Hibiscus syriacus L. Exhibits Cardioprotective Activity via Anti-Inflammatory and Antioxidant Mechanisms in an In Vitro Model of Heart Failure
Abstract
1. Introduction
1.1. Heart Failure: Global Burden and Therapeutic Challenges
1.2. Natural Products in Cardiovascular Therapy: A Focus on Hibiscus syriacus L.
1.3. Rationale, Research Gaps, and Study Objectives
2. Materials and Methods
2.1. Selection and Preparation of HS Extracts
2.2. Cell Viability Test
2.3. Experimental Design for Assessing ROS Production
2.3.1. Materials
2.3.2. H9c2 Cell Culture
2.3.3. Flow Cytometric Assay of 2′,7′-Dichlorodihydrofluorescein Oxidation
2.4. Experimental Design for Assessing Ang II-Stimulated Protein Synthesis
2.5. Experimental Design for Assessing the Secretion of the Selected Inflammatory Cytokines, Chemokines, and HF Risk Biomarkers
3. Results
3.1. HS Extractions
3.1.1. Bioactive Compounds and Their Therapeutic Potential
3.1.2. Effects of HS Extracts on H9c2 Cardiomyocyte Viability
3.2. Effects of HS Extracts on ROS Production, Protein Synthesis, and Secretion of Inflammatory Cytokines, Chemokines, and HF Risk Biomarkers
3.2.1. Inhibition of Ang II-Induced Redox Signaling and Hypertrophy In Vitro
3.2.2. Inhibition of Ang II-Induced Inflammatory Cytokine and Chemokine Secretion In Vitro
3.2.3. Inhibition of Ang II-Induced HF Risk Biomarker Secretion In Vitro
4. Discussion
4.1. Interpretation of Experimental Results and Mechanistic Interpretations
4.2. Comparison with Previous Studies
4.3. Implications of Findings in the Context of HF Management
4.4. Limitations of the Study and Future Directions
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Shah, K.S.; Xu, H.; Matsouaka, R.A.; Bhatt, D.L.; Heidenreich, P.A.; Hernandez, A.F.; Devore, A.D.; Yancy, C.W.; Fonarow, G.C. Heart Failure With Preserved, Borderline, and Reduced Ejection Fraction: 5-Year Outcomes. J. Am. Coll. Cardiol. 2017, 70, 2476–2486. [Google Scholar] [CrossRef]
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Park, Y.H.; Yang, C.; Kim, D.H.; Lee, K.W.; Lee, M.Y. Protocol for a randomized controlled trial evaluating the effect of Hibiscus syriacus L. flower extract on sleep quality. Front. Nutr. 2023, 10, 1169193. [Google Scholar] [CrossRef]
- Kim, Y.R.; Lee, S.Y.; Lee, S.M.; Shim, I.; Lee, M.Y. Effect of Hibiscus syriacus Linnaeus extract and its active constituent, saponarin, in animal models of stress-induced sleep disturbances and pentobarbital-induced sleep. Biomed. Pharmacother. 2022, 146, 112301. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Kwon, S.H.; Jang, Y.L.; Lee, D.H.; Yang, S.O.; Eo, H.J.; Park, G.H.; Kwon, H.Y. Nutritional composition and phytochemical screening in different parts of Hibiscus syriacus L. Food Sci. Nutr. 2022, 10, 3034–3042. [Google Scholar] [CrossRef]
