Changes in Cryotolerance of Spermatozoa in Men with Teratozoospermia Under the Influence of Extracellular Vesicles from Donor Seminal Plasma Isolated by Depth Filtration
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Ejaculate Samples, Seminal Plasma Isolation, and Sperm Preparation
2.2. Isolation of Extracellular Vesicles from Seminal Plasma by Asymmetric Depth Filtration
2.3. Cryopreservation and Thawing of Spermatozoa
2.4. Experimental Design and Co-Culturing of Spermatozoa with Seminal Plasma Extracellular Vesicles
2.5. Nanoparticle Tracking Analysis (NTA)
2.6. Western Blot Analysis of Donor Seminal Plasma Extracellular Vesicles
2.7. Transmission Electron Microscopy (TEM) of Seminal Plasma Extracellular Vesicles
2.8. Transmission Electron Microscopy of Spermatozoa
2.9. Flow Cytometry of Spermatozoa
2.10. Statistical Analysis
3. Results
3.1. Native Ejaculate Characterization
3.2. Donor’s SP EVs Characterization
3.3. SP EVs to the Patient Spermatozoa Binding Analysis
3.4. Evaluation of the Effectiveness of Using Donor SP EVs in Sperm Cryopreservation
3.4.1. Ejaculate Characterization
3.4.2. The Level of Cell Death Assessment
3.4.3. Measurement of Mitochondrial Membrane Potential and ROS Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ART | Assisted reproductive technologies |
CCCP | Carbonyl cyanide m-chlorophenyl hydrazone |
EVs | Extracellular vesicles |
PI | propidium iodide |
PBS | Phosphate-buffered saline |
ROS | Reactive oxygen species |
SP | Seminal plasma |
TEM | Transmission Electron Microscopy |
References
- Naghi, P.; Zaha, I.A.; Stefan, L.; Sorian, A.; Marcu, A.; Sachelarie, L.; Huniadi, A. Teratozoospermia and Embryo Development: The Significance of Sperm Selection in In Vitro Fertilization Success. J. Clin. Med. 2025, 14, 3763. [Google Scholar] [CrossRef]
- Kalludi, S.N.; Kalthur, G.; Benjamin, S.; Kumar, P.; Adiga, S.K. Controlled cooling versus rapid freezing of teratozoospermic semen samples: Impact on sperm chromatin integrity. J. Hum. Reprod. Sci. 2011, 4, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Nafchi, H.G.; Azizi, Y.; Halvaei, I. Effect of Conditioned Medium from Human Adipose-Derived Mesenchymal Stem Cells on Human Sperm Quality During Cryopreservation. Reprod. Sci. 2024, 31, 1586–1592. [Google Scholar] [CrossRef] [PubMed]
- Schacher, K.; Dalloul, M.; Muneyyirci-Delale, O. Seminal Plasma Hypersensitivity: A Systematic Review of Clinical Presentation, Diagnostics, and Management Options. Am. J. Reprod. Immunol. 2024, 91, e13865. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shi, W.; Zhang, M.; Xu, L.; Wu, L.; Li, C.; Zhang, Z.; Cao, W.; Zhang, J.; Zeng, Q.; et al. Exposure to PM, Seminal Plasma Metabolome, and Semen Quality among Chinese Adult Men: Association and Potential Mediation Analyses. J. Hazard. Mater. 2024, 461, 132602. [Google Scholar] [CrossRef]
- de Almeida Monteiro Melo Ferraz, M.; Nagashima, J.B.; Noonan, M.J.; Crosier, A.E.; Songsasen, N. Oviductal Extracellular Vesicles Improve Post-Thaw Sperm Function in Red Wolves and Cheetahs. Int. J. Mol. Sci. 2020, 21, 3733. [Google Scholar] [CrossRef]
- Tambovsky, M.A.; Aimaletdinov, A.M.; Zakirova, E.Y. Modern Trends of the Application of Stem Cells and Their Derivatives during Cryopreservation of Animal Sperm. Biol. Membr. 2023, 40, 328–335. [Google Scholar] [CrossRef]
