Remodeling of Gut Microbial Networks After Sulforaphane Supplementation in Patients with Chronic Kidney Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Design
2.3. DNA Extraction and Sequencing
2.4. Gut Microbiota Analysis
2.5. Analysis of Uremic Toxins
2.6. Statistical Analysis
3. Results
3.1. Patients
3.2. Structure and Diversity of Gut Microbiota
3.3. Uremic Toxins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stevens, P.E.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R.; et al. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease Pathophysiological Insights and Therapeutic Options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef]
- Rysz, J.; Franczyk, B.; Ławiński, J.; Olszewski, R.; Ciałkowska-Rysz, A.; Gluba-Brzózka, A. The Impact of CKD on Uremic Toxins and Gut Microbiota. Toxins 2021, 13, 252. [Google Scholar] [CrossRef]
- Gomaa, E.Z. Human Gut Microbiota/Microbiome in Health and Diseases: A Review. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2020, 113, 2019–2040. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Chen, D.Q.; Chen, L.; Liu, J.R.; Vaziri, N.D.; Guo, Y.; Zhao, Y.Y. Microbiome-Metabolome Reveals the Contribution of Gut-Kidney Axis on Kidney Disease. J. Transl. Med. 2019, 17, 5. [Google Scholar] [CrossRef]
- Voroneanu, L.; Burlacu, A.; Brinza, C.; Covic, A.; Balan, G.G.; Nistor, I.; Popa, C.; Hogas, S.; Covic, A. Gut Microbiota in Chronic Kidney Disease: From Composition to Modulation towards Better Outcomes—A Systematic Review. J. Clin. Med. 2023, 12, 1948. [Google Scholar] [CrossRef]
- Mafra, D.; Borges, N.; Alvarenga, L.; Esgalhado, M.; Cardozo, L.; Lindholm, B.; Stenvinkel, P. Dietary Components That May Influence the Disturbed Gut Microbiota in Chronic Kidney Disease. Nutrients 2019, 11, 496. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Tang, Z.; Hao, T.; Qiu, Z.; Zhang, B. Simulated Digestion and Fermentation In Vitro by Obese Human Gut Microbiota of Sulforaphane from Broccoli Seeds. Foods 2022, 11, 4016. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Halimulati, M.; Huang, X.; Ma, Y.; Li, L.; Zhang, Z. Sulforaphane-Driven Reprogramming of Gut Microbiome and Metabolome Ameliorates the Progression of Hyperuricemia. J. Adv. Res. 2023, 52, 19–28. [Google Scholar] [CrossRef]
- Mao, B.; Ren, B.; Wu, J.; Tang, X.; Zhang, Q.; Zhao, J.; Zhang, L.; Chen, W.; Cui, S. The Protective Effect of Broccoli Seed Extract against Lipopolysaccharide-Induced Acute Liver Injury via Gut Microbiota Modulation and Sulforaphane Production in Mice. Foods 2023, 12, 2786. [Google Scholar] [CrossRef]
- Bouranis, J.A.; Beaver, L.M.; Wong, C.P.; Choi, J.; Hamer, S.; Davis, E.W.; Brown, K.S.; Jiang, D.; Sharpton, T.J.; Stevens, J.F.; et al. Sulforaphane and Sulforaphane-Nitrile Metabolism in Humans Following Broccoli Sprout Consumption: Inter-Individual Variation, Association with Gut Microbiome Composition, and Differential Bioactivity. Mol. Nutr. Food Res. 2024, 68, 2300286. [Google Scholar] [CrossRef]