- Karunarathne, W.; Molagoda, I.M.N.; Lee, K.T.; Choi, Y.H.; Yu, S.M.; Kang, C.H.; Kim, G.Y. Protective Effect of Anthocyanin-Enriched Polyphenols from Hibiscus syriacus L. (Malvaceae) against Ultraviolet B-Induced Damage. Antioxidants 2021, 10, 584. [Google Scholar] [CrossRef]
- Cook, C.; Cole, G.; Asaria, P.; Jabbour, R.; Francis, D.P. The annual global economic burden of heart failure. Int. J. Cardiol. 2014, 171, 368–376. [Google Scholar] [CrossRef]
- Ferrario, C.M. Cardiac remodelling and RAS inhibition. Ther. Adv. Cardiovasc. Dis. 2016, 10, 162–171. [Google Scholar] [CrossRef]
- Clark, A.M.; Wiens, K.S.; Banner, D.; Kryworuchko, J.; Thirsk, L.; McLean, L.; Currie, K. A systematic review of the main mechanisms of heart failure disease management interventions. Heart 2016, 102, 707–711. [Google Scholar] [CrossRef]
- Mann, D.L.; Felker, G.M. Mechanisms and Models in Heart Failure: A Translational Approach. Circ. Res. 2021, 128, 1435–1450. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.J.; Liu, S.Y.; Li, S.M.; Feng, J.K.; Hu, Y.; Cheng, X.Z.; Hou, C.Z.; Xu, Y.; Hu, M.; Feng, L.; et al. The recent advance and prospect of natural source compounds for the treatment of heart failure. Heliyon 2024, 10, e27110. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wei, X.; Zhang, Q.; Wu, Y.; Xia, G.; Xia, H.; Wang, L.; Shang, H.; Lin, S. The traditional Chinese medicines treat chronic heart failure and their main bioactive constituents and mechanisms. Acta Pharm. Sin. B 2023, 13, 1919–1955. [Google Scholar] [CrossRef]
- Ellis, L.R.; Zulfiqar, S.; Holmes, M.; Marshall, L.; Dye, L.; Boesch, C. A systematic review and meta-analysis of the effects of Hibiscus sabdariffa on blood pressure and cardiometabolic markers. Nutr. Rev. 2022, 80, 1723–1737. [Google Scholar] [CrossRef]
- Kaushik, N.; Oh, H.; Lim, Y.; Kumar Kaushik, N.; Nguyen, L.N.; Choi, E.H.; Kim, J.H. Screening of Hibiscus and Cinnamomum Plants and Identification of Major Phytometabolites in Potential Plant Extracts Responsible for Apoptosis Induction in Skin Melanoma and Lung Adenocarcinoma Cells. Front. Bioeng. Biotechnol. 2021, 9, 779393. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.Y.; Choi, H.S.; Park, S.Y.; Kim, J.K.; Seo, K.H.; Kim, H.; Kim, Y.J. Hibiscus syriacus L. cultivated in callus culture exerts cytotoxicity in colorectal cancer via Notch signaling-mediated cholesterol biosynthesis suppression. Phytomedicine 2022, 95, 153870. [Google Scholar] [CrossRef]
- Balkrishna, A.; Mishra, S.; Singh, A.; Srivastava, D.; Singh, S.; Arya, V. Hibiscus syriacus L.: A Critical Review of Medicinal Utility & Phytopharmacology with Mechanistic Approach. J. Phytopharm. 2022, 11, 204–210. [Google Scholar] [CrossRef]
- Ziyanok-Demirtas, S. A Holistic In Silico and In Vivo Approach to Exploring the Antidiabetic, Antioxidant, and Hepatoprotective Properties of Rose of Sharon. Life 2024, 14, 686. [Google Scholar] [CrossRef]
