Sex-Specific Muscle Size in Climbers: A Novel Cross-Sectional Study of an Ultrasonographic Analysis of Abdominal Wall Muscles
Abstract
1. Introduction
2. Methods
2.1. Design
2.2. Sample Size Calculation
2.3. Ethical Considerations
2.4. Participants
2.5. Ultrasonography Measurements
2.6. Statistical Methods
3. Results
3.1. Descriptive Analysis
3.2. Group Comparisons
3.3. Regression Analysis
4. Discussion
4.1. Clinical Applications
4.2. Limitations
4.3. Future Lines
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schreiber, T.; Allenspach, P.; Seifert, B.; Schweizer, A. Connective tissue adaptations in the fingers of performance sport climbers. Eur. J. Sport. Sci. 2015, 15, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ru, A.; Liao, T.; Zou, S.; Niu, X.H.; Wang, Y.T. Effects of Rock Climbing Exercise on Physical Fitness among College Students: A Review Article and Meta-analysis. Iran. J. Public. Health 2018, 47, 1440–1452. [Google Scholar] [PubMed]
- Muehlbauer, T.; Stuerchler, M.; Granacher, U. Effects of climbing on core strength and mobility in adults. Int. J. Sports Med. 2012, 33, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.H.M.; Ward, S.R.; Cook, M.S.; Lieber, R.L. Architectural analysis of human abdominal wall muscles: Implications for mechanical function. Spine 2011, 36, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Cervera-Cano, M.; Sáez-García, M.C.; Valcárcel-Linares, D.; Fernández-Carnero, S.; López-González, L.; Gallego-Izquierdo, T.; Pecos-Martin, D. Real-time ultrasound evaluation of CORE muscle activity in a simultaneous contraction in subjects with non-specific low back pain and without low-back pain. Protocol of an observational case-control study. PLoS ONE 2023, 18, e0285441. [Google Scholar] [CrossRef] [PubMed]
- Rankin, G.; Stokes, M.; Newham, D.J. Abdominal muscle size and symmetry in normal subjects. Muscle Nerve 2006, 34, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Hodges, P.W.; Moseley, G.L. Pain and motor control of the lumbopelvic region: Effect and possible mechanisms. J. Electromyogr. Kinesiol. 2003, 13, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Salvioli, S.; Pozzi, A.; Testa, M. Movement Control Impairment and Low Back Pain: State of the Art of Diagnostic Framing. Medicina 2019, 55, 548. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Yamanaka, M.; Ukishiro, K.; Tohyama, H.; Saito, H.; Samukawa, M.; Kobayashi, T.; Ino, T.; Takeda, N. Individuals with chronic low back pain do not modulate the level of transversus abdominis muscle contraction across different postures. Man. Ther. 2014, 19, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Cervera-Cano, M.; López-González, L.; Valcárcel-Linares, D.; Fernández-Carnero, S.; Achalandabaso-Ochoa, A.; Andrés-Sanz, V.; Pecos-Martín, D. Core Synergies Measured with Ultrasound in Subjects with Chronic Non-Specific Low Back Pain and Healthy Subjects: A Systematic Review. Sensors 2022, 22, 8684. [Google Scholar] [CrossRef] [PubMed]
