A Dose-Dependent Study Examining Dexmedetomidine’s Possible Effects Against Oxidative, Fibrotic, and Apoptotic Damage Induced by Radiation Exposure in Spleen Tissue
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval and Animals
2.2. Radiotherapy Procedure
2.3. Tissue Processing and Histopathological Evaluation
2.4. Immunohistochemical Analyses
2.5. Biochemical Tissue Sampling and Homogenization
2.6. Statistical Analyses
3. Results
3.1. Histopathological Findings
3.2. Immunohistochemical Findings
3.3. Biochemical Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barcellos-Hoff, M.H.; Park, C.; Wright, E.G. Radiation and the microenvironment–tumorigenesis and therapy. Nat. Rev. Cancer 2005, 5, 867–875. [Google Scholar] [CrossRef]
- Azzam, E.I.; Jay-Gerin, J.P.; Pain, D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012, 327, 48–60. [Google Scholar] [CrossRef]
- Jiao, Y.; Cao, F.; Liu, H. Radiation-induced cell death and its mechanisms. Health Phys. 2022, 123, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Desouky, O.; Ding, N.; Zhou, G. Targeted and non-targeted effects of ionizing radiation. J. Radiat. Res. Appl. Sci. 2015, 8, 247–254. [Google Scholar] [CrossRef]
- Manda, K.; Bhatia, A.L. Prophylactic action of melatonin against cyclophosphamide-induced oxidative stress in mice. Cell Biol. Toxicol. 2003, 19, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Boiti, A.; Vallone, D.; Foulkes, N.S. Reactive Oxygen Species Signaling and Oxidative Stress: Transcriptional Regulation and Evolution. Antioxidants 2024, 13, 312. [Google Scholar] [CrossRef]
- El-Missiry, M.A.; Fayed, T.A.; El-Sawy, M.R.; El-Sayed, A.A. Ameliorative effect of melatonin against gamma-irradiation-induced oxidative stress and tissue injury. Ecotoxicol. Environ. Saf. 2007, 66, 278–286. [Google Scholar] [CrossRef]
- Arunagiri, N.; Kelly, S.M.; Dunlea, C.; Dixon, O.; Cantwell, J.; Bhudia, P.; Boterberg, T.; Janssens, G.O.; Gains, J.E.; Chang, Y.C.; et al. The spleen as an organ at risk in paediatric radiotherapy: A SIOP-Europe Radiation Oncology Working Group report. Eur. J. Cancer 2021, 143, 1–10. [Google Scholar] [CrossRef]
- Puukila, S.; Tharmalingam, S.; Al-Khayyat, W.; Peterson, J.; Hooker, A.M.; Muise, S.; Boreham, D.R.; Dixon, D.L. Transcriptomic response in the spleen after whole-body low-dose X-ray irradiation. Radiat. Res. 2021, 196, 66–73. [Google Scholar] [CrossRef]
- Rittase, W.B.; Slaven, J.E.; Suzuki, Y.J.; Muir, J.M.; Lee, S.H.; Rusnak, M.; Brehm, G.V.; Bradfield, D.T.; Symes, A.J.; Day, R.M. Iron deposition and ferroptosis in the spleen in a murine model of acute radiation syndrome. Int. J. Mol. Sci. 2022, 23, 11029. [Google Scholar] [CrossRef]
- Mohye El-Din, A.A.; Abdelrazzak, A.B.; Ahmed, M.T.; El-Missiry, M.A. Radiation induced bystander effects in the spleen of cranially-irradiated rats. Br. J. Radiol. 2017, 90, 20170278. [Google Scholar] [CrossRef]
- Mackova, N. Late changes in peripheral blood and spleen in mice after the effect of single whole body irradiation with the dose of 8 Gy. Folia Haematol. Int. Mag. Klin. Morphol. Blutforsch. 1990, 117, 301–306. [Google Scholar] [PubMed]
- Dancea, H.C.; Shareef, M.M.; Ahmed, M.M. Role of radiation-induced TGF-beta signaling in cancer therapy. Mol. Cell. Pharmacol. 2009, 1, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Hanson, I.; Pitman, K.E.; Edin, N.F.J. The role of TGF-β3 in radiation response. Int. J. Mol. Sci. 2023, 24, 7614. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Yun, J.S.; Han, D.; Yook, J.I.; Kim, H.S.; Cho, E.S. TGF-β Pathway in Salivary Gland Fibrosis. Int. J. Mol. Sci. 2020, 21, 9138. [Google Scholar] [CrossRef]
- Travis, M.A.; Sheppard, D. TGF-β activation and function in immunity. Annu. Rev. Immunol. 2014, 32, 51–82. [Google Scholar] [CrossRef]
- Yang, L.; Peng, Y.; Moses, H.L. TGF-β and immune cells: An important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 2010, 31, 220–227. [Google Scholar] [CrossRef]
