Prenatal Valproic Acid Exposure Affects Song Learning in Zebra Finches: A Potential Model for Vocal Development in Autism
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Prenatal VPA Treatment
4.3. Song Recording and Analysis
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASD | Autism spectrum disorder |
VPA | Valproic acid |
LMM | Linear mixed model |
LRT | Likelihood ratio test |
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Text Revision, 5th ed.; American Psychiatric Association Publishing: Washington, DC, USA, 2022; ISBN 0890425760. [Google Scholar] [CrossRef]
- Campolongo, M.; Kazlauskas, N.; Falasco, G.; Urrutia, L.; Salgueiro, N.; Höcht, C.; Depino, A.M. Sociability Deficits after Prenatal Exposure to Valproic Acid Are Rescued by Early Social Enrichment. Mol. Autism 2018, 9, 36. [Google Scholar] [CrossRef] [PubMed]
- Simmons, K.L. The Official Autism 101 Manual. Everything You Need to Know About Autism from Experts Who Know and Care, 3rd ed.; Alderson, J., Ed.; Skyhorse Publishing: New York, NY, USA, 2018; ISBN 1510722556. [Google Scholar]
- Gagnon, D.; Zeribi, A.; Douard, É.; Courchesne, V.; Rodríguez-Herreros, B.; Huguet, G.; Jacquemont, S.; Loum, M.A.; Mottron, L. Bayonet-Shaped Language Development in Autism with Regression: A Retrospective Study. Mol. Autism 2021, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global Prevalence of Autism: A Systematic Review Update. Autism Res. 2022, 15, 778–790. [Google Scholar] [CrossRef]
- Činčárová, L.; Zdráhal, Z.; Fajkus, J. New Perspectives of Valproic Acid in Clinical Practice. Expert Opin. Investig. Drugs 2013, 22, 1535–1547. [Google Scholar] [CrossRef]
- Safdar, A.; Ismail, F. A Comprehensive Review on Pharmacological Applications and Drug-Induced Toxicity of Valproic Acid. Saudi Pharm. J. 2023, 31, 265–278. [Google Scholar] [CrossRef]
- Perucca, E. Pharmacological and Therapeutic Properties of Valproate: A Summary after 35 Years of Clinical Experience. CNS Drugs 2002, 16, 695–714. [Google Scholar] [CrossRef]
- Chateauvieux, S.; Morceau, F.; Dicato, M.; Diederich, M. Molecular and Therapeutic Potential and Toxicity of Valproic Acid. BioMed Res. Int. 2010, 2010, 479364. [Google Scholar] [CrossRef]
- Pagliaro, L.A.; Pagliaro, A.M. Valproic Acid [Divalproex Sodium; Sodium Valproate; Valproate Sodium]. In PNDR: Psychologists’ Neuropsychotropic Drug Reference; Routledge: New York, NY, USA, 2020; pp. 1–9. ISBN 9781315825748. [Google Scholar]
- Ornoy, A. Valproic Acid in Pregnancy: How Much Are We Endangering the Embryo and Fetus? Reprod. Toxicol. 2009, 28, 1–10. [Google Scholar] [CrossRef]
- Nishigori, H.; Kagami, K.; Takahashi, A.; Tezuka, Y.; Sanbe, A.; Nishigori, H. Impaired Social Behavior in Chicks Exposed to Sodium Valproate during the Last Week of Embryogenesis. Psychopharmacology 2013, 227, 393–402. [Google Scholar] [CrossRef]
- Zachar, G.; Tóth, A.S.; Gerecsei, L.I.; Zsebok, S.; Ádám, Á.; Csillag, A. Valproate Exposure in Ovo Attenuates the Acquisition of Social Preferences of Young Post-Hatch Domestic Chicks. Front. Physiol. 2019, 10, 881. [Google Scholar] [CrossRef]