- Yang, J.; He, L.; Dai, S.; Zheng, H.; Cui, X.; Ou, J.; Zhang, X. Therapeutic Efficacy of Sulforaphane in Autism Spectrum Disorders and Its Association with Gut Microbiota: Animal Model and Human Longitudinal Studies. Front. Nutr. 2023, 10, 1294057. [Google Scholar] [CrossRef]
- Ribeiro, M.; Alvarenga, L.; Coutinho-Wolino, K.S.; Nakao, L.S.; Cardozo, L.F.; Mafra, D. Sulforaphane Upregulates the MRNA Expression of NRF2 and NQO1 in Non-Dialysis Patients with Chronic Kidney Disease. Free Radic. Biol. Med. 2024, 221, 181–187. [Google Scholar] [CrossRef]
- Mirmiran, P.; Bahadoran, Z.; Hosseinpanah, F.; Keyzad, A.; Azizi, F. Effects of Broccoli Sprout with High Sulforaphane Concentration on Inflammatory Markers in Type 2 Diabetic Patients: A Randomized Double-Blind Placebo-Controlled Clinical Trial. J. Funct. Foods 2012, 4, 837–841. [Google Scholar] [CrossRef]
- Parada, A.E.; Needham, D.M.; Fuhrman, J.A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 2016, 18, 1403–1414. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Ward, J.V.; Tockner, K.; Schiemer, F. Biodiversity of Floodplain River Ecosystems: Ecotones and Connectivity1. Regul. Rivers Res. Manag. 1999, 15, 125–139. [Google Scholar] [CrossRef]
- Shade, A. Diversity Is the Question, Not the Answer. ISME J. 2017, 11, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Wickelmaier, F. An Introduction to MDS. In Sound Quality Research Unit; Aalborg University: Aalborg, Denmark, 2003. [Google Scholar]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Kelly, B.J.; Gross, R.; Bittinger, K.; Sherrill-Mix, S.; Lewis, J.D.; Collman, R.G.; Bushman, F.D.; Li, H. Power and Sample-Size Estimation for Microbiome Studies Using Pairwise Distances and PERMANOVA. Bioinformatics 2015, 31, 2461–2468. [Google Scholar] [CrossRef]
- Xu, S.; Zhan, L.; Tang, W.; Wang, Q.; Dai, Z.; Zhou, L.; Feng, T.; Chen, M.; Wu, T.; Hu, E.; et al. MicrobiotaProcess: A Comprehensive R Package for Deep Mining Microbiome. Innovation 2023, 4, 100388. [Google Scholar] [CrossRef]
- Friedman, J.; Alm, E.J. Inferring Correlation Networks from Genomic Survey Data. PLoS Comput. Biol. 2012, 8, e1002687. [Google Scholar] [CrossRef]
- Kurtz, Z.D.; Müller, C.L.; Miraldi, E.R.; Littman, D.R.; Blaser, M.J.; Bonneau, R.A. Sparse and Compositionally Robust Inference of Microbial Ecological Networks. PLoS Comput. Biol. 2015, 11, e1004226. [Google Scholar] [CrossRef]
- Meert, N.; Schepers, E.; Glorieux, G.; Van Landschoot, M.; Goeman, J.L.; Waterloos, M.A.; Dhondt, A.; Van Der Eycken, J.; Vanholder, R. Novel Method for Simultaneous Determination of P-Cresylsulphate and p-Cresylglucuronide: Clinical Data and Pathophysiological Implications. Nephrol. Dial. Transplant. 2012, 27, 2388–2396. [Google Scholar] [CrossRef]
- Jun, S.R.; Cheema, A.; Bose, C.; Boerma, M.; Palade, P.T.; Carvalho, E.; Awasthi, S.; Singh, S.P. Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice. Microorganisms 2020, 8, 1500. [Google Scholar] [CrossRef] [PubMed]