- Porter, A.G.; Janicke, R.U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999, 6, 99–104. [Google Scholar] [CrossRef]
- Cao, X.; Wen, P.; Fu, Y.; Gao, Y.; Qi, X.; Chen, B.; Tao, Y.; Wu, L.; Xu, A.; Lu, H.; et al. Radiation induces apoptosis primarily through the intrinsic pathway in mammalian cells. Cell Signal. 2019, 62, 109337. [Google Scholar] [CrossRef]
- Bao, N.; Tang, B. Organ-Protective Effects and the underlying mechanism of dexmedetomidine. Mediat. Inflamm. 2020, 2020, 6136105. [Google Scholar] [CrossRef]
- Cinar, S.; Tumkaya, L.; Mercantepe, T.; Saral, S.; Rakici, S.; Yilmaz, A.; Topcu, A.; Sen, A.; Karakas, S. Can Dexmedetomidine Be Effective in the Protection of Radiotherapy-Induced Brain Damage in the Rat? Neurotox. Res. 2021, 39, 1338–1351. [Google Scholar] [CrossRef]
- Su, F.; Hammer, G.B. Dexmedetomidine: Pediatric pharmacology, clinical uses and safety. Expert. Opin. Drug Saf. 2011, 10, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Dou, X.K.; Dai, M.S.; Sun, Y.; Sun, S.J.; Wu, Y. The role of dexmedetomidine in immune tissue and inflammatory diseases: A narrative review. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 8030–8038. [Google Scholar] [CrossRef] [PubMed]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Yilmaz, H.; Mercantepe, F.; Tumkaya, L.; Mercantepe, T.; Yilmaz, A.; Yilmaz Rakici, S. The potential antioxidant effect of N-acetylcysteine on X-ray ionizing radiation-induced pancreas islet cell toxicity. Biochem. Biophys. Res. Commun. 2023, 685, 149154. [Google Scholar] [CrossRef]
- Ghritlahare, H.; Einstein, A.; Singaraju, S.; Patel, S.; Gulati, N.; Mishra, S.D. Immunohistochemical expression of survivin in oral epithelial dysplasia and different grades of oral squamous cell carcinoma. J. Oral Maxillofac. Pathol. 2022, 26, 451–457. [Google Scholar] [CrossRef]
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci. 2012, 9, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Berkey, F.J. Managing the adverse effects of radiation therapy. Am. Fam. Physician 2010, 82, 381–388. [Google Scholar] [PubMed]
- Liu, Y.Q.; Wang, X.L.; He, D.H.; Cheng, Y.X. Protection against chemotherapy- and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. Phytomedicine 2021, 80, 153402. [Google Scholar] [CrossRef]
- Kutanis, D.; Erturk, E.; Besir, A.; Demirci, Y.; Kayir, S.; Akdogan, A.; Vanizor Kural, B.; Bahat, Z.; Canyilmaz, E.; Kara, H. Dexmedetomidine acts as an oxidative damage prophylactic in rats exposed to ionizing radiation. J. Clin. Anesth. 2016, 34, 577–585. [Google Scholar] [CrossRef]
- McKenzie, R.C.; Lewin, M.H.; Rafferty, T.; Howie, A.F.; Arthur, J.R.; Beckett, G.J. Selenium protects keratinocytes from ultraviolet radiation-induced lipid peroxidation and cell death by oxidative stress. Brit. J. Dermatol. 2003, 148, 864. [Google Scholar]
- Erel, O.; Neselioglu, S. A novel and automated assay for thiol/disulphide homeostasis. Clin. Biochem. 2014, 47, 326–332. [Google Scholar] [CrossRef]
- Mebius, R.E.; Kraal, G. Structure and function of the spleen. Nat. Rev. Immunol. 2005, 5, 606–616. [Google Scholar] [CrossRef]
- Syrjanen, K.J. Morphology of the Spleen White Pulp in Relation to the Immunological Functions in Patients with Far Advanced Bronchial-Carcinoma. Immunobiology 1980, 157, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.F.; Cheng, C.H.; Hung, H.C.; Lee, J.C.; Wang, Y.C.; Wu, T.H.; Wu, T.J.; Chou, H.S.; Chan, K.M.; Lee, W.C. Sedative and Immunosuppressive Effects of Dexmedetomidine in Transplantation. Pharmaceuticals 2021, 14, 825. [Google Scholar] [CrossRef] [PubMed]
- Resendes, A.R.; Majo, N.; Segales, J.; Espadamala, J.; Mateu, E.; Chianini, F.; Nofrarias, M.; Domingo, M. Apoptosis in normal lymphoid organs from healthy normal, conventional pigs at different ages detected by TUNEL and cleaved caspase-3 immunohistochemistry in paraffin-embedded tissues. Vet. Immunol. Immunopathol. 2004, 99, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, B.; Frank, H.G.; Kaufmann, P. The apoptosis cascade--morphological and immunohistochemical methods for its visualization. Anat. Embryol. 1999, 200, 1–18. [Google Scholar] [CrossRef]
