Incubation Behavior of the Western Reef Heron (Egretta gularis) in Eastern Saudi Arabia: Adaptations to Extreme Thermal Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Nest Characteristics
3.2. Temperature Variations
3.3. Incubation Behaviors
3.3.1. Nest Attendance
3.3.2. Incubation Postures
3.3.3. Orientation of Incubating Parents
3.4. Parental Care
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Summary for Policymakers; Pörtner, H.-O., Roberts, D.C., Poloczanska, E.S., Mintenbeck, K., Tignor, M., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 3–33. [Google Scholar] [CrossRef]
- Blechschmidt, J.; Wittmann, M.J.; Blüml, C. Climate Change and Green Sea Turtle Sex Ratio—Preventing Possible Extinction. Genes 2020, 11, 588. [Google Scholar] [CrossRef]
- Radchuk, V.; Reed, T.; Teplitsky, C.; van de Pol, M.; Charmantier, A.; Hassall, C.; Adamík, P.; Adriaensen, F.; Ahola, M.P.; Arcese, P.; et al. Adaptive Responses of Animals to Climate Change Are Most Likely Insufficient. Nat. Commun. 2019, 10, 3109. [Google Scholar] [CrossRef]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; de Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction Risk from Climate Change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Beever, E.A.; Hall, L.E.; Varner, J.; Loosen, A.E.; Dunham, J.B.; Gahl, M.K.; Smith, F.A.; Lawler, J.J. Behavioural Flexibility as a Mechanism for Coping with Climate Change. Front. Ecol. Environ. 2017, 15, 299–308. [Google Scholar] [CrossRef]
- Gunderson, A.R.; Stillman, J.H. Plasticity in Thermal Tolerance Has Limited Potential to Buffer Ectotherms from Global Warming. Proc. R. Soc. B Biol. Sci. 2015, 282, 1808. [Google Scholar] [CrossRef] [PubMed]
- Carey, C. Incubation in Extreme Environments. In Avian Incubation: Behaviour, Environment, and Evolution; Deeming, D.C., Ed.; Oxford University Press: Oxford, UK, 2002; pp. 238–253. [Google Scholar]
- Amat, J.A.; Masero, J.A. How Kentish Plovers (Charadrius alexandrinus) Cope with Heat Stress During Incubation. Behav. Ecol. Sociobiol. 2004, 56, 26–33. [Google Scholar] [CrossRef]
- AlRashidi, M.; Kosztolányi, A.; Küpper, C.; Cuthill, I.C.; Javed, S.; Székely, T. The Influence of a Hot Environment on Parental Cooperation of a Ground-Nesting Shorebird, the Kentish Plover (Charadrius alexandrinus). Front. Zool. 2010, 7, 1. [Google Scholar] [CrossRef]
- AlRashidi, M.; Shobrak, M. Incubation Routine of Saunders’s Tern (Sternula saundersi) in a Harsh Environment. Avian Biol. Res. 2015, 8, 113–116. [Google Scholar] [CrossRef]
- AlRashidi, M.; Shobrak, M. Behavioural Mechanisms Employed by Adult Black-Winged Stilts to Mitigate Heat Stress in the Hot Environment of the Eastern Coast of Saudi Arabia. Avian Biol. Res. 2025, 18, 65–72. [Google Scholar] [CrossRef]
- Bennett, A.F.; Dawson, W.R.; Putnam, R.W. Thermal Environment and Tolerance of Embryonic Western Gulls. Physiol. Zool. 1981, 54, 146–159. [Google Scholar] [CrossRef]
- Grant, G.S. Avian Incubation: Egg Temperature, Nest Humidity, and Behavioural Thermoregulation in a Hot Environment. Ornithol. Monogr. 1982, 30, 1–75. Available online: https://sora.unm.edu/sites/default/files/journals/om/om030.pdf (accessed on 20 July 2025). [CrossRef]