- Roullet, F.I.; Wollaston, L.; deCatanzaro, D.; Foster, J.A. Behavioral and Molecular Changes in the Mouse in Response to Prenatal Exposure to the Anti-Epileptic Drug Valproic Acid. Neuroscience 2010, 170, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lei, L.; Tian, L.; Hou, F.; Roper, C.; Ge, X.; Zhao, Y.; Chen, Y.; Dong, Q.; Tanguay, R.L.; et al. Developmental and Behavioral Alterations in Zebrafish Embryonically Exposed to Valproic Acid (VPA): An Aquatic Model for Autism. Neurotoxicol. Teratol. 2018, 66, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Y.; Lin, J.; Xia, Q.; Guo, N.; Li, Q. Social Preference Deficits in Juvenile Zebrafish Induced by Early Chronic Exposure to Sodium Valproate. Front. Behav. Neurosci. 2016, 10, 201. [Google Scholar] [CrossRef] [PubMed]
- Aluru, N.; Deak, K.L.; Jenny, M.J.; Hahn, M.E. Developmental Exposure to Valproic Acid Alters the Expression of MicroRNAs Involved in Neurodevelopment in Zebrafish. Neurotoxicol. Teratol. 2013, 40, 46–58. [Google Scholar] [CrossRef]
- Ornoy, A.; Echefu, B.; Becker, M. Animal Models of Autistic-like Behavior in Rodents: A Scoping Review and Call for a Comprehensive Scoring System. Int. J. Mol. Sci. 2024, 25, 10469. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, Y.X.; Gu, L.J.; Cheng, Y. Understanding Autism Spectrum Disorders with Animal Models: Applications, Insights, and Perspectives. Zool. Res. 2021, 42, 800–824. [Google Scholar] [CrossRef]
- Csillag, A.; Ádám, Á.; Zachar, G. Avian Models for Brain Mechanisms Underlying Altered Social Behavior in Autism. Front. Physiol. 2022, 13, 1032046. [Google Scholar] [CrossRef]
- Camussi, D.; Marchese, M.; Nicoletti, F.; Santorelli, F.M.; Ogi, A. Valproate-Induced Model of Autism in Adult Zebrafish: A Systematic Review. Cells 2025, 14, 109. [Google Scholar] [CrossRef]
- Ornoy, A.; Echefu, B.; Becker, M. Valproic Acid in Pregnancy Revisited: Neurobehavioral, Biochemical and Molecular Changes Affecting the Embryo and Fetus in Humans and in Animals: A Narrative Review. Int. J. Mol. Sci. 2023, 25, 390. [Google Scholar] [CrossRef]
- Clayton, N.S. Assortative Mating in Zebra Finch Subspecies, Taeniopygia guttata guttata and T. g. castanotis. Philos. Trans. R. Soc. B 1990, 330, 351–370. [Google Scholar] [CrossRef]
- Swaddle, J.P. Zebra Finches. In Encyclopedia of Animal Behavior; Choe, J.C., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 279–284. [Google Scholar]
- Pogány, Á.; Szurovecz, Z.; Vincze, E.; Barta, Z.; Székely, T. Mate Preference Does Not Influence Reproductive Motivation and Parental Cooperation in Female Zebra Finches. Behaviour 2014, 151, 1885–1901. [Google Scholar] [CrossRef]
- Boucaud, I.C.A.; Mariette, M.M.; Villain, A.S.; Vignal, C. Vocal Negotiation over Parental Care? Acoustic Communication at the Nest Predicts Partners’ Incubation Share. Biol. J. Linn. Soc. 2016, 117, 322–336. [Google Scholar] [CrossRef]
- Hauber, M.E.; Louder, M.I.; Griffith, S.C. The Natural History of Model Organisms Neurogenomic Insights into the Behavioral and Vocal Development of the Zebra Finch. eLife 2021, 10, e61849. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Matheson, L.E.; Sakata, J.T. Mechanisms Underlying the Social Enhancement of Vocal Learning in Songbirds. Proc. Natl. Acad. Sci. USA 2016, 113, 6641–6646. [Google Scholar] [CrossRef]