- Ponce Martínez, C.; Murcia García, E.; Pérez Sánchez, H.; Milagro, F.I.; Riezu-Boj, J.I.; Ramos Molina, B.; Gómez Gallego, M.; Zamora, S.; Cañavate Cutillas, R.; Hernández Morante, J.J. Effect of Silibinin on Human Pancreatic Lipase Inhibition and Gut Microbiota in Healthy Volunteers: A Randomized Controlled Trial. Int. J. Mol. Sci. 2024, 25, 12853. [Google Scholar] [CrossRef] [PubMed]
- Ntemiri, A.; Ghosh, T.S.; Gheller, M.E.; Tran, T.T.T.; Blum, J.E.; Pellanda, P.; Vlckova, K.; Neto, M.C.; Howell, A.; Thalacker-Mercer, A.; et al. Whole Blueberry and Isolated Polyphenol-Rich Fractions Modulate Specific Gut Microbes in an In Vitro Colon Model and in a Pilot Study in Human Consumers. Nutrients 2020, 12, 2800. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Qin, Y.; Zhao, J.; Wang, L.; Yang, X.; Wang, J.; Li, S.; Chen, Y.; Guo, J.; Wang, F.; Luo, K. Decrease in Escherichia-Shigella in the Gut Microbiota of ESKD Patients Undergoing Maintenance Hemodialysis. BMC Nephrol. 2025, 26, 98. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zhu, D.; Yang, R.; Wu, Z.; Xu, N.; Chen, F.; Zhang, S.; Chen, H.; Li, M.; Hou, K. Gut Microbiota Diversity in Middle-Aged and Elderly Patients with End-Stage Diabetic Kidney Disease. Ann. Transl. Med. 2022, 10, 750. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, Q.; Qin, Y.; Si, W.; Zhang, H.; Zhang, J. The Effect of Epimedium Isopentenyl Flavonoids on the Broiler Gut Health Using Microbiomic and Metabolomic Analyses. Int. J. Mol. Sci. 2023, 24, 7646. [Google Scholar] [CrossRef] [PubMed]
- Kwek, E.; Yan, C.; Ding, H.; Hao, W.; He, Z.; Liu, J.; Ma, K.Y.; Zhu, H.; Chen, Z.Y. Effects of Hawthorn Seed Oil on Plasma Cholesterol and Gut Microbiota. Nutr. Metab. 2022, 19, 55. [Google Scholar] [CrossRef]
- Yan, Y.; Yuan, H.; Yang, F.; Na, H.; Yu, X.; Liu, J.; Wang, Y. Seabuckthorn Polysaccharides Mitigate Hepatic Steatosis by Modulating the Nrf-2/HO-1 Pathway and Gut Microbiota. AMB Express 2024, 14, 100. [Google Scholar] [CrossRef]
- Den Besten, G.; Van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The Role of Short-Chain Fatty Acids in the Interplay between Diet, Gut Microbiota, and Host Energy Metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef]
- Cai, H.; Su, S.; Li, Y.; Zhu, Z.; Guo, J.; Zhu, Y.; Guo, S.; Qian, D.; Duan, J. Danshen Can Interact with Intestinal Bacteria from Normal and Chronic Renal Failure Rats. Biomed. Pharmacother. 2019, 109, 1758–1771. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.Y.; Xia, G.H.; Lu, J.Q.; Chen, M.X.; Zhen, X.; Wang, S.; You, C.; Nie, J.; Zhou, H.W.; Yin, J. Impaired Renal Function and Dysbiosis of Gut Microbiota Contribute to Increased Trimethylamine-N-Oxide in Chronic Kidney Disease Patients. Sci. Rep. 2017, 7, 1445. [Google Scholar] [CrossRef]
- Gryp, T.; Vanholder, R.; Vaneechoutte, M.; Glorieux, G. P-Cresyl Sulfate. Toxins 2017, 9, 52. [Google Scholar] [CrossRef]