- Karunarathne, W.; Molagoda, I.M.N.; Lee, K.T.; Choi, Y.H.; Jin, C.Y.; Kim, G.Y. Anthocyanin-enriched polyphenols from Hibiscus syriacus L. (Malvaceae) exert anti-osteoporosis effects by inhibiting GSK-3beta and subsequently activating beta-catenin. Phytomedicine 2021, 91, 153721. [Google Scholar] [CrossRef]
- Xu, X.Y.; Tran, T.H.M.; Perumalsamy, H.; Sanjeevram, D.; Kim, Y.J. Biosynthetic gold nanoparticles of Hibiscus syriacus L. callus potentiates anti-inflammation efficacy via an autophagy-dependent mechanism. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 124, 112035. [Google Scholar] [CrossRef]
- Karunarathne, W.; Molagoda, I.M.N.; Park, S.R.; Kim, J.W.; Lee, O.K.; Kwon, H.Y.; Oren, M.; Choi, Y.H.; Ryu, H.W.; Oh, S.R.; et al. Anthocyanins from Hibiscus syriacus L. Inhibit Melanogenesis by Activating the ERK Signaling Pathway. Biomolecules 2019, 9, 645. [Google Scholar] [CrossRef] [PubMed]
- Molagoda, I.M.N.; Lee, K.T.; Choi, Y.H.; Kim, G.Y. Anthocyanins from Hibiscus syriacus L. Inhibit Oxidative Stress-Mediated Apoptosis by Activating the Nrf2/HO-1 Signaling Pathway. Antioxidants 2020, 9, 42. [Google Scholar] [CrossRef]
- Karunarathne, W.; Lee, K.T.; Choi, Y.H.; Jin, C.Y.; Kim, G.Y. Anthocyanins isolated from Hibiscus syriacus L. attenuate lipopolysaccharide-induced inflammation and endotoxic shock by inhibiting the TLR4/MD2-mediated NF-kappaB signaling pathway. Phytomedicine 2020, 76, 153237. [Google Scholar] [CrossRef]
- Molagoda, I.M.N.; Lee, K.T.; Choi, Y.H.; Jayasingha, J.; Kim, G.Y. Anthocyanins from Hibiscus syriacus L. Inhibit NLRP3 Inflammasome in BV2 Microglia Cells by Alleviating NF-kappaB- and ER Stress-Induced Ca2+ Accumulation and Mitochondrial ROS Production. Oxidative Med. Cell. Longev. 2021, 2021, 1246491. [Google Scholar] [CrossRef]
- Yoon, S.W.; Lee, K.P.; Kim, D.Y.; Hwang, D.I.; Won, K.J.; Lee, D.W.; Lee, H.M. Effect of Absolute From Hibiscus syriacus L. Flower on Wound Healing in Keratinocytes. Pharmacogn. Mag. 2017, 13, 85–89. Available online: https://pubmed.ncbi.nlm.nih.gov/28216888/ (accessed on 27 June 2025).
- Sanchez-Hernandez, E.; Buzon-Duran, L.; Lorenzo-Vidal, B.; Martin-Gil, J.; Martin-Ramos, P. Physicochemical Characterization and Antimicrobial Activity against Erwinia amylovora, Erwinia vitivora, and Diplodia seriata of a Light Purple Hibiscus syriacus L. Cultivar. Plants 2021, 10, 1876. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Im, A.R.; Park, B.K.; Paek, S.H.; Choi, G.; Kim, Y.R.; Whang, W.K.; Lee, K.H.; Oh, S.E.; Lee, M.Y. Antidepressant-Like and Neuroprotective Effects of Ethanol Extract from the Root Bark of Hibiscus syriacus L. BioMed Res. Int. 2018, 2018, 7383869. [Google Scholar] [CrossRef]
- Shi, L.S.; Wu, C.H.; Yang, T.C.; Yao, C.W.; Lin, H.C.; Chang, W.L. Cytotoxic effect of triterpenoids from the root bark of Hibiscus syriacus. Fitoterapia 2014, 97, 184–191. [Google Scholar] [CrossRef]