- White, S.A.; Fisher, S.E.; Geschwind, D.H.; Scharff, C.; Holy, T.E. Singing Mice, Songbirds, and More: Models for FOXP2 Function and Dysfunction in Human Speech and Language. J. Neurosci. 2006, 26, 10376–10379. [Google Scholar] [CrossRef]
- Pfenning, A.R.; Hara, E.; Whitney, O.; Rivas, M.V.; Wang, R.; Roulhac, P.L.; Howard, J.T.; Wirthlin, M.; Lovell, P.V.; Ganapathy, G.; et al. Convergent Transcriptional Specializations in the Brains of Humans and Song-Learning Birds. Science 2014, 346, 1256846. [Google Scholar] [CrossRef]
- Teramitsu, I.; Kudo, L.C.; London, S.E.; Geschwind, D.H.; White, S.A. Parallel FoxP1 and FoxP2 Expression in Songbird and Human Brain Predicts Functional Interaction. J. Neurosci. 2004, 24, 3152–3163. [Google Scholar] [CrossRef]
- Garcia-Oscos, F.; Koch, T.M.I.; Pancholi, H.; Trusel, M.; Daliparthi, V.; Co, M.; Park, S.E.; Ayhan, F.; Alam, D.H.; Holdway, J.E.; et al. Autism-Linked Gene FoxP1 Selectively Regulates the Cultural Transmission of Learned Vocalizations. Sci. Adv. 2021, 7, eabd2827. [Google Scholar] [CrossRef]
- Heim, F.; Scharff, C.; Fisher, S.E.; Riebel, K.; ten Cate, C. Auditory Discrimination Learning and Acoustic Cue Weighing in Female Zebra Finches with Localized FoxP1 Knockdowns. J. Neurophysiol. 2024, 131, 950–963. [Google Scholar] [CrossRef]
- Brainard, M.S.; Doupe, A.J. Translating Birdsong: Songbirds as a Model for Basic and Applied Medical Research. Annu. Rev. Neurosci. 2013, 36, 489–517. [Google Scholar] [CrossRef]
- Mello, C.V. The Zebra Finch, Taeniopygia Guttata: An Avian Model for Investigating the Neurobiological Basis of Vocal Learning. Cold Spring Harb. Protoc. 2014, 2014, 1237–1242. [Google Scholar] [CrossRef] [PubMed]
- Braaten, R.F. Song Recognition in Zebra Finches: Are There Sensitive Periods for Song Memorization? Learn. Motiv. 2010, 41, 202–212. [Google Scholar] [CrossRef]
- Roper, A.; Zann, R. The Onset of Song Learning and Song Tutor Selection in Fledgling Zebra Finches. Ethology 2006, 112, 458–470. [Google Scholar] [CrossRef]
- Derégnaucourt, S.; Gahr, M. Horizontal Transmission of the Father’s Song in the Zebra Finch (Taeniopygia guttata). Biol. Lett. 2013, 9, 20130247. [Google Scholar] [CrossRef]
- Tchernichovski, O.; Mitra, P.P.; Lints, T.; Nottebohm, F. Dynamics of the Vocal Imitation Process: How a Zebra Finch Learns Its Song. Science 2001, 291, 2564–2569. [Google Scholar] [CrossRef]
- Tsuji, T.; Mizutani, R.; Minami, K.; Furuhara, K.; Fujisaku, T.; Pinyue, F.; Jing, Z.; Tsuji, C. Oxytocin Administration Modulates the Complex Type of Ultrasonic Vocalisation of Mice Pups Prenatally Exposed to Valproic Acid. Neurosci. Lett. 2021, 758, 135985. [Google Scholar] [CrossRef]
- Tsuji, C.; Furuhara, K.; Mizutani, R.; Minami, K.; Fu, P.; Zhong, J.; Higashida, H.; Yokoyama, S.; Tsuji, T. Early-Onset of Social Communication and Locomotion Activity in F2 Pups of a Valproic Acid-Induced Mouse Model of Autism. Neurosci. Lett. 2022, 788, 136827. [Google Scholar] [CrossRef]
