecture of the Absence of Horns (Polledness) in Domestic Ruminants, including Goats and Sheep. Genes 2022, 13, 832. [Google Scholar] [CrossRef]
- Calamari, Z.T.; Flynn, J.J. Gene expression supports a single origin of horns and antlers in hoofed mammals. Commun. Biol. 2024, 7, 509. [Google Scholar] [CrossRef] [PubMed]
- Narytnyk, A.; Gillinder, K.; Verdon, B.; Clewes, O.; Sieber-Blum, M. Neural Crest Stem Cell-specific Deletion of the Pygopus2 Gene Modulates Hair Follicle Development. Stem Cell Rev. Rep. 2014, 10, 60–68. [Google Scholar] [CrossRef]
- Schneider, R.A. Neural crest and the origin of species-specific pattern. Genesis 2018, 56, e23219. [Google Scholar] [CrossRef]
- Li, M.-H.; Tiirikka, T.; Kantanen, J. A genome-wide scan study identifies a single nucleotide substitution in ASIP associated with white versus non-white coat-colour variation in sheep (Ovis aries). Heredity 2014, 112, 122–131. [Google Scholar] [CrossRef]
- Trigo, B.B.; Utsunomiya, A.T.H.; Fortunato, A.A.A.D.; Milanesi, M.; Torrecilha, R.B.P.; Lamb, H.; Nguyen, L.; Ross, E.M.; Hayes, B.; Padula, R.C.M.; et al. Variants at the ASIP locus contribute to coat color darkening in Nellore cattle. Genet. Sel. Evol. 2021, 53, 40. [Google Scholar] [CrossRef]
- Zhang, X.; Li, W.; Liu, C.; Peng, X.; Lin, J.; He, S.; Li, X.; Han, B.; Zhang, N.; Wu, Y.; et al. Alteration of sheep coat color pattern by disruption of ASIP gene via CRISPR Cas9. Sci. Rep. 2017, 7, 8149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liang, L.; Zhang, X.; Li, W.R.; Li, H.; He, S. Understanding key genetic make-up of different coat colour in Bayinbuluke sheep through a comparative transcriptome profiling analysis. Small Rumin. Res. 2023, 226, 107028. [Google Scholar] [CrossRef]
- McManus, C.; Pimentel, D.; Junqueira, V.S.; Pimentel, F.; Peripolli, V. The importance of sheep genetics and diversity: A bibliometric review. Trop. Anim. Health Prod. 2025, 57, 261. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, M.; Guo, Z.; Wijayanti, D.; Xu, H.; Jiang, F.; Lan, X. Insertion/Deletion (InDel) Variants within the Sheep Fat-Deposition-Related PDGFD Gene Strongly Affect Morphological Traits. Animals 2023, 13, 1485. [Google Scholar] [CrossRef]
- Han, J.; Yang, M.; Guo, T.; Niu, C.; Liu, J.; Yue, Y.; Yuan, C.; Yang, B. Two linked TBXT (brachyury) gene polymorphisms are associated with the tailless phenotype in fat-rumped sheep. Anim. Genet. 2019, 50, 772–777. [Google Scholar] [CrossRef]
- Schneemann, H.; De Sanctis, B.; Roze, D.; Bierne, N.; Welch, J.J. The geometry and genetics of hybridization. Evolution 2020, 74, 2575–2590. [Google Scholar] [CrossRef]
- Šprem, N.; Buzan, E.; Safner, T. How we look: European wild mouflon and feral domestic sheep hybrids. Curr. Zool. 2024, 70, 298–303. [Google Scholar] [CrossRef]
- Tensen, L.; Fischer, K. Evaluating hybrid speciation and swamping in wild carnivores with a decision-tree approach. Conserv. Biol. 2024, 38, e14197. [Google Scholar] [CrossRef]
- Schumer, M.; Cui, R.; Rosenthal, G.G.; Andolfatto, P. Reproductive Isolation of Hybrid Populations Driven by Genetic Incompatibilities. PLoS Genet. 2015, 11, e1005041. [Google Scholar] [CrossRef]
- Adavoudi, R.; Pilot, M. Consequences of Hybridization in Mammals: A Systematic Review. Genes 2021, 13, 50. [Google Scholar] [CrossRef]
- Brennan, A.C.; Woodward, G.; Seehausen, O.; Muñoz-Fuentes, V.; Moritz, C.; Guelmami, A.; Abbott, R.J.; Edelaar, P. Hybridization due to changing species distributions: Adding problems or solutions to conservation of biodiversity during global change. Evol. Ecol. Res. 2014, 16, 475–491. [Google Scholar]