- Webb, D.R. Thermal Tolerance of Avian Embryos: A Review. Condor 1987, 89, 874–898. [Google Scholar] [CrossRef]
- AlRashidi, M. The Challenge of Coping in an Extremely Hot Environment: A Case Study of the Incubation of Lesser Crested Terns (Thalasseus bengalensis). Waterbirds 2016, 39, 215–221. [Google Scholar] [CrossRef]
- Amat, J.A.; Masero, J.A. The Functions of Belly-Soaking in Kentish Plovers (Charadrius alexandrinus). IBIS 2007, 149, 91–97. [Google Scholar] [CrossRef]
- AlRashidi, M.; Kosztolányi, A.; Shobrak, M.; Küpper, C.; Székely, T. Parental Cooperation in an Extreme Hot Environment: Natural Behaviour and Experimental Evidence. Anim. Behav. 2011, 82, 235–243. [Google Scholar] [CrossRef]
- Tieleman, B.I.; Van Noordwijk, H.J.; Williams, J.B. Nest Site Selection in a Hot Desert: Trade-Off between Microclimate and Predation Risk? Condor 2008, 110, 116–124. [Google Scholar] [CrossRef]
- Amat, J.A.; Monsa, R.; Masero, J.A. Dual Function of Egg-Covering in the Kentish Plover (Charadrius alexandrinus). Behaviour 2012, 149, 881–895. [Google Scholar] [CrossRef]
- del Hoyo, J.; Collar, N.; Kirwan, G.M.; Moura, N. Western Reef-Heron (Egretta gularis), Version 1.1. In Birds of the World; Billerman, S.M., Keeney, B.K., Eds.; Cornell Lab of Ornithology: Ithaca, NY, USA, 2020. [Google Scholar] [CrossRef]
- BirdLife International. Egretta gularis. The IUCN Red List of Threatened Species 2016: E.T22729692A95020328. Available online: https://www.iucnredlist.org/species/22729692/95020328 (accessed on 20 July 2025).
- Boland, C.; Alsuhaibany, A. The Birds of Saudi Arabia. Vol. 2–Species Accounts; Motivate Media Group: Dubai, United Arab Emirates, 2020. [Google Scholar]
- Jennings, M.C. Atlas of the Breeding Birds in the Arabian Peninsula. Fauna Arab. 2010, 25, 198–200. [Google Scholar]
- Al-Ali, A.; Bin Muzaffar, S.; Hamza, W. Does Seasonality, Tidal Cycle, and Plumage Color Influence Feeding Behavior and Efficiency of Western Reef Heron (Egretta gularis)? Animals 2020, 10, 373. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.N.; Javed, S.; Khan, S.A.S.B.; Hammadi, A.A.A.; Hammadi, E.A.A.; Soorae, P.S.; Dhaheri, S.S.A.; Durham, S.E.; Green, M.C. Distribution and Temporal Trends of Western Reef Heron (Egretta gularis) Populations along the Arabian Gulf Coast of Abu Dhabi, United Arab Emirates. Waterbirds 2018, 41, 376–385. [Google Scholar] [CrossRef]
- AlRashidi, M. Breeding Biology of Kentish Plover (Charadrius alexandrinus) in Sabkhat Al-Fasl Lagoons, Saudi Arabia. Zool. Middle East 2016, 62, 105–111. [Google Scholar] [CrossRef]
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-PLUS; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Conway, C.J.; Martin, T.E. Effects of Ambient Temperature on Avian Incubation Behaviour. Behav. Ecol. 2000, 11, 178–188. [Google Scholar] [CrossRef]
- Crawley, M.J. The R Book; Wiley & Sons, Ltd.: Chichester, UK, 2007. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: https://www.r-project.org (accessed on 20 July 2025).