- Yang, J.E.; Ngo, H.T.T.; Hwang, E.; Seo, S.A.; Park, S.W.; Yi, T.H. Dietary enzyme-treated Hibiscus syriacus L. protects skin against chronic UVB-induced photoaging via enhancement of skin hydration and collagen synthesis. Arch. Biochem. Biophys. 2019, 662, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.; Mohamed, S.F.A.; Rozalei, N.H.; Boon, Y.W.; Zainalabidin, S. Anti-fibrotic Actions of Roselle Extract in Rat Model of Myocardial Infarction. Cardiovasc. Toxicol. 2019, 19, 72–81. [Google Scholar] [CrossRef]
- Hosseini, A.; Bakhtiari, E.; Mousavi, S.H. Protective Effect of Hibiscus Sabdariffa on Doxorubicin-induced Cytotoxicity in H9c2 Cardiomyoblast Cells. Iran. J. Pharm. Res. 2017, 16, 708–713. [Google Scholar] [PubMed]
- Nadar, S.K.; Shaikh, M.M. Biomarkers in Routine Heart Failure Clinical Care. Card. Fail. Rev. 2019, 5, 50–56. [Google Scholar] [CrossRef]
- Szabo, T.M.; Frigy, A.; Nagy, E.E. Targeting Mediators of Inflammation in Heart Failure: A Short Synthesis of Experimental and Clinical Results. Int. J. Mol. Sci. 2021, 22, 13053. [Google Scholar] [CrossRef]
- Mongirdiene, A.; Skrodenis, L.; Varoneckaite, L.; Mierkyte, G.; Gerulis, J. Reactive Oxygen Species Induced Pathways in Heart Failure Pathogenesis and Potential Therapeutic Strategies. Biomedicines 2022, 10, 602. [Google Scholar] [CrossRef] [PubMed]
- Kimes, B.W.; Brandt, B.L. Properties of a clonal muscle cell line from rat heart. Exp. Cell Res. 1976, 98, 367–381. [Google Scholar] [CrossRef]
- Shih, N.-L.; Cheng, T.-H.; Loh, S.-H.; Cheng, P.-Y.; Wang, D.L.; Chen, Y.-S.; Liu, S.-H.; Liew, C.-C.; Chen, J.-J. Reactive Oxygen Species Modulate Angiotensin II-Induced β-Myosin Heavy Chain Gene Expression via Ras/Raf/Extracellular Signal-Regulated Kinase Pathway in Neonatal Rat Cardiomyocytes. Biochem. Biophys. Res. Commun. 2001, 283, 143–148. [Google Scholar] [CrossRef]
- Cheng, T.H.; Liu, J.C.; Lin, H.; Shih, N.L.; Chen, Y.L.; Huang, M.T.; Chan, P.; Cheng, C.F.; Chen, J.J. Inhibitory effect of resveratrol on angiotensin II-induced cardiomyocyte hypertrophy. Naunyn Schmiedebergs Arch. Pharmacol. 2004, 369, 239–244. [Google Scholar] [CrossRef]
- Liu, J.C.; Chen, C.H.; Chen, J.J.; Cheng, T.H. Urotensin II induces rat cardiomyocyte hypertrophy via the transient oxidization of Src homology 2-containing tyrosine phosphatase and transactivation of epidermal growth factor receptor. Mol. Pharmacol. 2009, 76, 1186–1195. [Google Scholar] [CrossRef]
- Tsai, Y.T.; Sung, L.C.; Haw, W.R.; Chen, C.C.; Huang, S.F.; Liu, J.C.; Cheng, T.H.; Chen, P.Y.; Loh, S.H.; Tsai, C.S. Cafestol, a coffee diterpene, inhibits urotensin II-induced interleukin-8 expression in human umbilical vein endothelial cells. Eur. J. Pharmacol. 2018, 820, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Chiang, W.-P. A Chinese Herbal Medicine, Hibiscus syriacus Extracts, Exhibits Anti-Oxidative, Anti-Inflammatory and Anti-Atherosclerotic Activities. Master’s Thesis, China Medical University, Taichung, Taiwan, 2013. Available online: https://hdl.handle.net/11296/4t9mfj (accessed on 25 July 2025).