- Grigoryeva, O.; Krivonogov, D.; Balakirev, A.; Stakheev, V.; Andreychev, A.; Orlov, V. Phylogeography of the forest dormouse Dryomys nitedula (Gliridae, Rodentia) in Russian Plain and the Caucasus. Folia Zool. 2015, 64, 361–364. [Google Scholar] [CrossRef]
- Schröder, O.; Lieckfeldt, D.; Lutz, W.; Rudloff, C.; Frölich, K.; Ludwig, A. Limited hybridization between domestic sheep and the European mouflon in Western Germany. Eur. J. Wildl. Res. 2016, 62, 307–314. [Google Scholar] [CrossRef]
- Somenzi, E.; Ajmone-Marsan, P.; Barbato, M. Identification of Ancestry Informative Marker (AIM) Panels to Assess Hybridisation between Feral and Domestic Sheep. Animals 2020, 10, 582. [Google Scholar] [CrossRef]
HPG | Origin | Prevalence |
---|---|---|
A | Asian | Central Asian and some European domestic sheep. |
B | European | Most domestic sheep and European mouflons. |
C | Asia, Middle East, and Caucasus | Likely from Iranian Asiatic mouflon. |
D | Caucasus and Turkey | Rarest, closest to O. gmelini anatolica. |
E | Middle East and Caucasus | Key haplogroup of Iranian Asiatic mouflon. |
X | Cyprus, Iran, and Turkey | Wild mouflon HPG, basal to domestic HPGs C and E. |
Introgressed Region | Donor Species | Phenotypic Trait(s) | Specific Domestic Breeds | Significance |
---|---|---|---|---|
RXFP2 (chr10) | Ir mouflon | Spiral horn trait/horn status (polled, sex-specific, horned) | Polled: Finnsheep, Gotland, Waggir, Afshari, East Friesian; Sex-specific: Chinese Merino, Ouessant, Barki; Horned: Oula, Prairie Tibetan, Valais Blacknose, Scottish Blackface. | Contributed to morphological differentiation, particularly horn development. |
MSRB3 (chr3) | Argali | Ear morphology (small, large/floppy) | Small ears: Swiss White Alpine, Mossi, Diqing; Large/floppy ears: Waggir, Karakul, Duolang. | Associated with variations in ear size and shape. |
VPS13B (chr9) | Urial/mouflon | Facial traits (e.g., nose morphology) | Tibetan sheep (Oula, Prairie Tibetan, Valley Tibetan). | Potential influence on facial shape, contributing to breed-specific appearances. |
(General) | O. gmelini_2 (Kaboodan Island) | Body size, fat metabolism, local adaptation to hot and humid environments | Garut, Bangladeshi, Nellore, Sumatra sheep populations in South and Southeast Asia. | Contributed to adaptive traits for specific environments. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mereu, P.; Pirastru, M.; Scarpa, F.; Zedda, M.; Bogliolo, L.; Naitana, S.; Leoni, G.G. Mouflon and Domestic Sheep Phylogeny: Ancestry, Domestication, and Evolutionary Dynamics. Life 2025, 15, 1446. https://doi.org/10.3390/life15091446
Mereu P, Pirastru M, Scarpa F, Zedda M, Bogliolo L, Naitana S, Leoni GG. Mouflon and Domestic Sheep Phylogeny: Ancestry, Domestication, and Evolutionary Dynamics. Life. 2025; 15(9):1446. https://doi.org/10.3390/life15091446
Chicago/Turabian StyleMereu, Paolo, Monica Pirastru, Fabio Scarpa, Marco Zedda, Luisa Bogliolo, Salvatore Naitana, and Giovanni Giuseppe Leoni. 2025. "Mouflon and Domestic Sheep Phylogeny: Ancestry, Domestication, and Evolutionary Dynamics" Life 15, no. 9: 1446. https://doi.org/10.3390/life15091446
APA StyleMereu, P., Pirastru, M., Scarpa, F., Zedda, M., Bogliolo, L., Naitana, S., & Leoni, G. G. (2025). Mouflon and Domestic Sheep Phylogeny: Ancestry, Domestication, and Evolutionary Dynamics. Life, 15(9), 1446. https://doi.org/10.3390/life15091446