- Taghipour, M.; Mohseni-Bandpei, M.A.; Behtash, H.; Abdollahi, I.; Rajabzadeh, F.; Pourahmadi, M.R.; Emami, M. Reliability of Real-time Ultrasound Imaging for the Assessment of Trunk Stabilizer Muscles: A Systematic Review of the Literature. J. Ultrasound Med. 2019, 38, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Abuín-Porras, V.; de la Cueva-Reguera, M.; Benavides-Morales, P.; Ávila-Pérez, R.; Cruz-Torres, B.; de la Pareja-Galeano, H.; Blanco-Morales, M.; Romero-Morales, C. Comparison of the Abdominal Wall Muscle Thickness in Female Rugby Players Versus Non-Athletic Women: A Cross-Sectional Study. Medicina 2019, 56, 8. [Google Scholar] [CrossRef] [PubMed]
- Morales, C.R.; Polo, J.A.; Sanz, D.R.; López, D.L.; González, S.V.; Buría, J.L.A.; Lobo, C.C. Ultrasonography features of abdominal perimuscular connective tissue in elite and amateur basketball players: An observational study. Rev. Assoc. Med. Bras. 2018, 64, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Romero-Morales, C.; Almazán-Polo, J.; Rodríguez-Sanz, D.; Palomo-López, P.; López-López, D.; Vázquez-González, S.; Calvo-Lobo, C. Rehabilitative Ultrasound Imaging Features of the Abdominal Wall Muscles in Elite and Amateur Basketball Players. Appl. Sci. 2018, 8, 809. [Google Scholar] [CrossRef]
- Linek, P.; Noormohammadpour, P.; Mansournia, M.A.; Wolny, T.; Sikora, D. Morphological changes of the lateral abdominal muscles in adolescent soccer players with low back pain: A prospective cohort study. J. Sport. Health Sci. 2020, 9, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Teyhen, D.S.; Gill, N.W.; Whittaker, J.L.; Henry, S.M.; Hides, J.A.; Hodges, P. Rehabilitative Ultrasound Imaging of the Abdominal Muscles. J. Orthop. Sports Phys. Ther. 2007, 37, 450–466. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, B.; Dunn, L. The Declaration of Helsinki on Medical Research involving Human Subjects: A Review of Seventh Revision. J. Nepal. Health Res. Counc. 2020, 17, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Beer, G.M.; Schuster, A.; Seifert, B.; Manestar, M.; Mihic-Probst, D.; Weber, S.A. The normal width of the linea alba in nulliparous women. Clin. Anat. 2009, 22, 706–711. [Google Scholar] [CrossRef] [PubMed]
- Gillard, S.; Ryan, C.G.; Stokes, M.; Warner, M.; Dixon, J. Effects of posture and anatomical location on inter-recti distance measured using ultrasound imaging in parous women. Musculoskelet. Sci. Pract. 2018, 34, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jhu, J.L.; Chai, H.M.; Jan, M.H.; Wang, C.L.; Shau, Y.W.; Wang, S.F. Reliability and Relationship Between 2 Measurements of Transversus Abdominis Dimension Taken During an Abdominal Drawing-in Maneuver Using a Novel Approach of Ultrasound Imaging. J. Orthop. Sports Phys. Ther. 2010, 40, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Hartley, C.; Taylor, N.; Chidley, J.; Baláš, J.; Giles, D. Handedness, Bilateral, and Interdigit Strength Asymmetries in Male Climbers. Int. J. Sports Physiol. Perform. 2023, 18, 1390–1397. [Google Scholar] [CrossRef] [PubMed]
- Rho, M.; Spitznagle, T.; Van Dillen, L.; Maheswari, V.; Oza, S.; Prather, H. Gender Differences on Ultrasound Imaging of Lateral Abdominal Muscle Thickness in Asymptomatic Adults: A Pilot Study. Phys. Med. Rehabil. 2013, 5, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Da Cuña-Carrera, I.; Alonso-Calvete, A.; Lantarón-Caeiro, E.M.; Soto-González, M. Are There Any Differences in Abdominal Activation between Women and Men during Hypopressive Exercises? Int. J. Env. Res. Public. Health 2021, 18, 6984. [Google Scholar] [CrossRef] [PubMed]