- Aimaletdinov, A.M.; Malanyeva, A.G.; Tambovsky, M.A.; Zakirova, E.Y. Protective Effect of Microvesicles on Rat Spermatozoa In Vitro. Biotekhnologiia 2024, 40, 56–64. [Google Scholar] [CrossRef]
- Du, J.; Shen, J.; Wang, Y.; Pan, C.; Pang, W.; Diao, H.; Dong, W. Boar Seminal Plasma Exosomes Maintain Sperm Function by Infiltrating into the Sperm Membrane. Oncotarget 2016, 7, 58832–58847. [Google Scholar] [CrossRef]
- Martins Ana, D.; Panner Selvam, M.K.; Agarwal, A.; Alves, M.G.; Baskaran, S. Alterations in seminal plasma proteomic profile in men with primary and secondary infertility. Sci. Rep. 2020, 10, 7539. [Google Scholar] [CrossRef]
- Murdica, V.; Giacomini, E.; Alteri, A.; Bartolacci, A.; Cermisoni, G.C.; Zarovni, N.; Papaleo, E.; Montorsi, F.; Salonia, A.; Viganò, P.; et al. Seminal plasma of men with severe asthenozoospermia contain exosomes that affect spermatozoa motility and capacitation. Fertil. Steril. 2019, 111, 897–908. [Google Scholar] [CrossRef]
- World Health Organization. WHO Laboratory Manual for the Examination and processing of Human Semen, 6th ed.; World Health Organization: Geneva, Switzerland, 2010; ISBN 9789241547789. [Google Scholar]
- Chernyshev, V.S.; Chuprov-Netochin, R.N.; Tsydenzhapova, E.; Svirshchevskaya, E.V.; Poltavtseva, R.A.; Merdalimova, A.; Skliar, M.; Yashchenok, A.; Keshelava, A.; Sorokin, K. Asymmetric depth-filtration: A versatile and scalable method for high-yield isolation of extracellular vesicles with low contamination. J. Extracell. Vesicles 2022, 11, e12256. [Google Scholar] [CrossRef] [PubMed]
- WHO Laboratory Manual for the Examination and Processing of Human Semen; World Health Organization: Geneva, Switzerland, 2021; ISBN 9789240030787.
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrügger, U.; et al. Minimal Information for Studies of Extracellular Vesicles (MISEV2023): From Basic to Advanced Approaches. J. Extracell. Vesicles 2024, 13, e12404. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Stanger, S.J.; Anderson, A.L.; Bernstein, I.R.; De Iuliis, G.N.; McCluskey, A.; McLaughlin, E.A.; Dun, M.D.; Nixon, B. Mechanisms of Tethering and Cargo Transfer during Epididymosome-Sperm Interactions. BMC Biol. 2019, 17, 35. [Google Scholar] [CrossRef]
- Sysoeva, A.; Akhmedova, Z.; Nepsha, O.; Makarova, N.; Silachev, D.; Shevtsova, Y.; Goryunov, K.; Karyagina, V.; Bugrova, A.; Starodubtseva, N.; et al. Characteristics of the Follicular Fluid Extracellular Vesicle Molecular Profile in Women in Different Age Groups in ART Programs. Life 2024, 14, 541. [Google Scholar] [CrossRef]
- Machtinger, R.; Laurent, L.C.; Baccarelli, A.A. Extracellular Vesicles: Roles in Gamete Maturation, Fertilization and Embryo Implantation. Hum. Reprod. Update 2016, 22, 182–193. [Google Scholar] [CrossRef]
- Müller, K.; Müller, P.; Pincemy, G.; Kurz, A.; Labbe, C. Characterization of sperm plasma membrane properties after cholesterol modification: Consequences for cryopreservation of rainbow trout spermatozoa. Biol. Reprod. 2008, 78, 390–399. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Ijaz, A. Effects of osmotic pressure on motility, plasma membrane integrity and viability in fresh and frozen-thawed buffalo spermatozoa. Animal 2008, 2, 548–553. [Google Scholar] [CrossRef]
- Ozkavukcu, S.; Erdemli, E.; Isik, A.; Oztuna, D.; Karahuseyinoglu, S. Effects of cryopreservation on sperm parameters and ultrastructural morphology of human spermatozoa. J. Assist. Reprod. Genet. 2008, 25, 403–411. [Google Scholar] [CrossRef]