- Weissman, D.; Maack, C. Redox signaling in heart failure and therapeutic implications. Free Radic. Biol. Med. 2021, 171, 345–364. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.P.; Kakkar, R.; McCarthy, C.P.; Januzzi, J.L., Jr. Inflammation in Heart Failure: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 1324–1340. [Google Scholar] [CrossRef]
- Reina-Couto, M.; Pereira-Terra, P.; Quelhas-Santos, J.; Silva-Pereira, C.; Albino-Teixeira, A.; Sousa, T. Inflammation in Human Heart Failure: Major Mediators and Therapeutic Targets. Front. Physiol. 2021, 12, 746494. [Google Scholar] [CrossRef]
- Boulet, J.; Sridhar, V.S.; Bouabdallaoui, N.; Tardif, J.C.; White, M. Inflammation in heart failure: Pathophysiology and therapeutic strategies. Inflamm. Res. 2024, 73, 709–723. [Google Scholar] [CrossRef]
- Yang, C.M.; Yang, C.C.; Hsu, W.H.; Hsiao, L.D.; Tseng, H.C.; Shih, Y.F. Tumor Necrosis Factor-alpha-Induced C-C Motif Chemokine Ligand 20 Expression through TNF Receptor 1-Dependent Activation of EGFR/p38 MAPK and JNK1/2/FoxO1 or the NF-kappaB Pathway in Human Cardiac Fibroblasts. Int. J. Mol. Sci. 2022, 23, 9086. [Google Scholar] [CrossRef]
- Schutyser, E.; Struyf, S.; Van Damme, J. The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor. Rev. 2003, 14, 409–426. [Google Scholar] [CrossRef] [PubMed]
- Safa, A.; Rashidinejad, H.R.; Khalili, M.; Dabiri, S.; Nemati, M.; Mohammadi, M.M.; Jafarzadeh, A. Higher circulating levels of chemokines CXCL10, CCL20 and CCL22 in patients with ischemic heart disease. Cytokine 2016, 83, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Pan, S.Q.; Shen, C.; Pan, S.F.; Zhang, X.M.; He, Q.Y. Puerarin inhibits angiotensin II-induced cardiac hypertrophy via the redox-sensitive ERK1/2, p38 and NF-kappaB pathways. Acta Pharmacol. Sin. 2014, 35, 463–475. [Google Scholar] [CrossRef]
- Sepúlveda-Fragoso, V.; Alexandre-Santos, B.; Salles, A.C.P.; Proença, A.B.; de Paula Alves, A.P.; Vázquez-Carrera, M.; Nóbrega, A.C.L.; Frantz, E.D.C.; Magliano, D.C. Crosstalk between the renin-angiotensin system and the endoplasmic reticulum stress in the cardiovascular system: Lessons learned so far. Life Sci. 2021, 284, 119919. [Google Scholar] [CrossRef]
- Chen, Y.; Zeng, M.; Zhang, Y.; Guo, H.; Ding, W.; Sun, T. Nlrp3 Deficiency Alleviates Angiotensin II-Induced Cardiomyopathy by Inhibiting Mitochondrial Dysfunction. Oxidative Med. Cell. Longev. 2021, 2021, 6679100. [Google Scholar] [CrossRef]
- Hanna, A.; Frangogiannis, N.G. Inflammatory Cytokines and Chemokines as Therapeutic Targets in Heart Failure. Cardiovasc. Drugs Ther. 2020, 34, 849–863. [Google Scholar] [CrossRef]
- Lin, C.F.; Su, C.J.; Liu, J.H.; Chen, S.T.; Huang, H.L.; Pan, S.L. Potential Effects of CXCL9 and CCL20 on Cardiac Fibrosis in Patients with Myocardial Infarction and Isoproterenol-Treated Rats. J. Clin. Med. 2019, 8, 659. [Google Scholar] [CrossRef]
- Yeager, M.E.; Belchenko, D.D.; Nguyen, C.M.; Colvin, K.L.; Ivy, D.D.; Stenmark, K.R. Endothelin-1, the unfolded protein response, and persistent inflammation: Role of pulmonary artery smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 2012, 46, 14–22. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Kleniewska, P.; Kolodziejczyk, M.; Skibska, B.; Goraca, A. The role of endothelin-1 and endothelin receptor antagonists in inflammatory response and sepsis. Arch. Immunol. Ther. Exp. (Warsz.) 