- Hart, J.M.; Garrison, J.C.; Palmieri-Smith, R.; Kerrigan, D.C.; Ingersoll, C.D. Lower Extremity Joint Moments of Collegiate Soccer Players Differ between Genders during a Forward Jump. J. Sport. Rehabil. 2008, 17, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Padua, D.A.; Carcia, C.R.; Arnold, B.L.; Granata, K.P. Gender Differences in Leg Stiffness and Stiffness Recruitment Strategy During Two-Legged Hopping. J. Mot. Behav. 2005, 37, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, M.K.; Boudreau, S.N.; Mattacola, C.G.; Uhl, T.L.; Lattermann, C. Comparison of Lower Extremity Kinematics and Hip Muscle Activation During Rehabilitation Tasks Between Sexes. J. Athl. Train. 2010, 45, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Cowan, S.M.; Crossley, K.M. Does gender influence neuromotor control of the knee and hip? J. Electromyogr. Kinesiol. 2009, 19, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Zeller, B.L.; McCrory, J.L.; Ben Kibler, W.; Uhl, T.L. Differences in Kinematics and Electromyographic Activity between Men and Women during the Single-Legged Squat. Am. J. Sports Med. 2003, 31, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Greene, F.S.; Perryman, E.; Cleary, C.J.; Cook, S.B. Core Stability and Athletic Performance in Male and Female Lacrosse Players. Int. J. Exerc. Sci. 2019, 12, 1138–1148. [Google Scholar] [CrossRef] [PubMed]
- Stien, N.; Riiser, A.; Shaw, M.P.; Saeterbakken, A.H.; Andersen, V. Effects of climbing- and resistance-training on climbing-specific performance: A systematic review and meta-analysis. Biol. Sport. 2023, 40, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Carroll, C. Female excellence in rock climbing likely has an evolutionary origin. Curr. Res. Physiol. 2021, 4, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Niewiadomy, P.; Szuścik-Niewiadomy, K.; Kochan, M.; Kędra, N.; Kuszewski, M. Gender Differences in Ultrasound Imaging of Lateral Abdominal Muscle Thickness and Trunk Mobility. Muscle Ligaments Tendons J. 2022, 12, 444. [Google Scholar] [CrossRef]
- Lim, J.H.; Choi, S.H.; Seo, S.K. The Comparison of Ultrasound Images on Trunk Muscles According to Gender. J. Korean Soc. Phys. Med. 2015, 10, 73–80. [Google Scholar] [CrossRef]
- Dafkou, K.; Kellis, E.; Ellinoudis, A.; Sahinis, C. Lumbar Multifidus Muscle Thickness During Graded Quadruped and Prone Exercises. Int. J. Exerc. Sci. 2021, 14, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Dafkou, K.; Kellis, E.; Ellinoudis, A.; Sahinis, C. The Effect of Additional External Resistance on Inter-Set Changes in Abdominal Muscle Thickness during Bridging Exercise. J. Sports Sci. Med. 2020, 19, 102–111. [Google Scholar] [PubMed]
Measurement | Male (n = 20) Mean ± SD or Median (IQR) | Female (n = 20) Mean ± SD or Median (IQR) | p-Value |
---|---|---|---|
Age, y | 36.5 ± 10.8 * | 35.0 ± 9.60 * | 0.656 ** |
Weight, kg | 72.0 (9.0) † | 57.0 (10.0) † | 0.001 ‡ |
Height, cm | 1.77 ± 0.0 * | 1.65 (0.0) † | 0.001 ‡ |
BMI, kg/cm2 | 23 (3) † | 21 (2) † | 0.007 ‡ |
Discipline, B/R/M | 4/3/14 | 5/5/11 | n/a |