- Li, N.; Wang, H.; Zou, S.; Yu, X.; Li, J. Perspective in the Mechanisms for Repairing Sperm DNA Damage. Reprod. Sci. 2025, 32, 41–51. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, X.; Jin, Y.; Lv, Y.; Han, Y.; Qu, X.; Zhang, Y.; Li, C.; Jin, Y. Extracellular Vesicles in Porcine Seminal Plasma Maintain Sperm Function by Reducing Lyso-PC. Livest. Sci. 2023, 276, 105298. [Google Scholar] [CrossRef]
- Irigoyen, P.; Mansilla, S.; Castro, L.; Cassina, A.; Sapiro, R. Mitochondrial Function and Reactive Oxygen Species Production during Human Sperm Capacitation: Unraveling Key Players. FASEB J. 2024, 38, e23486. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fu, X.; Li, H. Mechanisms of oxidative stress-induced sperm dysfunction. Front. Endocrinol. 2025, 16, 1520835. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, H.; Chang, Z.; Zhang, Z.; Zhao, Y.; Jiang, X.; Yu, H.; Zhang, Y.; Zhao, R.; He, B. Extracellular ATPs Produced in Seminal Plasma Exosomes Regulate Boar Sperm Motility and Mitochondrial Metabolism. Theriogenology 2019, 139, 113–120. [Google Scholar] [CrossRef]
- Kaddour, H.; Lyu, Y.; Welch, J.L.; Paromov, V.; Mandape, S.N.; Sakhare, S.S.; Pandhare, J.; Stapleton, J.T.; Pratap, S.; Dash, C.; et al. Proteomics Profiling of Autologous Blood and Semen Exosomes from HIV-infected and Uninfected Individuals Reveals Compositional and Functional Variabilities. Mol. Cell. Proteom. 2020, 19, 78–100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Paktinat, S.; Gravett, M.G.; Tobey, C.; Kirby, A.; Horner, W.; Shaffer, R.; Fialkow, M.; Nguyen, N.P.; Gornalusse, G.G.; Kalatehjari, M.; et al. Extracellular vesicles from human semen induce unique tolerogenic phenotypes in vaginal dendritic cells and regulatory T lymphocytes. Front. Immunol. 2025, 16, 1564002. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parra, A.; Padilla, L.; Lucas, X.; Rodriguez-Martinez, H.; Barranco, I.; Roca, J. Seminal Extracellular Vesicles and Their Involvement in Male (In)Fertility: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 4818. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kowalczyk, A.; Kordan, W. Evaluation of the Effectiveness of the Use of Exosomes in the Regulation of the Mitochondrial Membrane Potential of Frozen/thawed Spermatozoa. PLoS ONE 2024, 19, e0303479. [Google Scholar] [CrossRef]
- Leite, R.F.; de Agostini Losano, J.D.; Kawai, G.K.V.; Rui, B.R.; Nagai, K.K.; Castiglioni, V.C.; Siqueira, A.F.P.; D’Avila Assumpção, M.E.O.; Baruselli, P.S.; Nichi, M. Sperm Function and Oxidative Status: Effect on Fertility in Bos Taurus and Bos Indicus Bulls When Semen Is Used for Fixed-Time Artificial Insemination. Anim. Reprod. Sci. 2022, 237, 106922. [Google Scholar] [CrossRef]
- Llavanera, M.; Mateo-Otero, Y.; Viñolas-Vergés, E.; Bonet, S.; Yeste, M. Sperm Function, Mitochondrial Activity and in Vivo Fertility Are Associated to Their Mitochondrial DNA Content in Pigs. J. Anim. Sci. Biotechnol. 2024, 15, 10. [Google Scholar] [CrossRef]
- Agnihotri, S.K.; Agrawal, A.K.; Hakim, B.A.; Vishwakarma, A.L.; Narender, T.; Sachan, R.; Sachdev, M. Mitochondrial Membrane Potential (MMP) Regulates Sperm Motility. Vitr. Cell. Dev. Biol. Anim. 2016, 52, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-B.; Zhai, C.-Y.; Yao, G.-P.; Chen, T.-B.; Xue, L.-L.; Zhou, L.; Xiong, L.-L.; Wang, T.-H. ATP5D Is a Potential Biomarker for Male Fertility. Oxid. Med. Cell. Longev. 2023, 2023, 4923614. [Google Scholar] [CrossRef] [PubMed]