- AlRashidi, M.; Rice, R.; Almalki, A.; Alzoubi, M.; Shobrak, M. Parental Care of the Cream-Coloured Courser (Cursorius cursor) in the Harsh Environment of Northern Saudi Arabia. Zool. Middle East 2025, 71, 269–281. [Google Scholar] [CrossRef]
- Brown, M.; Downs, C.L. The Role of Shading Behaviour in the Thermoregulation of Breeding Crowned Plovers (Vanellus coronatus). J. Therm. Biol. 2003, 28, 51–58. [Google Scholar] [CrossRef]
- Downs, C.T.; Ward, D. Does Shading Behaviour of Incubating Shorebirds in Hot Environments Cool the Eggs or the Adult? Auk 1997, 114, 717–724. [Google Scholar] [CrossRef]
- Prokop, P.; Trnka, A. Why Do Grebes Cover Their Nests? Laboratory and Field Tests of Two Alternative Hypotheses. J. Ethol. 2011, 29, 17–22. [Google Scholar] [CrossRef]
- AlRashidi, M.; Hassan, S.S.M.; Shobrak, M. The First Record of Eurasian Spoonbill (Platalea leucorodia) Nesting in the Eastern Province of Saudi Arabia with a Description of Nest Attendance Behaviour. Pak. J. Zool. 2022, 54, 463–466. [Google Scholar] [CrossRef]
Nest ID | Acquired Date | Clutch Size | Clutch Type | Nest Attendance (%) Over a 24-Hour Period | Total Minutes both Parents Were Simultaneously on the Nest | |
---|---|---|---|---|---|---|
Start | End | |||||
WRH1 | 30 May, 12:00 | 31 May, 11:59 | 2 | One egg/one chick | 100.00 | 7 |
WRH2 | 30 May, 12:00 | 31 May, 11:59 | 4 | Eggs | 98.40 | - |
WRH3 | 30 May, 12:00 | 31 May, 11:59 | 4 | One egg/three chicks | 98.89 | 10 |
WRH4 | 1 June, 18:00 | 2 June, 17:59 | 3 | Eggs | 98.13 | - |
WRH5 | 1 June, 10:00 | 2 June, 09:59 | 2 | Eggs | 98.06 | - |
WRH6 | 1 June, 18:00 | 2 June, 17:59 | 3 | Chicks | 100.00 | 3 |
WRH7 | 3 June, 10:00 | 4 June, 09:59 | 4 | Eggs | 95.56 | - |
Time of Day | Ambient Temperature | Temperature Beneath the Clutch | Nest Attendance % | Incubation Postures % | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sitting | Standing | Shading | ||||||||||
Mean | ±SE | Mean | ±SE | Mean | ±SE | Mean | ±SE | Mean | ±SE | Mean | ±SE | |
00:00–01:59 | 28.24 | 0.48 | 30.49 | 0.43 | 97.62 | 2.36 | 90.48 | 2.66 | 7.14 | 1.37 | 0.00 | 0.00 |
02:00–03:59 | 28.09 | 0.38 | 29.87 | 0.36 | 98.93 | 0.51 | 96.07 | 0.90 | 2.86 | 0.63 | 0.00 | 0.00 |
04:00–05:59 | 27.73 | 0.40 | 29.36 | 0.24 | 99.88 | 0.12 | 93.21 | 1.07 | 6.67 | 1.03 | 0.00 | 0.00 |
06:00–07:59 | 33.98 | 0.72 | 31.36 | 0.25 | 99.88 | 0.12 | 69.40 | 7.90 | 20.48 | 6.79 | 10.00 | 5.90 |
08:00–09:59 | 42.24 | 1.90 | 34.95 | 0.74 | 99.76 | 0.24 | 43.57 | 13.52 | 5.24 | 1.96 | 50.95 | 14.91 |
10:00–11:59 | 45.50 | 2.53 | 36.64 | 0.83 | 99.29 | 0.46 | 42.98 | 13.10 | 5.24 | 2.38 | 51.07 | 13.70 |
12:00–13:59 | 49.47 | 1.42 | 37.83 | 0.54 | 100.00 | 0.00 | 36.19 | 12.01 | 0.83 | 0.55 | 62.98 | 12.62 |
14:00–15:59 | 46.42 | 1.14 | 36.23 | 0.28 | 100.00 | 0.00 | 23.21 | 11.30 | 4.17 | 2.58 | 72.62 | 11.69 |
16:00–17:59 | 41.10 | 1.13 | 34.10 | 0.24 | 100.00 | 0.00 | 58.81 | 10.37 | 17.26 | 5.40 | 23.93 | 12.67 |
18:00–19:59 | 31.45 | 0.18 | 32.38 | 0.44 | 99.64 | 0.35 | 82.02 | 4.91 | 17.50 | 4.92 | 0.12 | 0.12 |
20:00–21:59 | 28.28 | 0.53 | 31.60 | 0.56 | 86.79 | 4.03 | 74.17 | 4.35 | 12.62 | 2.91 | 0.00 | 0.00 |
