Effect of Carboxymethylcellulose Hyaluronan (SEPRAFİLM®) on an Arthrofibrosis Model Created in Rabbit Knees
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Size and Animal Allocation
2.2. Animal Husbandry and Environmental Control
2.3. Standardization and Bias Control
2.4. Surgical Methods
2.5. Macroscopic Evaluation
2.6. Histopathological Evaluation
2.6.1. Distinguishing and Scoring of Cell Types
2.6.2. Fibrosis
2.6.3. Edema
2.6.4. Vascular Proliferation
2.6.5. Giant Cell Response
2.6.6. Formation and Intensity of Synovial Chondrometaplasia
3. Statistical Analysis
4. Results
4.1. Macroscopic Adhesion Scores
4.2. Microscopic Adhesion
4.3. Fibrosis (Fibroblast Proliferation)
4.4. Vascular Proliferation
4.5. Synovial Chondrometaplasia
4.6. Edema
4.7. Neutrophil (PMNL) Infiltration
4.8. Lymphocyte Infiltration
4.9. Macrophage Infiltration
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cosgarea, A.J.; Sebastianelli, W.J.; DeHaven, K.E. Prevention of arthrofibrosis after anterior cruciate ligament reconstruction using the central third patellar tendon autograft. Am. J. Sports Med. 1995, 23, 87–92. [Google Scholar] [CrossRef]
- Jackson, D.W.; Schaefer, R.K. Cyclops syndrome: Loss of extension following intra-articular anterior cruciate ligament reconstruction. Arthroscopy 1990, 6, 171–178. [Google Scholar] [CrossRef]
- Sachs, R.; Daniel, D.; Stone, M.; Garfein, R. Patellofemoral problems after anterior cruciate ligament reconstruction. Am. J. Sports Med. 1989, 17, 760–765. [Google Scholar] [CrossRef]
- Shelbourne, K.D.; Patel, D.V.; Martilli, D.J. Classification and management of arthrofibrosis of the knee after anterior cruciate ligament reconstruction. Am. J. Sports Med. 1996, 24, 857–862. [Google Scholar] [CrossRef]
- Good, L.; Johnson, R.J. The dislocated knee. J. Am. Acad. Orthop. Surg. 1995, 3, 284–292. [Google Scholar] [CrossRef]
- Warner, J.J.; Allen, A.A.; Marks, P.H.; Wong, P. Arthroscopic release of postoperative capsular contracture of the shoulder. J. Bone Jt. Surg. Am. 1997, 79, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.S.; Savoie, F.H. Arthroscopic capsular release of flexion contractures (arthrofibrosis) of the elbow. Arthroscopy 1993, 9, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Philips, B.B.; Strasburger, S. Arthroscopic treatment of arthrofibrosis of the elbow joint. Arthroscopy 1998, 14, 38–44. [Google Scholar] [CrossRef]
- Bosch, U. Arthrofibrosis. Orthopade 2002, 31, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.X.; Flick, T.R.; Patel, A.H.; Sanchez, F.; Sherman, W.F. Patients with Dupuytren’s Contracture, Ledderhose Disease, and Peyronie’s Disease are at higher risk of arthrofibrosis following total knee arthroplasty. Knee 2021, 29, 190–200. [Google Scholar] [CrossRef]
- Lee, S.K.; Gargano, F.; Hausman, M.R. Wrist arthrofibrosis. Hand Clin. 2006, 22, 529–538. [Google Scholar] [CrossRef]
- Usher, K.M.; Zhu, S.; Mavropalias, G.; Carrino, J.A.; Zhao, J.; Xu, J. Pathological mechanisms and therapeutic outlooks for arthrofibrosis. Bone Res. 2019, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.S.; Gouze, E.; Levings, P.P.; Bush, M.L.; Kay, J.D.; Jorgensen, M.S.; Dacanay, E.A.; Reith, J.W.; Wright, T.W.; Ghivizzani, S.C. Gene delivery of TGF-β1 induces arthrofibrosis and chondrometaplasia of synovium in vivo. Lab. Investig. 2010, 90, 1615–1627. [Google Scholar] [CrossRef]
- Cheuy, V.A.; Foran, J.R.H.; Paxton, R.J.; Bade, M.J.; Zeni, J.A.; Stevens-Lapsley, J.E. Arthrofibrosis associated with total knee arthroplasty. J. Arthroplast. 2017, 32, 2604–2611. [Google Scholar] [CrossRef]