- Cezar, L.C.; da Fonseca, C.C.N.; Klein, M.O.; Kirsten, T.B.; Felicio, L.F. Prenatal Valproic Acid Induces Autistic-Like Behaviors in Rats via Dopaminergic Modulation in Nigrostriatal and Mesocorticolimbic Pathways. J. Neurochem. 2025, 169, e16282. [Google Scholar] [CrossRef]
- Gzielo, K.; Potasiewicz, A.; Hołuj, M.; Litwa, E.; Popik, P.; Nikiforuk, A. Valproic Acid Exposure Impairs Ultrasonic Communication in Infant, Adolescent and Adult Rats. Eur. Neuropsychopharmacol. 2020, 41, 52–62. [Google Scholar] [CrossRef]
- Agarwalla, S.; Yuvarani, M.S.; Bandyopadhyay, S. Alterations in the Ultrasonic Vocalization Sequences in Pups of an Autism Spectrum Disorder Mouse Model: A Longitudinal Study over Age and Sex. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2025, 139, 111372. [Google Scholar] [CrossRef]
- Boogert, N.J.; Giraldeau, L.A.; Lefebvre, L. Song Complexity Correlates with Learning Ability in Zebra Finch Males. Anim. Behav. 2008, 76, 1735–1741. [Google Scholar] [CrossRef]
- Houtman, A.M. Female Zebra Finches Choose Extra-Pair Copulations with Genetically Attractive Males. Proc. R. Soc. B Biol. Sci. 1992, 249, 3–6. [Google Scholar] [CrossRef]
- Riebel, K. Song and Female Mate Choice in Zebra Finches: A Review. Adv. Study Behav. 2009, 40, 197–238. [Google Scholar] [CrossRef]
- Woodgate, J.L.; Mariette, M.M.; Bennett, A.T.D.; Griffith, S.C.; Buchanan, K.L. Male Song Structure Predicts Reproductive Success in a Wild Zebra Finch Population. Anim. Behav. 2012, 83, 773–781. [Google Scholar] [CrossRef]
- Forstmeier, W.; Segelbacher, G.; Mueller, J.C.; Kempenaers, B. Genetic Variation and Differentiation in Captive and Wild Zebra Finches (Taeniopygia guttata). Mol. Ecol. 2007, 16, 4039–4050. [Google Scholar] [CrossRef]
- Pogány, Á.; Tewelde, E.G.; Morvai, B.; Zachar, G. Optimization of valproic acid treatment to study autism in a novel, ecologically valid animal model, the zebra finch. Semmelweis University, Budapest, Hungary. 2025; submitted for publication. [Google Scholar]
- Sgadò, P.; Rosa-Salva, O.; Versace, E.; Vallortigara, G. Embryonic Exposure to Valproic Acid Impairs Social Predispositions of Newly-Hatched Chicks. Sci. Rep. 2018, 8, 5919. [Google Scholar] [CrossRef]
- Lorenzi, E.; Pross, A.; Rosa-Salva, O.; Versace, E.; Sgadò, P.; Vallortigara, G. Embryonic Exposure to Valproic Acid Affects Social Predispositions for Dynamic Cues of Animate Motion in Newly-Hatched Chicks. Front. Physiol. 2019, 10, 501. [Google Scholar] [CrossRef]
- Audicity Team Audacity(R); Version 3.7.0; Free Audio Editor and Recorder [Computer Program]; Muse Group: Limassol, Cyprus, 2024; Available online: http://audacity.sourceforge.net/ (accessed on 30 November 2024).
- Tchernichovski, O.; Nottebohm, F.; Ho, C.E.; Pesaran, B.; Mitra, P.P. A Procedure for an Automated Measurement of Song Similarity. Anim. Behav. 2000, 59, 1167–1176. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; The R Foundation: Vienna, Austria, 2024; Available online: http://www.r-project.org/ (accessed on 12 December 2024).