22:00–23:59 | 28.00 | 0.57 | 31.07 | 0.63 | 98.93 | 0.24 | 92.02 | 2.65 | 6.90 | 2.45 | 0.00 | 0.00 |
Explanatory Variables | Response Variables | ||||||||
---|---|---|---|---|---|---|---|---|---|
Nest Attendance % | Incubation Postures % | Orientation of Incubating Adults % | |||||||
df | F | p | df | F | p | df | F | p | |
Ambient temperature | – | – | – | 2 + 237 | 112.93 | <0.001 | 2 + 314 | 5.19 | <0.001 |
Incubation postures | – | – | – | 2 + 237 | 207.97 | <0.001 | – | – | – |
Ambient temperature × Incubation postures | – | – | – | 4 + 237 | 89.61 | <0.001 | – | – | – |
Ambient temperature × Time interval | 2 + 75 | 15.40 | <0.001 | 2 + 84 | 3.42 | <0.001 | – | – | – |
Cardinal direction | – | – | – | – | – | – | 3 + 314 | 12.20 | <0.001 |
Ambient temperature × Cardinal direction | – | – | – | – | – | – | 6 + 314 | 4.03 | <0.001 |
Cardinal direction × Time interval | – | – | – | – | – | – | 4 + 314 | 4.84 | <0.001 |
Time of Day | Orientation of Incubating Adults % | |||||||
---|---|---|---|---|---|---|---|---|
East | West | North | South | |||||
Mean | ±SE | Mean | ±SE | Mean | ±SE | Mean | ±SE | |
00:00–01:59 | 32.74 | 12.01 | 31.07 | 9.59 | 27.50 | 12.96 | 6.31 | 5.52 |
02:00–03:59 | 25.95 | 12.47 | 34.52 | 13.96 | 25.36 | 13.13 | 13.10 | 6.65 |
04:00–05:59 | 29.52 | 12.60 | 42.50 | 12.92 | 19.88 | 5.27 | 7.98 | 6.02 |
06:00–07:59 | 21.67 | 7.62 | 44.40 | 9.71 | 28.57 | 8.92 | 5.24 | 2.33 |
08:00–09:59 | 13.69 | 13.55 | 81.55 | 13.37 | 4.05 | 4.05 | 0.48 | 0.48 |
10:00–11:59 | 11.43 | 8.88 | 55.71 | 7.96 | 32.14 | 9.07 | 0.00 | 0.00 |
12:00–13:59 | 70.36 | 14.71 | 0.24 | 0.15 | 29.29 | 14.45 | 0.12 | 0.12 |
14:00–15:59 | 94.64 | 3.47 | 1.19 | 1.19 | 4.05 | 3.25 | 0.12 | 0.12 |
16:00–17:59 | 60.71 | 11.68 | 13.69 | 5.29 | 18.10 | 10.56 | 7.50 | 6.04 |
18:00–19:59 | 22.14 | 6.48 | 30.24 | 8.78 | 23.33 | 7.40 | 23.93 | 9.39 |
20:00–21:59 | 24.76 | 12.80 | 16.43 | 4.86 | 13.93 | 6.41 | 31.67 | 11.12 |
22:00–23:59 | 34.88 | 12.61 | 14.64 | 9.06 | 24.40 | 8.40 | 25.00 | 8.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlRashidi, M.; Alatawi, A.S.; Shobrak, M.; Abdelgadir, M. Incubation Behavior of the Western Reef Heron (Egretta gularis) in Eastern Saudi Arabia: Adaptations to Extreme Thermal Conditions. Life 2025, 15, 1380. https://doi.org/10.3390/life15091380
AlRashidi M, Alatawi AS, Shobrak M, Abdelgadir M. Incubation Behavior of the Western Reef Heron (Egretta gularis) in Eastern Saudi Arabia: Adaptations to Extreme Thermal Conditions. Life. 2025; 15(9):1380. https://doi.org/10.3390/life15091380
Chicago/Turabian StyleAlRashidi, Monif, Abdulaziz S. Alatawi, Mohammed Shobrak, and Mohanad Abdelgadir. 2025. "Incubation Behavior of the Western Reef Heron (Egretta gularis) in Eastern Saudi Arabia: Adaptations to Extreme Thermal Conditions" Life 15, no. 9: 1380. https://doi.org/10.3390/life15091380
APA StyleAlRashidi, M., Alatawi, A. S., Shobrak, M., & Abdelgadir, M. (2025). Incubation Behavior of the Western Reef Heron (Egretta gularis) in Eastern Saudi Arabia: Adaptations to Extreme Thermal Conditions. Life, 15(9), 1380. https://doi.org/10.3390/life15091380