Experience, y | 4 | 4 | n/a |
Shoe size | 43 (0.5) † | 39 ± 1.22 * | n/a |
Measurement | Male (n = 20) Mean ± SD (95%CI) or Median (IQR) | Female (n = 20) Mean ± SD (95%CI) or Median (IQR) | p-Value (Effect Size) |
---|---|---|---|
TrAb_R | 4.32 (3.2–8.0) † | 4.42 ± 1.14 (2.4–7.6) * | 0.636 (0.18) ‡ |
IO_R | 11.6 ± 2.56 (6.6–19.2) * | 9.40 (3.8–19.6) † | 0.013 (0.62) ‡ |
EO_R | 6.87 ± 1.52 (4.7–10) * | 6.33 ± 1.48 (4.0–9.6) * | 0.274 (0.35) ** |
RA_R | 14.7 ± 2.41 (11.1–20.8) * | 9.69 ± 1.81 (6.9–13.5) * | 0.001 (2.32) ** |
TrAb_L | 4.72 (2.7–8.3) † | 4.23 ± 1.32 (2.3–6.8) * | 0.379 (0.27) ‡ |
IO_L | 11.5 ± 2.54 (7.6–18.4) * | 9.64 (5.66–11.6) † | 0.003 (1.08) ‡ |
EO_L | 6.64 (4.29–13.4) † | 7.18 ± 2.14 (2.76–9.50) * | 0.031 (0.66) ‡ |
RA_L | 13.5 ± 2.06 (10.8–17.7) * | 9.44 ± 1.94 (6.29–13.2) * | 0.001 (2.0) ** |
IRD | 5.31 ± 1.87 (1.8–9.7) * | 4.70 (1.9–10.2) † | 0.365 (0.26) ‡ |
Parameter | Model | p Value | Model R2 |
---|---|---|---|
RA_R (cm) | 10.750 | 0.716 | |
−0.11 * Age | 0.001 | ||
−0.09 * Weight | 0.177 | ||
−0.02 * Height | 0.412 | ||
−0.19 * BMI | 0.359 | ||
−4.22 * Sex (Female − Male) | 0.001 | ||
RA_L (cm) | 18.247 | 0.629 | |
−0.07 * Age | 0.034 | ||
0.008 * Weight | 0.196 | ||
0.01 * Height | 0.687 | ||
0.06 * BMI | 0.750 | ||
−2.76 * Sex (Female − Male) | 0.003 | ||
IO_R (cm) | 15.730 | 0.245 | |
0.05 * Age | 0.058 | ||
0.09 * Weight | 0.001 | ||
−0.10 * Height | 0.296 | ||
−0.54 * BMI | 0.283 | ||
−1.25 * Sex (Female − Male) | 0.351 | ||
IO_L (cm) | 10.277 | 0.322 | |
0.05 * Age | 0.203 | ||
0.07 * Weight | 0.339 | ||
−0.05 * Height | 0.139 | ||
−0.26 * BMI | 0.309 | ||
−1.63 * Sex (Female − Male) | 0.133 | ||
EO_L (cm) | 4.274 | 0.215 | |
−0.04 * Age | 0.195 | ||
0.05 * Weight | 0.423 | ||
−0.01 * Height | 0.744 | ||
0.02 * BMI | 0.909 | ||
−0.34 * Sex (Female − Male) | 0.698 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caro-Betancur, H.E.; Romero-Morales, C.; Zayas-Castaño, J.; Miñambres-Martín, D.; López-López, D.; Villafañe, J.H.; García-Mateos, M. Sex-Specific Muscle Size in Climbers: A Novel Cross-Sectional Study of an Ultrasonographic Analysis of Abdominal Wall Muscles. Life 2025, 15, 1275. https://doi.org/10.3390/life15081275
Caro-Betancur HE, Romero-Morales C, Zayas-Castaño J, Miñambres-Martín D, López-López D, Villafañe JH, García-Mateos M. Sex-Specific Muscle Size in Climbers: A Novel Cross-Sectional Study of an Ultrasonographic Analysis of Abdominal Wall Muscles. Life. 2025; 15(8):1275. https://doi.org/10.3390/life15081275
Chicago/Turabian StyleCaro-Betancur, Harryson Emmanuel, Carlos Romero-Morales, Joel Zayas-Castaño, Diego Miñambres-Martín, Daniel López-López, Jorge Hugo Villafañe, and Mónica García-Mateos. 2025. "Sex-Specific Muscle Size in Climbers: A Novel Cross-Sectional Study of an Ultrasonographic Analysis of Abdominal Wall Muscles" Life 15, no. 8: 1275. https://doi.org/10.3390/life15081275
APA StyleCaro-Betancur, H. E., Romero-Morales, C., Zayas-Castaño, J., Miñambres-Martín, D., López-López, D., Villafañe, J. H., & García-Mateos, M. (2025). Sex-Specific Muscle Size in Climbers: A Novel Cross-Sectional Study of an Ultrasonographic Analysis of Abdominal Wall Muscles. Life, 15(8), 1275. https://doi.org/10.3390/life15081275