- Wong, J.; Piceno, Y.M.; DeSantis, T.Z.; Pahl, M.; Andersen, G.L.; Vaziri, N.D. Expansion of Urease- and Uricase-Containing, Indole- and p-Cresol-Forming and Contraction of Short-Chain Fatty Acid-Producing Intestinal Microbiota in ESRD. Am. J. Nephrol. 2014, 39, 230–237. [Google Scholar] [CrossRef]
- Zhu, Y.; Jameson, E.; Crosatti, M.; Schäfer, H.; Rajakumar, K.; Bugg, T.D.H.; Chen, Y. Carnitine Metabolism to Trimethylamine by an Unusual Rieske-Type Oxygenase from Human Microbiota. Proc. Natl. Acad. Sci. USA 2014, 111, 4268–4273. [Google Scholar] [CrossRef]
- Li, G.; Li, J.; Kohl, K.D.; Yin, B.; Wei, W.; Wan, X.; Zhu, B.; Zhang, Z. Dietary Shifts Influenced by Livestock Grazing Shape the Gut Microbiota Composition and Co-Occurrence Networks in a Local Rodent Species. J. Anim. Ecol. 2019, 88, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Wang, M.; Zheng, W.; Li, S.; Zhu, X.; Chai, X.; Zhao, S. Unbalanced Diets Enhance the Complexity of Gut Microbial Network but Destabilize Its Stability and Resistance. Stress Biol. 2023, 3, 20. [Google Scholar] [CrossRef]
- Mougi, A.; Kondoh, M. Diversity of Interaction Types and Ecological Community Stability. Science 2012, 337, 349–351. [Google Scholar] [CrossRef] [PubMed]
- Coyte, K.Z.; Schluter, J.; Foster, K.R. The Ecology of the Microbiome: Networks, Competition, and Stability. Science 2015, 350, 663–666. [Google Scholar] [CrossRef] [PubMed]
- Gryp, T.; Huys, G.R.B.; Joossens, M.; Biesen, W.V.; Glorieux, G.; Vaneechoutte, M. Isolation and Quantification of Uremic Toxin Precursor-Generating Gut Bacteria in Chronic Kidney Disease Patients. Int. J. Mol. Sci. 2020, 21, 1986. [Google Scholar] [CrossRef]
- Hayashi, T.; Yamashita, T.; Watanabe, H.; Kami, K.; Yoshida, N.; Tabata, T.; Emoto, T.; Sasaki, N.; Mizoguchi, T.; Irino, Y.; et al. Gut Microbiome and Plasma Microbiome-Related Metabolites in Patients with Decompensated and Compensated Heart Failure. Circ. J. 2019, 83, 182–192. [Google Scholar] [CrossRef]
- Jing, Y.; Yang, D.; Bai, F.; Wang, Q.; Zhang, C.; Yan, Y.; Li, Z.; Li, Y.; Chen, Z.; Li, J.; et al. Spinal Cord Injury-Induced Gut Dysbiosis Influences Neurological Recovery Partly through Short-Chain Fatty Acids. npj Biofilms Microbiomes 2023, 9, 99. [Google Scholar] [CrossRef]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 2020, 11, 25. [Google Scholar] [CrossRef]
- Shimizu, J.; Kubota, T.; Takada, E.; Takai, K.; Fujiwara, N.; Arimitsu, N.; Ueda, Y.; Wakisaka, S.; Suzuki, T.; Suzuki, N. Bifidobacteria Abundance-Featured Gut Microbiota Compositional Change in Patients with Behcet’s Disease. PLoS ONE 2016, 11, e0153746. [Google Scholar] [CrossRef]
- Hu, X.; Ouyang, S.; Xie, Y.; Gong, Z.; Du, J. Characterizing the Gut Microbiota in Patients with Chronic Kidney Disease. Postgrad. Med. 2020, 132, 495–505. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Z.; Ma, H.; Ji, S.; Chen, Z.; Cui, Z.; Chen, J.; Tang, S. Dysbiosis and Implication of the Gut Microbiota in Diabetic Retinopathy. Front. Cell Infect. Microbiol. 2021, 11, 646348. [Google Scholar] [CrossRef]