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Mächler, M.; Bolker, B.M. GlmmTMB Balances Speed and Flexibility among Packages for Zero-Inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
Acoustic Property | Exp. Group | Mean ± SE | χ21 | p |
---|---|---|---|---|
duration (ms) | VPA | 90.88 ± 6.41 | 0.002 | 0.966 |
Ctrl | 84.16 ± 8.97 | |||
amplitude | VPA | 45.32 ± 0.41 | 0.372 | 0.542 |
Ctrl | 44.57 ± 0.22 | |||
mean frequency (Hz) | VPA | 2744.93 ± 66.61 | <0.001 | 0.993 |
Ctrl | 2743.96 ± 102.21 | |||
peak frequency (Hz) | VPA | 2878.36 ± 84.75 | 0.005 | 0.946 |
Ctrl | 2868.75 ± 122.90 | |||
pitch (Hz) | VPA | 470.50 ± 35.31 | 3.131 | 0.077 |
Ctrl | 594.27 ± 68.18 | |||
goodness of pitch | VPA | 150.04 ± 3.36 | 0.167 | 0.683 |
Ctrl | 146.41 ± 5.64 | |||
FM (kHz) | VPA | 42.33 ± 1.06 | 0.326 | 0.568 |
Ctrl | 41.23 ± 1.75 | |||
AM | VPA | 0.00 ± 0.01 | 0.238 | 0.626 |
Ctrl | 0.02 ± 0.02 | |||
Wiener entropy | VPA | −1.41 ± 0.06 | 8.824 | 0.003 |
Ctrl | −1.70 ± 0.07 |
Acoustic Property (Diff) | Exp. Group | Mean ± SE | χ21 | p |
---|---|---|---|---|
high-scale similarity (%) | VPA | 73.63 ± 6.92 | 5.720 | 0.017 |
Ctrl | 30.89 ± 8.67 | |||
low-scale similarity (%) | VPA | 62.12 ± 4.57 | 1.501 | 0.221 |
Ctrl | 48.60 ± 6.08 | |||
sequential match (%) | VPA | 73.20 ± 6.61 | 2.135 | 0.144 |
Ctrl | 87.55 ± 6.78 | |||
pitch difference (Hz) | VPA | 1.55 ± 0.18 | 0.443 | 0.506 |
Ctrl | 1.88 ± 0.33 | |||
goodness of pitch difference | VPA | 2.91 ± 0.51 | 0.190 | 0.663 |
Ctrl | 2.40 ± 0.71 | |||
FM difference (kHz) | VPA | 1.04 ± 0.04 | 1.433 | 0.231 |
Ctrl | 1.14 ± 0.06 | |||
AM difference | VPA | 1.10 ± 0.03 | 1.940 | 0.164 |
Ctrl | 0.95 ± 0.06 | |||
Wiener entropy difference | VPA | 1.42 ± 0.37 | 0.351 | 0.554 |
Ctrl | 2.03 ± 0.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tewelde, E.G.; Morvai, B.; Zachar, G.; Pogány, Á. Prenatal Valproic Acid Exposure Affects Song Learning in Zebra Finches: A Potential Model for Vocal Development in Autism. Life 2025, 15, 1058. https://doi.org/10.3390/life15071058
Tewelde EG, Morvai B, Zachar G, Pogány Á. Prenatal Valproic Acid Exposure Affects Song Learning in Zebra Finches: A Potential Model for Vocal Development in Autism. Life. 2025; 15(7):1058. https://doi.org/10.3390/life15071058
Chicago/Turabian StyleTewelde, Estifanos Ghebrihiwet, Boglárka Morvai, Gergely Zachar, and Ákos Pogány. 2025. "Prenatal Valproic Acid Exposure Affects Song Learning in Zebra Finches: A Potential Model for Vocal Development in Autism" Life 15, no. 7: 1058. https://doi.org/10.3390/life15071058
APA StyleTewelde, E. G., Morvai, B., Zachar, G., & Pogány, Á. (2025). Prenatal Valproic Acid Exposure Affects Song Learning in Zebra Finches: A Potential Model for Vocal Development in Autism. Life, 15(7), 1058. https://doi.org/10.3390/life15071058