- Han, Y.; Yang, J.; Zhao, W.; Wang, H.; Sun, Y.; Chen, Y.; Luo, J.; Deng, L.; Xu, X.; Cui, W.; et al. Biomimetic injectable hydrogel microspheres with enhanced lubrication and controllable drug release for the treatment of osteoarthritis. Bioact. Mater. 2021, 6, 3596–3607. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Park, J.Y.; Lee, D.W.; Ro, D.H.; Lee, M.C.; Han, H.S. Temperature-sensitive anti-adhesive poloxamer hydrogel decreases fascial adhesion in total knee arthroplasty: A prospective randomized controlled study. J. Biomater. Appl. 2019, 34, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Sekiya, H.; Takatoku, K.; Kariya, Y.; Hoshino, Y. Experimental model of knee contracture in extension: Its prevention using a sheet made from hyaluronic acid and carboxymethylcellulose. Knee Surg. Sports Traumatol. Arthrosc. 2004, 12, 545–551. [Google Scholar] [CrossRef]
- Fukui, N.; Fukuda, A.; Kojima, K.; Nakajima, K.; Oda, H.; Nakamura, K. Suppression of fibrous adhesion by proteoglycan decorin. J. Orthop. Res. 2001, 19, 456–462. [Google Scholar] [CrossRef]
- Xu, R.S.; Hou, C.L.; Yin, C.H.; Wang, Y.S.; Chen, A.M. Clinical study on chitosan in prevention of knee adhesion after patellar operation. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2002, 16, 240–241. [Google Scholar] [PubMed]
- Li, X.; Sun, Y.; Chen, H.; Zhu, G.; Liang, Y.; Wang, Q.; Wang, J.; Yan, L. Hydroxycamptothecin induces apoptosis of fibroblasts and prevents intraarticular scar adhesion in rabbits by activating the IRE-1 signaling pathway. Eur. J. Pharmacol. 2016, 781, 139–147. [Google Scholar] [CrossRef]
- Zhao, S.; Sun, Y.; Li, X.; Wang, J.; Yan, L.; Chen, H.; Wang, D.; Dai, J.; He, J. Reduction of intraarticular adhesion of knee by local application of rapamycin in rabbits via inhibition of fibroblast proliferation and collagen synthesis. J. Orthop. Surg. Res. 2016, 11, 45. [Google Scholar] [CrossRef]
- Brunelli, G.; Longinotti, C.; Bertazzo, C.; Pavesio, A.; Pressato, D. Adhesion reduction after knee surgery in a rabbit model by Hyaloglide®, a hyaluronan derivative gel. J. Orthop. Res. 2005, 23, 1377–1382. [Google Scholar] [CrossRef]
- Rothkopf, D.M.; Webb, S.; Szabo, R.M.; Gelberman, R.H.; May, J.W., Jr. An experimental model for the study of canine flexor tendon adhesions. J. Hand Surg. Am. 1991, 16, 694–700. [Google Scholar] [CrossRef]
- Ibrahim, I.O.; Nazarian, A.; Rodriguez, E.K. Clinical management of arthrofibrosis: State of the art and therapeutic outlook. JBJS Rev. 2020, 8, e1900223. [Google Scholar] [CrossRef]
- Chen, A.F.; Lee, Y.S.; Seidl, A.J.; Abboud, J.A. Arthrofibrosis and large joint scarring. Connect. Tissue Res. 2019, 60, 21–28. [Google Scholar] [CrossRef]
- Abdel, M.P.; Morrey, M.E.; Barlow, J.D.; Kreofsky, C.R.; An, K.N.; Steinmann, S.P.; Morrey, B.F.; Sanchez-Sotelo, J. Myofibroblast cells are preferentially expressed early in a rabbit model of joint contracture. J. Orthop. Res. 2012, 30, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Will, R.; Lubahn, J. Complications of open trigger finger release. J. Hand Surg. Am. 2010, 35, 594–596. [Google Scholar] [CrossRef] [PubMed]
- Mohede, D.C.J.; Riesmeijer, S.A.; de Jong, I.J.; Werker, P.M.N.; van Driel, M.F. Prevalence of Peyronie and Ledderhose diseases in a series of 730 patients with Dupuytren disease. Plast. Reconstr. Surg. 2020, 145, 978–984. [Google Scholar] [CrossRef]
- Akdag, O.; Yildiran, G.; Karamese, M.; Tosun, Z. Dupuytren-like contracture of the foot: Ledderhose disease. Surg. J. 2016, 2, e102–e104. [Google Scholar] [CrossRef] [PubMed]
- Young, J.R.; Sternbach, S.; Willinger, M.; Hutchinson, I.D.; Rosenbaum, A.J. The etiology, evaluation, and management of plantar fibromatosis. Orthop. Res. Rev. 2018, 11, 1–7. [Google Scholar] [CrossRef]
- Amiel, D.; Frey, C.; Woo, S.L.-Y.; Harwood, F.; Akeson, W. Value of hyaluronic acid in the prevention of contracture formation. Clin. Orthop. Relat. Res. 1985, 196, 306–311. [Google Scholar] [CrossRef]
- Parker, M.C.; Ellis, H.; Moran, B.J.; Thompson, J.N.; Wilson, M.S.; Menzies, D.; McGuire, A.; Lower, A.M.; Hawthorn, R.J.S.; O’Brien, F.; et al. Postoperative adhesions: Ten-year follow-up of 12,584 patients undergoing lower abdominal surgery. Dis. Colon Rectum 2001, 44, 822–830. [Google Scholar] [CrossRef]