- Chernyshev, V.S.; Yashchenok, A.; Ivanov, M.; Silachev, D.N. Filtration-based technologies for isolation, purification and analysis of extracellular vesicles. Phys. Chem. Chem. Phys. 2023, 25, 23344–23357. [Google Scholar] [CrossRef] [PubMed]
- Shaffi, S.C.; Hairuddin, O.N.; Mansor, S.F.; Syafiq, T.M.F.; Yahaya, B.H. Unlocking the Potential of Extracellular Vesicles as the Next Generation Therapy: Challenges and Opportunities. Tissue Eng. Regen. 2024, 21, 513–527. [Google Scholar] [CrossRef]
- Ouattara Louise, A.; Sharon, M. Anderson, and Gustavo F. Doncel. Seminal exosomes and HIV-1 transmission. Andrologia 2018, 50, e13220. [Google Scholar]
- Nguyen Vivian, V.T.; Witwer, K.W.; Verhaar, M.C.; Strunk, D.; van Balkom, B.W. Functional assays to assess the therapeutic potential of extracellular vesicles. J. Extracell. Vesicles 2020, 10, e12033. [Google Scholar] [CrossRef]
Parameter | Value 1 |
---|---|
Total sperm concentration, million/mL | 79 (56; 93) |
Progressively motile sperm, % | 67 (59; 73) |
Total sperm motility, % | 78 (63; 89) |
Sperm viability, % | 85 (72; 95) |
Morphologically normal sperm, % | 3 (2; 3) |
Parameter 1 | Cryo− | Cryo+ | EVsCryo+ | p Value 2 |
---|---|---|---|---|
Total sperm concentration, million/mL | 79 (56; 93) | 47 (33; 60) | 34.5 (24; 45) | p > 0.05 |
Progressively motile sperm, % | 67 (59; 73) | 40 (25; 58) | 47 (33; 68) | p < 0.05 |
Total sperm motility, % | 78 (63; 89) | 53 (35; 70) | 61 (41; 76) | p < 0.05 |
Sperm viability, % | 85 (72; 95) | 58.5 (42; 73) | 64 (43; 81) | p < 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrilov, M.; Makarova, N.; Sysoeva, A.; Evtushenko, E.; Bragina, E.; Vishnyakova, P.; Karyagina, V.; Bagdasaryan, A.; Yakimova, A.; Silachev, D.; et al. Changes in Cryotolerance of Spermatozoa in Men with Teratozoospermia Under the Influence of Extracellular Vesicles from Donor Seminal Plasma Isolated by Depth Filtration. Life 2025, 15, 1436. https://doi.org/10.3390/life15091436
Gavrilov M, Makarova N, Sysoeva A, Evtushenko E, Bragina E, Vishnyakova P, Karyagina V, Bagdasaryan A, Yakimova A, Silachev D, et al. Changes in Cryotolerance of Spermatozoa in Men with Teratozoospermia Under the Influence of Extracellular Vesicles from Donor Seminal Plasma Isolated by Depth Filtration. Life. 2025; 15(9):1436. https://doi.org/10.3390/life15091436
Chicago/Turabian StyleGavrilov, Maxim, Natalya Makarova, Anastasia Sysoeva, Ekaterina Evtushenko, Elizaveta Bragina, Polina Vishnyakova, Victoria Karyagina, Aida Bagdasaryan, Alexandra Yakimova, Denis Silachev, and et al. 2025. "Changes in Cryotolerance of Spermatozoa in Men with Teratozoospermia Under the Influence of Extracellular Vesicles from Donor Seminal Plasma Isolated by Depth Filtration" Life 15, no. 9: 1436. https://doi.org/10.3390/life15091436
APA StyleGavrilov, M., Makarova, N., Sysoeva, A., Evtushenko, E., Bragina, E., Vishnyakova, P., Karyagina, V., Bagdasaryan, A., Yakimova, A., Silachev, D., Kalinina, E., & Sukhikh, G. (2025). Changes in Cryotolerance of Spermatozoa in Men with Teratozoospermia Under the Influence of Extracellular Vesicles from Donor Seminal Plasma Isolated by Depth Filtration. Life, 15(9), 1436. https://doi.org/10.3390/life15091436