2015, 63, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Drawnel, F.M.; Archer, C.R.; Roderick, H.L. The role of the paracrine/autocrine mediator endothelin-1 in regulation of cardiac contractility and growth. Br. J. Pharmacol. 2013, 168, 296–317. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Tsutamoto, T.; Wada, A.; Mabuchi, N.; Hayashi, M.; Tsutsui, T.; Ohnishi, M.; Sawaki, M.; Fujii, M.; Matsumoto, T.; et al. High levels of plasma brain natriuretic peptide and interleukin-6 after optimized treatment for heart failure are independent risk factors for morbidity and mortality in patients with congestive heart failure. J. Am. Coll. Cardiol. 2000, 36, 1587–1593. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.L.; Grodin, J.L.; Chaikijurajai, T.; Wu, Y.; Hernandez, A.F.; Butler, J.; Metra, M.; Felker, G.M.; Voors, A.A.; McMurray, J.J.; et al. Interleukin-6 and Outcomes in Acute Heart Failure: An ASCEND-HF Substudy. J. Card. Fail. 2021, 27, 670–676. [Google Scholar] [CrossRef]
- Cuinet, J.; Garbagnati, A.; Rusca, M.; Yerly, P.; Schneider, A.G.; Kirsch, M.; Liaudet, L. Cardiogenic shock elicits acute inflammation, delayed eosinophilia, and depletion of immune cells in most severe cases. Sci. Rep. 2020, 10, 7639. [Google Scholar] [CrossRef]
- Seta, Y.; Shan, K.; Bozkurt, B.; Oral, H.; Mann, D.L. Basic mechanisms in heart failure: The cytokine hypothesis. J. Card. Fail. 1996, 2, 243–249. [Google Scholar] [CrossRef]
- Lin, F.; Xu, L.; Huang, M.; Deng, B.; Zhang, W.; Zeng, Z.; Yinzhi, S. beta-Sitosterol Protects against Myocardial Ischemia/Reperfusion Injury via Targeting PPARgamma/NF-kappaB Signalling. Evid. Based Complement. Altern. Med. 2020, 2020, 2679409. [Google Scholar] [CrossRef]
- Khan, Z.; Nath, N.; Rauf, A.; Emran, T.B.; Mitra, S.; Islam, F.; Chandran, D.; Barua, J.; Khandaker, M.U.; Idris, A.M.; et al. Multifunctional roles and pharmacological potential of beta-sitosterol: Emerging evidence toward clinical applications. Chem. Biol. Interact. 2022, 365, 110117. [Google Scholar] [CrossRef]
- Babu, S.; Krishnan, M.; Rajagopal, P.; Periyasamy, V.; Veeraraghavan, V.; Govindan, R.; Jayaraman, S. Beta-sitosterol attenuates insulin resistance in adipose tissue via IRS-1/Akt mediated insulin signaling in high fat diet and sucrose induced type-2 diabetic rats. Eur. J. Pharmacol. 2020, 873, 173004. [Google Scholar] [CrossRef]
- Harris, W.S.; Mozaffarian, D.; Rimm, E.; Kris-Etherton, P.; Rudel, L.L.; Appel, L.J.; Engler, M.M.; Engler, M.B.; Sacks, F. Omega-6 fatty acids and risk for cardiovascular disease: A science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention. Circulation 2009, 119, 902–907. [Google Scholar] [CrossRef]
- Feilong, S.; Xue, M.; Yu, W.; Fang, L. Investigating the role and mechanisms of tricin in ischemia-reperfusion-induced myocardial injury in LDLr -/- MICE. Pak. J. Pharm. Sci. 2023, 36, 1045–1051. [Google Scholar]
- Shalini, V.; Bhaskar, S.; Kumar, K.S.; Mohanlal, S.; Jayalekshmy, A.; Helen, A. Molecular mechanisms of anti-inflammatory action of the flavonoid, tricin from Njavara rice (Oryza sativa L.) in human peripheral blood mononuclear cells: Possible role in the inflammatory signaling. Int. Immunopharmacol. 2012, 14, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Yoo, I.D.; Yun, B.S.; Lee, I.K.; Ryoo, I.J.; Choung, D.H.; Han, K.H. Three naphthalenes from root bark of Hibiscus syriacus. Phytochemistry 1998, 47, 799–802. [Google Scholar] [CrossRef] [PubMed]