- Paganetti, H. A review on lymphocyte radiosensitivity and its impact on radiotherapy. Front. Oncol. 2023, 13, 1201500. [Google Scholar] [CrossRef]
- Cesta, M.F. Normal structure, function, and histology of the spleen. Toxicol. Pathol. 2006, 34, 455–465. [Google Scholar] [CrossRef]
- Zhou, R.; Chen, X. Dexmedetomidine represses TGF-β1-induced extracellular matrix production and proliferation of airway smooth muscle cells by inhibiting MAPK signaling pathway. Allergol. Immunopathol. 2022, 50, 16–22. [Google Scholar] [CrossRef]
- So, K.; McGrouther, D.A.; Bush, J.A.; Durani, P.; Taylor, L.; Skotny, G.; Mason, T.; Metcalfe, A.; O’Kane, S.; Ferguson, M.W.J. Avotermin for scar improvement following scar revision surgery: A randomized, double-blind, within-patient, placebo-controlled, phase II clinical trial. Plast. Reconstr. Surg. 2011, 128, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Kahari, V.M.; Chen, Y.Q.; Bashir, M.M.; Rosenbloom, J.; Uitto, J. Tumor necrosis factor-alpha down-regulates human elastin gene expression. Evidence for the role of AP-1 in the suppression of promoter activity. J. Biol. Chem. 1992, 267, 26134–26141. [Google Scholar] [CrossRef] [PubMed]
- Kahari, V.M.; Chen, Y.Q.; Su, M.W.; Ramirez, F.; Uitto, J. Tumor necrosis factor-alpha and interferon-gamma suppress the activation of human type I collagen gene expression by transforming growth factor-beta 1. Evidence for two distinct mechanisms of inhibition at the transcriptional and posttranscriptional levels. J. Clin. Investig. 1990, 86, 1489–1495. [Google Scholar] [CrossRef] [PubMed]
- Verrecchia, F.; Pessah, M.; Atfi, A.; Mauviel, A. Tumor necrosis factor-α inhibits transforming growth factor-β /Smad signaling in human dermal fibroblasts via AP-1 activation. J. Biol. Chem. 2000, 275, 30226–30231. [Google Scholar] [CrossRef]
- McMurphy, R.M.; Fels, R.J.; Kenney, M.J. Dexmedetomidine and regulation of splenic sympathetic nerve discharge in aged F344 rats. Auton. Neurosci. 2015, 190, 53–57. [Google Scholar] [CrossRef]
- Sakaguchi, M.; Maebayashi, T.; Aizawa, T.; Ishibashi, N.; Okada, M. Association between unintentional splenic radiation and lymphopenia and high neutrophil/lymphocyte ratio after radiotherapy in patients with esophageal cancer. Transl. Cancer Res. 2021, 10, 5076–5084. [Google Scholar] [CrossRef]
- Chen, H.; Han, Z.; Luo, Q.; Wang, Y.; Li, Q.; Zhou, L.; Zuo, H. Radiotherapy modulates tumor cell fate decisions: A review. Radiat. Oncol. 2022, 17, 196. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beyazal Polat, H.; Yılmaz, H.; Kilinc, K.; Gülhan, B.; Yılmaz Rakıcı, S.; Tümkaya, L. A Dose-Dependent Study Examining Dexmedetomidine’s Possible Effects Against Oxidative, Fibrotic, and Apoptotic Damage Induced by Radiation Exposure in Spleen Tissue. Life 2025, 15, 1430. https://doi.org/10.3390/life15091430
Beyazal Polat H, Yılmaz H, Kilinc K, Gülhan B, Yılmaz Rakıcı S, Tümkaya L. A Dose-Dependent Study Examining Dexmedetomidine’s Possible Effects Against Oxidative, Fibrotic, and Apoptotic Damage Induced by Radiation Exposure in Spleen Tissue. Life. 2025; 15(9):1430. https://doi.org/10.3390/life15091430
Chicago/Turabian StyleBeyazal Polat, Hatice, Hamit Yılmaz, Kagan Kilinc, Belemir Gülhan, Sema Yılmaz Rakıcı, and Levent Tümkaya. 2025. "A Dose-Dependent Study Examining Dexmedetomidine’s Possible Effects Against Oxidative, Fibrotic, and Apoptotic Damage Induced by Radiation Exposure in Spleen Tissue" Life 15, no. 9: 1430. https://doi.org/10.3390/life15091430
APA StyleBeyazal Polat, H., Yılmaz, H., Kilinc, K., Gülhan, B., Yılmaz Rakıcı, S., & Tümkaya, L. (2025). A Dose-Dependent Study Examining Dexmedetomidine’s Possible Effects Against Oxidative, Fibrotic, and Apoptotic Damage Induced by Radiation Exposure in Spleen Tissue. Life, 15(9), 1430. https://doi.org/10.3390/life15091430