- Hiippala, K.; Jouhten, H.; Ronkainen, A.; Hartikainen, A.; Kainulainen, V.; Jalanka, J.; Satokari, R. The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation. Nutrients 2018, 10, 988. [Google Scholar] [CrossRef]
- Palmieri, O.; Bossa, F.; Castellana, S.; Latiano, T.; Carparelli, S.; Martino, G.; Mangoni, M.; Corritore, G.; Nardella, M.; Guerra, M.; et al. Deciphering Microbial Composition in Patients with Inflammatory Bowel Disease: Implications for Therapeutic Response to Biologic Agents. Microorganisms 2024, 12, 1260. [Google Scholar] [CrossRef]
- Taylor, W.S. Prognostic Molecular Markers of Response to Radiotherapy in Rectal Cancer. Master’s Thesis, University of Otago, Dunedin, New Zealand, 2021. [Google Scholar]
- Takenaka, I.K.T.M.; Bartelli, T.F.; Defelicibus, A.; Sendoya, J.M.; Golubicki, M.; Robbio, J.; Serpa, M.S.; Branco, G.P.; Santos, L.B.C.; Claro, L.C.L.; et al. Exome and Tissue-Associated Microbiota as Predictive Markers of Response to Neoadjuvant Treatment in Locally Advanced Rectal Cancer. Front. Oncol. 2022, 12, 809441. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Xiao, X.; Georgikou, C.; Luo, Y.; Liu, L.; Gladkich, J.; Gross, W.; Herr, I. Sulforaphane Induces MiR135b-5p and Its Target Gene, RASAL2, Thereby Inhibiting the Progression of Pancreatic Cancer. Mol. Ther. Oncolytics 2019, 14, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Dorsett, Y.; Mirza, A.; Tremlett, H.; Piccio, L.; Longbrake, E.E.; Choileain, S.N.; Hafler, D.A.; Cox, L.M.; Weiner, H.L.; et al. Meta-Analysis Identifies Common Gut Microbiota Associated with Multiple Sclerosis. Genome Med. 2024, 16, 94. [Google Scholar] [CrossRef] [PubMed]
- Yue, M.; Jin, C.; Jiang, X.; Xue, X.; Wu, N.; Li, Z.; Zhang, L. Causal Effects of Gut Microbiota on Sleep-Related Phenotypes: A Two-Sample Mendelian Randomization Study. Clocks Sleep 2023, 5, 566–580. [Google Scholar] [CrossRef]
- Ntranos, A.; Park, H.J.; Wentling, M.; Tolstikov, V.; Amatruda, M.; Inbar, B.; Kim-Schulze, S.; Frazier, C.; Button, J.; Kiebish, M.A.; et al. Bacterial Neurotoxic Metabolites in Multiple Sclerosis Cerebrospinal Fluid and Plasma. Brain 2022, 145, 569–583. [Google Scholar] [CrossRef]
- Lee, T.L.; Hsuan, C.F.; Hsu, C.C.; Wei, C.T.; Wang, C.P.; Lu, Y.C.; Tang, W.H.; Lu, N.H.; Chung, F.M.; Lee, Y.J.; et al. Associations of Circulating Total P-Cresylsulfate and Indoxyl Sulfate Concentrations with Central Obesity in Patients with Stable Coronary Artery Disease: Sex-Specific Insights. Int. J. Obes. 2024, 48, 1775–1784. [Google Scholar] [CrossRef]
- He, Q.; Li, G.; Zhao, J.; Zhu, H.; Mo, H.; Xiong, Z.; Zhao, Z.; Chen, J.; Ning, W. The Impact of Dysbiosis in Oropharyngeal and Gut Microbiota on Systemic Inflammatory Response and Short-Term Prognosis in Acute Ischemic Stroke with Preceding Infection. Front. Microbiol. 2024, 15, 1432958. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.L.; Chen, X.H.; Zhou, S.J.; Lei, Y.Q.; Huang, J.S.; Chen, Q.; Cao, H. Relationship between Disorders of the Intestinal Microbiota and Heart Failure in Infants with Congenital Heart Disease. Front. Cell Infect. Microbiol. 2023, 13, 1152349. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Su, W.; Fan, P.; Zhu, J.; Chen, C. Correlation between Indole-3-Acetic Acid and Left Ventricular Hypertrophy in Hemodialysis Patients. Clin. Nephrol. 2025, 103, 86–95. [Google Scholar] [CrossRef]