- Ryoo, I.-J.; Moon, E.-Y.; Kim, Y.-H.; Lee, I.-S.; Choo, S.-J.; Bae, K.-H.; Yoo, I.-D. Anti-Skin Aging Effect of Syriacusins from Hibiscus syriacus on Ultraviolet-Irradiated Human Dermal Fibroblast Cells. Biomol. Ther. 2010, 18, 300–307. [Google Scholar] [CrossRef]
Plant Part Used | Preparation Type | Reported Biological Activity | Reference |
---|---|---|---|
Callus culture | Extract | Cytotoxicity in colorectal cancer via Notch-mediated cholesterol biosynthesis suppression | Xu et al., 2022 [15] |
Gold nanoparticle biosynthesis | Anti-inflammatory effects via autophagy-dependent mechanisms | Xu et al., 2021 [19] | |
Petals | Anthocyanin-rich fraction | Inhibition of melanogenesis via ERK activation | Karunarathne et al., 2019 [20] |
Anthocyanins | Protection against oxidative stress via Nrf2/HO-1 activation | Molagoda et al., 2020 [21] | |
Suppression of LPS-induced inflammation via TLR4/MD2-NFκB inhibition | Karunarathne et al., 2020 [22] | ||
Inhibition of NLRP3 inflammasome via NFκB and ER stress modulation | Molagoda et al., 2021 [23] | ||
Anthocyanin-enriched polyphenols | Anti-osteoporotic effects via GSK-3β inhibition and β-catenin activation | Karunarathne et al., 2021 [18] | |
Protection against UVB-induced skin damage | Karunarathne et al., 2021 [6] | ||
Flower | Absolute extract | Enhanced wound healing in keratinocytes | Yoon et al., 2017 [24] |
Extract (clinical trial) | Improved sleep quality in randomized controlled trial | Choi et al., 2023 [3] | |
Flower, leaf, root | Crude extracts | Nutritional profiling and phytochemical screening | Park et al., 2022 [5] |
Flower (light purple cultivar) | Extract | Antimicrobial activity against plant pathogens | Sánchez-Hernández et al., 2021 [25] |
Root bark | Ethanol extract | Antidepressant-like and neuroprotective effects | Kim et al., 2018 [26] |
Isolated triterpenoids | Cytotoxicity against cancer cell lines | Shi et al., 2014 [27] | |
Root and stem bark | Enzyme-treated extract | Anti-photoaging effects via increased hydration and collagen synthesis | Yang et al., 2019 [28] |
Whole plant (in silico/in vivo) | Extract | Antidiabetic, antioxidant, and hepatoprotective properties | Ziyanok-Demirtas, 2024 [17] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chao, H.-H.; Cheng, T.-H.; Chen, C.-C.; Liu, J.-C.; Chen, J.-J.; Sung, L.-C. Hibiscus syriacus L. Exhibits Cardioprotective Activity via Anti-Inflammatory and Antioxidant Mechanisms in an In Vitro Model of Heart Failure. Life 2025, 15, 1229. https://doi.org/10.3390/life15081229
Chao H-H, Cheng T-H, Chen C-C, Liu J-C, Chen J-J, Sung L-C. Hibiscus syriacus L. Exhibits Cardioprotective Activity via Anti-Inflammatory and Antioxidant Mechanisms in an In Vitro Model of Heart Failure. Life. 2025; 15(8):1229. https://doi.org/10.3390/life15081229
Chicago/Turabian StyleChao, Hung-Hsin, Tzu-Hurng Cheng, Chun-Chao Chen, Ju-Chi Liu, Jin-Jer Chen, and Li-Chin Sung. 2025. "Hibiscus syriacus L. Exhibits Cardioprotective Activity via Anti-Inflammatory and Antioxidant Mechanisms in an In Vitro Model of Heart Failure" Life 15, no. 8: 1229. https://doi.org/10.3390/life15081229
APA StyleChao, H.-H., Cheng, T.-H., Chen, C.-C., Liu, J.-C., Chen, J.-J., & Sung, L.-C. (2025). Hibiscus syriacus L. Exhibits Cardioprotective Activity via Anti-Inflammatory and Antioxidant Mechanisms in an In Vitro Model of Heart Failure. Life, 15(8), 1229. https://doi.org/10.3390/life15081229