- Becker, J.M.; Dayton, M.T.; Fazio, V.W.; Beck, D.E.; Stryker, S.J.; Wexner, S.D.; Wolff, B.G.; Roberts, P.L.; Smith, L.E.; Sweeney, S.A.; et al. Prevention of postoperative abdominal adhesions by a sodium hyaluronate-based bioresorbable membrane: A prospective, randomized, double-blind multicenter study. J. Am. Coll. Surg. 1996, 183, 297–306. [Google Scholar] [PubMed]
- Diamond, M.P. Reduction of adhesions after uterine myomectomy by Seprafilm membrane (HAL-F): A blinded, prospective, randomized, multicenter clinical study. Fertil. Steril. 1996, 66, 904–910. [Google Scholar] [CrossRef]
- Ariyan, S.; Enriquez, R.; Krizek, T.J. Wound contraction and fibrocontractive disorders. Arch. Surg. 1978, 113, 1034–1046. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, O.P.; Saini, J.; Challana, A. ChatGPT for veterinary anatomy education: An overview of the prospects and drawbacks. Int. J. Morphol. 2023, 41, 1198–1202. [Google Scholar] [CrossRef]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef] [PubMed]
Score | Description |
---|---|
0 | No adhesion—absence of adhesion between the quadriceps and the anterior cortex of the femur. |
1 | Weak, soft film-like adhesion—adhesion present but easily eliminated with minimal manual traction. |
2 | Moderate adhesion—adhesion present and can be eliminated with manual traction. |
3 | Intense adhesion—adhesion is intense and requires surgical intervention for removal. |
Group | MAS: 0 (No Adhesion) | MAS: 1 (Minimal) | MAS: 2 (Moderate) | MAS: 3 (High Level) | Mean MAS | Mann–Whitney U p-Value |
---|---|---|---|---|---|---|
Control Group | N/A | 1 rabbit (12.5%) | 2 rabbits (25%) | 5 rabbits (62.5%) | 2.5 ± 0.75 | p < 0.0001 |
Seprafilm® Group | All rabbits (100%) | N/A | N/A | N/A | 0 | N/A |
Parameter | Control Group | Seprafilm® Group | Median (IQR) Control/Seprafilm® | p-Value |
---|---|---|---|---|
Microscopic Adhesion | Detected in all rabbits | Not detected in any rabbits | –/– | <0.0001 |
Fibrosis (Fibroblast Proliferation) | High (62.5%), Moderate (37.5%) | Minimal (100%) | 2 (2–3)/1 (1–1) | <0.001 |
Vascular Proliferation | Moderate (25%), Minimal (37.5%), None (37.5%) | Minimal (50%), None (50%) | 2 (1–2)/1 (0–1) | <0.001 |
Synovial Chondrometaplasia | Moderate (25%), Minimal (37.5%), None (37.5%) | Minimal (37.5%), None (62.5%) | 1 (0–2)/0 (0–1) | >0.05 |
Edema | Significant (12.5%), Moderate (12.5%), Minimal (25%), None (50%) | None (62.5%), Minimal (37.5%) | 1 (0–2)/0 (0–1) | <0.001 |
Neutrophil Infiltration (PMNL | |Significant (87.5%), Moderate (12.5%) | None (100%) | 3 (3–3)/0 (0–0) | <0.001 |
Lymphocyte Infiltration | Minimal (50%), Moderate (37.5%), Significant (12.5%) | Minimal (75%), Moderate (25%), Significant (0%) | 1 (1–2)/1 (1–1) | >0.05 |
Macrophage Infiltration | Minimal (37.5%), Moderate (50%), Significant (12.5%) | Minimal (37.5%), Moderate (12.5%), Significant (12.5%), None (37.5%) | 2 (1–2)/1 (0–2) | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yagci, I.T.; Akdemir, O.; Eyuboglu, A.; Sezak, M.; Aydogdu, S. Effect of Carboxymethylcellulose Hyaluronan (SEPRAFİLM®) on an Arthrofibrosis Model Created in Rabbit Knees. Life 2025, 15, 1405. https://doi.org/10.3390/life15091405
Yagci IT, Akdemir O, Eyuboglu A, Sezak M, Aydogdu S. Effect of Carboxymethylcellulose Hyaluronan (SEPRAFİLM®) on an Arthrofibrosis Model Created in Rabbit Knees. Life. 2025; 15(9):1405. https://doi.org/10.3390/life15091405
Chicago/Turabian StyleYagci, Ismail Tugay, Ovunc Akdemir, Atilla Eyuboglu, Murat Sezak, and Semih Aydogdu. 2025. "Effect of Carboxymethylcellulose Hyaluronan (SEPRAFİLM®) on an Arthrofibrosis Model Created in Rabbit Knees" Life 15, no. 9: 1405. https://doi.org/10.3390/life15091405
APA StyleYagci, I. T., Akdemir, O., Eyuboglu, A., Sezak, M., & Aydogdu, S. (2025). Effect of Carboxymethylcellulose Hyaluronan (SEPRAFİLM®) on an Arthrofibrosis Model Created in Rabbit Knees. Life, 15(9), 1405. https://doi.org/10.3390/life15091405