- Nayak, S.P.R.R.; Boopathi, S.; Chandrasekar, M.; Panda, S.P.; Manikandan, K.; Chitra, V.; Almutairi, B.O.; Arokiyaraj, S.; Guru, A.; Arockiaraj, J. Indole-3-Acetic Acid Exposure Leads to Cardiovascular Inflammation and Fibrosis in Chronic Kidney Disease Rat Model. Food Chem. Toxicol. 2024, 192, 114917. [Google Scholar] [CrossRef] [PubMed]
Parameters | SFN Group (n = 4) | Placebo Group (n = 12) | p-Values |
---|---|---|---|
Sex (Female/Male) | 4/0 | 8/4 | 0.18 |
Age (years) | 60.5 ± 15.1 | 61.6 ± 10.9 | 0.86 |
BMI (kg/m2) | 28.6 ± 7.0 | 30.5 ± 7.1 | 0.59 |
eGFR (mL/min/1.73 m2) | 39.2 ± 15.6 | 36.7 ± 12.6 | 0.75 |
Urea (mg/dL) | 60.2 ± 17.7 | 60.2 ± 13.5 | 1.00 |
Calcium (mg/dL) | 10.3 ± 0.6 | 10.2 ± 0.4 | 0.74 |
Phosphorus (mg/dL) | 4.2 ± 0.4 | 4.3 ± 0.8 | 0.80 |
Albumin (g/dL) | 4.2 ± 0.1 | 4.5 ± 0.3 | 0.05 |
Potassium (mmol/L) | 4.8 ± 0.1 | 4.7 ± 0.4 | 0.67 |
Uremic Toxins | SFN Group (n = 4) | Placebo Group (n = 12) | p-Value ANOVA | ||||||
---|---|---|---|---|---|---|---|---|---|
Before | After | Percentage Change (%) | p- Values | Before | After | Percentage Change (%) | p- Values | ||
Indoxyl sulfate (mg/L) | 1.7 ± 0.1 | 2.6 ± 1.3 | 47.9 | 0.06 | 2.1 ± 0.8 | 3.6 ± 2.5 | 81.5 | 0.04 | 0.65 |
p-cresyl sulfate (mg/L) | 5.9 ± 2.4 | 8.1 ± 6.6 | 42.1 | 0.46 | 8.9 ± 6.7 | 15.9 ± 12.5 | 77.4 | 0.002 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, M.; Kemp, J.A.; Coutinho-Wolino, K.S.; Cardozo, L.F.M.F.; Almeida, P.; Schultz, J.; Nakao, L.S.; Costa, M.E.S.; Kussi, F.; Santos, H.F.; et al. Remodeling of Gut Microbial Networks After Sulforaphane Supplementation in Patients with Chronic Kidney Disease. Life 2025, 15, 1393. https://doi.org/10.3390/life15091393
Ribeiro M, Kemp JA, Coutinho-Wolino KS, Cardozo LFMF, Almeida P, Schultz J, Nakao LS, Costa MES, Kussi F, Santos HF, et al. Remodeling of Gut Microbial Networks After Sulforaphane Supplementation in Patients with Chronic Kidney Disease. Life. 2025; 15(9):1393. https://doi.org/10.3390/life15091393
Chicago/Turabian StyleRibeiro, Marcia, Julie Ann Kemp, Karen Salve Coutinho-Wolino, Ludmila F. M. F. Cardozo, Pedro Almeida, Júnia Schultz, Lia S. Nakao, Maria Eduarda S. Costa, Fernanda Kussi, Henrique F. Santos, and et al. 2025. "Remodeling of Gut Microbial Networks After Sulforaphane Supplementation in Patients with Chronic Kidney Disease" Life 15, no. 9: 1393. https://doi.org/10.3390/life15091393
APA StyleRibeiro, M., Kemp, J. A., Coutinho-Wolino, K. S., Cardozo, L. F. M. F., Almeida, P., Schultz, J., Nakao, L. S., Costa, M. E. S., Kussi, F., Santos, H. F., & Mafra, D. (2025). Remodeling of Gut Microbial Networks After Sulforaphane Supplementation in Patients with Chronic Kidney Disease. Life, 15(9), 1393. https://doi.org/10.3390/life15091393